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Abstract. We present a method for two-scale model derivation of the periodic
homogenization of the one-dimensional wave equation in a bounded domain. It
allows for analyzing the oscillations occurring on both microscopic and macroscopic
scales. The novelty reported here is on the asymptotic behavior of high frequency
waves and especially on the boundary conditions of the homogenized equation.
Numerical simulations are reported.
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1 Introduction

The paper is devoted to the periodic homogenization of the wave equation in
a one-dimensional open bounded domain where the time-independent coeffi-
cients are ε−periodic with small period ε > 0. Corrector results for the low
frequency waves have been published in [2,4]. These works were not taking
into account fast time oscillations, so the models reflect only a part of the
physical solution. In [3], an homogenized model has been developed to cover
the time and space oscillations occurring both at low and high frequencies.
Unfortunately, the boundary conditions of the homogenized model was not
found. Therefore, establishing the boundary conditions of the homogenized
model is critical and is the goal of the present work which also extends [5].

To this end, the wave equation is written under the form of a first order
formulation and the modulated two-scale transform W ε

k is applied to the
solution Uε as in [3]. For n ∈ N

∗ and k ∈ R, the nth eigenvalue λk
n of the Bloch

wave problem with k-quasi-periodic boundary conditions satisfies λk
n = λ−k

n ,
in addition λk

m = λk
n for k ∈ Z/2, so the corresponding waves are oscillating

with the same frequency. The homogenized model is thus derived for pairs of
fibers {−k, k} if k 6= 0 and for fiber {0} otherwise which allows to derive the
expected boundary conditions. The weak limit of

∑

σ∈{−k,k} W
ε
σU

ε includes
low and high frequency waves, the former being solution of the homogenized
model derived in [2,4] and the latter are associated to Bloch wave expansions.
Numerical results comparing solutions of the wave equation with solution of
the two-scale model for fixed ε and k are reported in the last section.

http://arxiv.org/abs/1312.0654v1
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2 The physical problem and elementary properties

The physical problem We consider I = (0, T ) ⊂ R
+ a finite time interval

and Ω = (0, α) ⊂ R
+ a space interval, which boundary is denoted by ∂Ω.

Here, as usual ε > 0 denotes a small parameter intended to go to zero. Two
functions (aε, ρε) are assumed to obey a prescribed profile aε := a

(

x
ε

)

and

ρε := ρ
(

x
ε

)

where ρ ∈ L∞ (R), a ∈ W 1,∞ (R) are both Y−periodic where Y =
(0, 1). Moreover, they are required to satisfy the standard uniform positivity
and ellipticity conditions, 0 < ρ0 ≤ ρ ≤ ρ1 and 0 < a0 ≤ a ≤ a1, for some
given strictly positive numbers ρ0, ρ1, a0 and a1. We consider uε (t, x) solution
to the wave equation with the source term f ε ∈ L2 (I ×Ω), initial conditions

(uε
0, v

ε
0) ∈ L2 (Ω)

2
and homogeneous Dirichlet boundary conditions,

ρε∂ttu
ε − ∂x (a

ε∂xu
ε) = f ε in I ×Ω,

uε (t = 0, .) = uε
0 and ∂tu

ε (t = 0, .) = vε0 in Ω,
uε = 0 on I × ∂Ω.

(1)

By setting: Uε := (
√
aε∂xu

ε,
√
ρε∂tu

ε), Aε =

(

0
√
aε∂x

(

1√
ρε .
)

1√
ρε ∂x

(√
aε.
)

0

)

,

Uε
0 := (

√
aε∂xu

ε
0,
√
ρεvε0) and F ε := (0, f ε/

√
ρε), we reformulate the wave

equation (1) as an equivalent system,

(∂t −Aε)Uε = F ε in I ×Ω,Uε (t = 0) = Uε
0 in Ω and Uε

2 = 0 on I × ∂Ω

where Uε
2 is the second component of Uε. From now on, this system will be

referred to as the physical problem and taken in the distributional sense,
∫

I×Ω

F ε · Ψ + Uε · (∂t −Aε) Ψdtdx +

∫

Ω

Uε
0 · Ψ (t = 0) dx = 0, (2)

for all the admissible test functions Ψ ∈ H1(I ×Ω)
2
such that Ψ (t, .) ∈ D (Aε)

for a.e. t ∈ I where the domain D(Aε) := {(ϕ, φ) ∈ L2 (Ω)
2|
√
aεϕ ∈ H1 (Ω) ,

φ/ρ ∈ H1
0 (Ω)}. As proved in [3], the operator iAε with the domain D(Aε) is

self-adjoint on L2(Ω)2. We assume that the data are bounded ‖f ε‖L2(I×Ω)+

‖∂xuε
0‖L2(Ω) + ‖vε0‖L2(Ω) ≤ c0, then Uε is uniformly bounded in L2 (I ×Ω) .

Bloch waves We introduce the dual Y ∗ =
(

− 1
2 ,

1
2

)

of Y . For any k ∈ Y ∗,
we define the space of k−quasi-periodic functions L2

k := {u ∈ L2
loc(R) |

u(x+ ℓ) = u(x)e2iπkℓ a.e. in R for all ℓ ∈ Z} and set Hs
k := L2

k ∩Hs
loc (R) for

s ≥ 0. The periodic functions correspond to k = 0. For a given k ∈ Y ∗, we
denote by (λk

n, φ
k
n)n∈N∗ the Bloch wave eigenelements that are solution to

P(k) : −∂y
(

a∂yφ
k
n

)

= λk
nρφ

k
n in Y with φk

n ∈ H2
k(Y ) and

∥

∥φk
n

∥

∥

L2(Y )
= 1.

The asymptotic spectral problem P(k) is also restated as a first order system

by setting Ak :=

(

0
√
a∂y

(

1√
ρ .
)

1√
ρ∂y (

√
a.) 0

)

, nAk
= 1√

ρ

(

0
√
anY√

anY 0

)
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and ekn := 1√
2

(

−isn/
√

λk
|n|

√
a∂y

(

φk
|n|

)

√
ρφk

|n|

)

where sn and nY denote the sign

of n ∈ Z
∗ and the outer unit normal of ∂Y respectively. As proved in [3], iAk

is self-adjoint on the domain D (Ak) := {(ϕ, φ) ∈ L2 (Y )2 |√aϕ ∈ H1
k (Y ) ,

φ/
√
ρ ∈ H1

k (Y ) ⊂ L2 (Y )2}. The Bloch wave spectral problem P(k) is equiv-
alent to finding pairs

(

µk
n, e

k
n

)

indexed by n ∈ Z
∗ solution to Q(k) : Ake

k
n =

isn
√

λk
|n|e

k
n in Y with ekn ∈ H1

k (Y )
2
. We pose Mk

n := {m∈ Z
∗|λk

m=λk
n and

sm = sn} and introduce the coefficients b(k, n,m) =
∫

Y ρφk
|n| · φk

|m|dy and

c(k, n,m) = isn/
(

2
√

λk
|n|

)

∫

Y φk
|n| · a∂yφk

|m|−a∂yφ
k
|n| ·φk

|m|dy for n,m ∈ Mk
n .

The modulated two-scale transform Let us assume from now that the
domainΩ is the union of a finite number of entire cells of size ε or equivalently
that the sequence ε is exactly εn = α

n for n ∈ N
∗. For any k ∈ Y ∗, we define

Ik = {−k, k} if k 6= 0 and I0 = {0}. By choosing Λ = (0, 1) as a time unit

cell, we introduce the operator W ε
k : L2 (I ×Ω)

2 → L2 (I × Λ×Ω × Y )
2

acting in all time and space variables,

W ε
k :=

(

1−
∑

n∈Z∗

Πk
n

)

Sε
k +

∑

n∈Z∗

T εαk
nΠ

k

nS
ε
k (3)

where the time and space two-scale transforms T εαk
n and Sε

k, and the orthog-
onal projector Πk

n onto ekn are defined in [3], see pages 11,15 and 17, with
αk
n = 2π/

√

λk
n, and where it is proved that,

‖W ε
ku‖2L2(I×Λ×Ω×Y ) = ‖u‖2L2(I×Ω) . (4)

We define (Bk
nv)(t, x) = v(t, t

εαk
n
, x, x

ε ) the operator that operates on func-

tions v(t, τ, x, y) defined in I ×R×Ω ×R. The notation O (ε) refers to num-
bers or functions tending to zero when ε → 0 in a sense made precise in each

case. The next Lemma shows that B
k
n is an approximation of T εαk

n∗Sε∗
k for

a function which is periodic in τ and k−quasi-periodic in y, where T εαk
n∗ :

L2 (I × Λ) → L2 (I) and Sε∗
k : L2 (Ω × Y ) → L2 (Ω) are adjoint of T εαk

n and
Sε
k respectively.

Lemma 1. Let v ∈ C1 (I × Λ×Ω × Y ) a periodic function in τ and k−quasi-

periodic in y, then T εαk
n∗Sε∗

k v = B
k
nv + O (ε) in the L2 (I ×Ω) sense. Con-

sequently, for any sequence uε bounded in L2 (I ×Ω) such that T εαk
nSε

ku
ε

converges to u in L2(I × Λ×Ω × Y ) weakly when ε → 0,

∫

I×Ω

uε ·Bk
nv dtdx →

∫

I×Λ×Ω×Y

u · v dtdτdxdy when ε → 0. (5)

Note that for k = 0, the convergence (5) regarding each variable corresponds
to the definition of two-scale convergence in [1]. The proof is carried out in

three steps. First the explicit expression of T εαk
n∗Sε∗

k v is derived, second the
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approximation of T εαk
n∗Sε∗

k v is deduced, finally the convergence (5) follows.
For a function v (t, τ, x, y) defined in I × Λ×Ω × Y, we observe that

Aε
B

k
nv = B

k
n

((

Ak

ε
+B

)

v

)

and ∂t
(

B
k
nv
)

= B
k
n

((

∂τ
εαk

n

+ ∂t

)

v

)

, (6)

where the operator B is defined as the result of the formal substitution of
x−derivatives by y−derivatives in Ak.

3 Homogenized results and their proof

For k ∈ Y ∗, we decompose

αk

ε
= hk

ε + lkε with hk
ε =

[

αk

ε

]

and lkε ∈ [0, 1) , (7)

and assume that the sequence ε is varying in a set Ek ⊂ R
+∗ depending on

k so that
lkε → lk when ε → 0 and ε ∈ Ek with lk ∈ [0, 1) . (8)

We note that for k = 0, hk
ε = 0, lkε = 0, so lk = 0 and E0 = R

+∗. After
extraction of a subsequence, we introduce the weak limits of the relevant
projections along ekn for any n ∈ Z

∗,

F k
n := lim

ε→0

∫

Λ×Y

T εαk
nSε

kF
ε · e2iπsnτekndydτ and Uk

0,n := lim
ε→0

∫

Y

Sε
kU

ε
0 · ekndy.

(9)
The next lemmas state the microscopic equation for each mode and the cor-
responding macroscopic equation.

Lemma 2. For k ∈ Y ∗ and n ∈ Z
∗, let Uε be a bounded solution of (2),

there exists at least a subsequence of T εαk
nSε

kU
ε converging weakly towards a

limit Uk
n in L2(I ×Λ×Ω× Y )2 when ε tends to zero. Then Uk

n is a solution
of the weak formulation of the microscopic equation

(

∂τ
αk
n

−Ak

)

Uk
n = 0 in I × Λ ×Ω × Y (10)

and is periodic in τ and k−quasi-periodic in y. Moreover, it can be decom-
posed as

Uk
n (t, τ, x, y) =

∑

p∈Mk
n

uk
p (t, x) e

2iπspτekp (y) with uk
p ∈ L2 (I ×Ω) . (11)

Lemma 3. For each k ∈ Y ∗, n ∈ Z
∗, for each σ ∈ Ik and q ∈ Mσ

n , the
macroscopic equation is stated by

∑

p∈Mσ
n

b (σ, p, q) ∂tu
σ
p − ∑

p∈Mσ
n

c (σ, p, q) ∂xu
σ
p = F σ

q in I ×Ω,

∑

p∈Mσ
n

b (σ, p, q) uσ
p (t = 0) = Uσ

0,q in Ω,
(12)
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with the boundary conditions in case where there exist p ∈ Mk
n such that

c (k, p, q) 6= 0 and φk
|p|(0) 6= 0

∑

σ∈Ik

∑

p∈Mσ
n

uσ
pφ

σ
|p| (0) e

sign(σ)2iπ lkx
α = 0 on I × ∂Ω. (13)

The low frequency part U0
H relates to the weak limit in L2 (I ×Ω × Y )

2

of the kernel part of Sε
k in 3. It has been treated completely, in [2,3]. Here,

we focus on the non-kernel part of Sε
k, it relates to the high frequency waves

and microscopic and macroscopic scales. In order to obtain the solution of the

model, we analyze the asymptotic behaviour of each mode through T εαk
nSε

k as
in Lemma 2 and Lemma 3. Then the full solution is the sum of all modes. We
introduce the characteristic function χ0 (k) = 1 if k = 0 and = 0 otherwise.
The main Theorem states as follows.

Theorem 4. For a given k ∈ Y ∗, let Uε be a solution of (2) bounded in
L2 (I ×Ω), for ε ∈ Ek, as in (7, 8), the limit Gk of any weakly converging

extracted subsequence of
∑

σ∈Ik

W ε
σU

ε in L2 (I × Λ×Ω × Y )
2
can be decom-

posed as

Gk (t, τ, x, y) = χ0 (k)U
0
H (t, x, y) +

∑

σ∈Ik

∑

n∈Z∗

uσ
n (t, x) e

2iπsnτeσn (y) (14)

where (uσ
n)n,σ are solutions of the macroscopic equation (12, 13).

Thus, it follows from (14) that the physical solution Uε is approximated by
two-scale modes

Uε (t, x) ≃ χ0 (k)U
k
H

(

t, x,
x

ε

)

+
∑

σ∈Ik

∑

n∈Z∗

uσ
n (t, x) e

isn
√

λσ
nt/εeσn

(x

ε

)

.

(15)
The remain of this section provides the proofs of results.

Proof of Lemma 2. The test functions of the weak formulation (2) are

chosen as Ψε = B
k
nΨ (t, x) for k ∈ Y ∗, n ∈ Z

∗ where Ψ ∈ C∞ (I × Λ ×Ω × Y )
2

is periodic in τ and k−quasi-periodic in y. From (6) multiplied by ε, since
(

∂τ

αk
n
−Ak

)

Ψ is periodic in τ and k−quasi-periodic in y and T εαk
nSε

kU
ε → U

k

n

in L2 (I × Λ×Ω × Y )
2
weakly, Lemma 1 allows to pass to the limit in the

weak formulation,
∫

I×Λ×Ω×Y
Uk
n ·
(

∂τ

αk
n
−Ak

)

Ψdtdτdxdy = 0. Using the as-

sumption Uk
n ∈ D (Ak)∩L2

(

I ×Ω × Y ;H1 (Λ)
)

and applying an integration
by parts,
∫

I×Λ×Ω×Y

(

− ∂τ
αk
n

+Ak

)

Uk
n ·Ψdtdτdxdy+

∫

I×∂Λ×Ω×Y

Uk
n · Ψdtdτdxdy

−
∫

I×Λ×Ω×∂Y

Uk
n · nAk

Ψdtdτdxdy = 0.

Then, choosing Ψ ∈ L2
(

I ×Ω;H1
0 (Λ × Y )

)

comes the strong form (10). Since
the product of a periodic function by a k−quasi-periodic function is k−quasi-
periodic then nAk

Ψ is k−quasi-periodic in y. Therefore, Uk
n is periodic in τ

and k−quasi-periodic in y. Moreover, (11) is obtained, by projection.
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Proof of Lemma 3 For k ∈ Y ∗, let
(

λσ
p , e

σ
p

)

p∈Mσ
n ,σ∈Ik

be the Bloch

eigenmodes of the spectral equation Q (σ) corresponding to the eigenvalue

λk
n. We pose Ψε (t, x) =

∑

σ∈Ik B
k
nΨ

σ
ε ∈ H1 (I ×Ω)

2
as a test function in the

weak formulation (2) with each Ψσ
ε (t, τ, x, y) =

∑

q∈Mk
n
ϕσ
q,ε (t, x) e

2iπsqτeσq (y)

where ϕσ
q,ε ∈ H1 (I ×Ω) and satisfies the boundary conditions

∑

σ∈Ik,q∈Mσ
n
e2iπsqt/(εα

σ
q )ϕσ

q,ε (t, x)φ
σ
|q|
(

x
ε

)

= O (ε) on I × ∂Ω. Note that

this condition is related to the second component of Ψε only. Since ασ
q = αk

n

and sq = sn for all q ∈ Mσ
n and σ ∈ Ik, so e2iπsqt/(εα

σ
q ) 6= 0 can be eliminated.

Extracting a subsequence ε ∈ Ek, using the σ−quasi-periodicity of φσ
|q| and

(7,8), ϕσ
q,ε converges strongly to some ϕσ

q in H1 (I ×Ω), then the boundary
conditions are

∑

σ∈Ik

∑

q∈Mσ
n

ϕσ
q (t, x)φ

σ
|q| (0) e

sign(σ)2iπ lkx
α = 0 on I × ∂Ω. (16)

Applying (6) and since
(

∂τ

ασ
n
−Aσ

)

Ψσ = 0 for σ ∈ Ik, then in the weak

formulation it remains
∑

σ∈Ik

∫

I×Ω

F ε ·Bk
nΨ

σ
ε + Uε ·Bk

n(∂t −B)Ψσ
ε dtdx−

∫

Ω

Uε
0 ·Bk

nΨ
σ
ε (t = 0) dx = 0.

Since (∂t −B)Ψσ
ε is σ−quasi-periodic, so passing to the limit thanks to

Lemma 1, after using (9) and replacing the decomposition of Uσ
n ,

∑

σ∈Ik,{p,q}∈Mσ
n

(
∫

I×Ω

b (σ, p, q) uσ
p · ∂tϕσ

q − c (σ, p, q)uσ
p · ∂xϕσ

q − F σ
q · ϕσ

q dtdx

−
∫

Ω

Uσ
0,q·ϕσ

q (t = 0) dx

)

= 0 for all ϕσ
q ∈H1 (I ×Ω) fulfilling (16).

Moreover, if uσ
q∈H1 (I ×Ω) then it satisfies the strong form of the internal

equations (12) for each σ ∈ Ik, q ∈ Mσ
n and the boundary conditions

∑

σ,p,q
c (σ, p, q)uσ

pϕ
σ
q = 0 on I × ∂Ω for ϕσ

q satisfies (16). (17)

In order to find the boundary conditions of
(

uσ
p

)

σ,p
, we distinguish between

the two cases k 6= 0 and k = 0. First, for k 6= 0, λk
n is simple so Mk

n = {n}.
Introducing C = diag (c (σ, n, n))σ, B = diag (b (σ, n, n))σ, U = (uσ

n)σ, F =

(F σ
n )σ, U0 =

(

Uσ
0,n

)

σ
, Ψ = (ϕσ

n)σ, Φ =
(

φσ
|n| (0) e

sign(σ)2iπlkx/α
)

σ
, Equation

(12) states under matrix form

B∂tU + C∂xU = F in I ×Ω and BU (t = 0) = U0 in Ω, (18)

which boundary condition (17) is rewritten as CU (t, x) .Ψ (t, x) = 0 on I ×
∂Ω for all Ψ such that Φ(x).Ψ (t, x) = 0 on I × ∂Ω. Equivalently, CU (t, x)

is collinear with Φ(x) yielding the boundary condition uk
nφ

k
|n| (0) e

2iπ lkx
α +
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u−k
n φ−k

|n| (0) e
−2iπ lkx

α = 0 on I × ∂Ω after remarking that c (k, n, n) 6= 0 and

c (k, n, n) = −c (−k, n, n).
Second, for k = 0, λ0

n is double λ0
n = λ0

m so Mk
n = {n,m}. With C =

(c (0, p, q))p,q, B = (b (0, p, q))p,q, U =
(

u0
p

)

p
, F =

(

F 0
q

)

q
, U0 =

(

U0
0,q

)

q
, Ψ =

(

ϕ0
q

)

q
, Φ =

(

φ0
|q| (0)

)

q
, the matrix form is still stated as (18). Here, the eigen-

vectors are chosen as real functions then c (0, p, p) = 0. Since c (0, n,m) 6= 0,
so the boundary condition is u0

nφ
0
|n| (0)+u0

mφ0
|m| (0) = 0 on I × ∂Ω.

Proof of Theorem For a given k ∈ Y ∗, let Uε be solution of (2)
which is bounded in L2(I × Ω), the property (4) yields the boundness of

‖W ε
σU

ε‖L2(I×Λ×Ω×Y ) for σ ∈ Ik. So there exists Gk ∈ L2 (I × Λ×Ω × Y )2

such that, up to the extraction of a subsequence,
∑

σ∈Ik W ε
σU

ε tends weakly

to Gk = χ0 (k)U
0
H +

∑

σ∈Ik

∑

n∈Z∗ Uk
n in L2 (I × Λ×Ω × Y )

2
. The high

frequency part is based on the decomposition (11) and Lemma 3.

Remark 5. This method allows to complete the homogenized model of the
wave equation in [3] for the one-dimensional case. Let K ∈ N

∗, we decompose
α
εK =

[

α
εK

]

+ l1ε with l1ε ∈ [0, 1) and assume that the sequence ε is varying
in a set EK ⊂ R

+∗ depending on K so that l1ε → l1 when ε → 0 with
l1 ∈ [0, 1). For any k ∈ L∗

K , defined in [3], we denote pk = kK ∈ N, so
αpk

εK = pk
[

α
εK

]

+ pkl
1
ε and pkl

1
ε → lk := pkl

1 when ε → 0 with the same
sequence of ε ∈ EK .

4 Numerical examples

We report simulations regarding comparison of physical solution and its ap-
proximation for I = (0, 1) , Ω = (0, 1), ρ = 1, a = 1

3 (sin (2πy) + 2), f ε = 0,
vε0 = 0, ε = 1

10 and k = 0.16. Since k 6= 0, so the approximation (15) comes

Uε (t, x) ≃
∑

σ∈Ik

∑

n∈Z∗

uσ
n (t, x) e

isn
√

λσ
nt/εeσn

(x

ε

)

. (19)

The validation of the approximation is based on the modal decomposition of
any solution Uε =

∑

l∈Z∗ Rε
l (t) V

ε
l (x) where the modes V ε

l are built from the
solutions vεl of the spectral problem ∂x (a

ε∂xv
ε
l ) = λε

l v
ε
l in Ω with vεl = 0 on

∂Ω. Moreover, in [6], two-scale approximations of modes have been derived
on the form of linear combinations

∑

σ∈Ik θσn (x)φσ
n

(

x
ε

)

of Bloch modes, so
the initial conditions of the physical problem are taken on the form

uε
0 (x) =

∑

n∈N∗

∑

σ∈Ik
θσn (x)φσ

n

(x

ε

)

. (20)

Two simulations are reported, one for an initial condition uε
0 spanned by

the pair of Bloch modes corresponding to n = 2 when the other is spanned
by three pairs n ∈ {2, 3, 4}. In the first case, the first component of Uε

0

approximates the first component of a single eigenvector V ε
l approximated

by (19) where all coefficients uσ
n = 0 for n 6= ±2. Fig. 1 (a) shows the initial
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Fig. 1. Numerical results

condition uε
0. Fig. 1 (b) presents the real part (solid line) and the imaginary

part (dashed-dotted line) of the macroscopic solution uk
n and also the real

part (dotted line) and the imaginary part (dashed line) of u−k
n at space step

x = 0.699 when Fig. 1 (c, d) plot the real part of the first component Uε
1 of

physical solution and the relative error vector of Uε
1 with its approximation

which L2(Ω)-norm is equal to 7e-3 at t = 0.466. For the second case where
uσ
n = 0 for n /∈ {±2,±3,±4}, the first component Uε

1 and the relative error
vector of Uε

1 with its approximation which L2(Ω)-norm is 3.8e-3 are plotted
in Fig. 1 (e, f). Finally, for the two cases the L2(I)-relative errors at x = 0.699
on the first component are 8e-3 and 3.5e-3 respectively.
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