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Abstract

The asymptotic behavior of a one-dimensional spectral problem with periodic coefficient is

addressed for high frequency modes by a method of Bloch wave homogenization. The analysis

leads to a spectral problem including both microscopic and macroscopic eigenmodes. Numerical

simulation results are provided to corroborate the theory.
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1 Introduction

We consider the spectral problem
− ∂x (a

ε∂xw
ε) = λερεwε (1)

posed in an one-dimensional open bounded domain Ω ⊂ R with Dirichlet boundary conditions. An
asymptotic analysis of this problem is carried out where ε > 0 is a parameter tending to zero and
the coefficients are ε-periodic, namely aε = a

(

x
ε

)

and ρε = ρ
(

x
ε

)

where a (y) and ρ (y) are 1-periodic
in R. The homogenization of such spectral problem has been studied in various works providing
the asymptotic behaviour of eigenvalues and eigenvectors. The low frequency part of the spectrum
has been investigated in [17], [18], [25]. Then, many configurations have been analyzed, as [16] and
[13] for a fluid-structure interaction, [7], [3] for neutron transport, [22], [24] for ρ which changes sign
or [4] for the first high frequency eigenvalue and eigenvector for a one-dimensional non-self-adjoint
problem with Neumann boundary conditions. In [6], G. Allaire and C. Conca studied the asymptotic
behaviour of both the low and high frequency spectrum. In order to analyze the asymptotic behaviour
of the high frequency eigenvalues, they used the Bloch wave homogenization method. It is a blend of
two-scale convergence, see e.g. [1], [2], [21], and Bloch wave decomposition, see e.g. [15], [12], [14], and
was previously introduced in [5] to a fluid-solid interaction problem. They have shown that the limit
of the set of renormalized eigenvalues ε2λε is the union of the Bloch spectrum and the boundary layer
spectrum, when ε goes to 0. However, the asymptotic behaviour of the corresponding eigenvectors
was not addressed. This is the goal of the present work which focuses on the Bloch spectrum of the
high frequency part. Precisely, we search eigenvalues λε such that

ε2λε = λkn + ελ1 + εO (ε) (2)

where λkn is solution of the Bloch wave spectral problem, also called the microscopic equation in this
work,

− ∂y
(

a (y) ∂yφ
k
n (y)

)

= λknρ (y)φ
k
n (y) for n ∈ N∗ (3)

with k−quasi-periodic boundary conditions for some k ∈ R. From [6], it is known that each λkn can
be reached as a limit of a subsequence of ε2λε. For each n ∈ N∗ and each k, λkn is either a simple
or a double eigenvalue and λkn = λ−k

n . We pose Ik = {−k, k} if k 6= 0 and Ik = {0} otherwise. To
guarantee that Bloch waves are kept in the weak limit, we apply the modulated two-scale transform
Sε
k, defined in [8] from the usual two-scale transform in [20], [19], [10], [9] or [11]. Passing to the limit

in the weak formulation, it is shown that
∑

σ∈Ik
Sε
σw

ε is weakly converging to two-scale modes

gk (x, y) =
∑

σ∈Ik

∑

m

uσm (x)φσ
m (y)

where the second sum runs over all modes φσ
m with the same eigenvalue λkn. Here, the modes φσm are

called microscopic modes. The factors (uσm)m are solution of the macroscopic system of first order
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differential equation,

∑

m

c (σ, n,m) ∂xu
σ
m + λ1b (σ, n,m) uσm = 0 in Ω for each σ ∈ Ik, (4)

which boundary conditions and the constant c (σ, n,m) are depending on the involved microscopic
modes and eigenvalues. The physical solution wε is then approximated by two-scale modes

wε (x) ≈
∑

σ∈Ik

∑

m

uσm (x)φσ
m

(x

ε

)

. (5)

These results are established for Neumann boundary conditions.
In fact, this method is inspired from [8] dedicated to the wave equation, except that in the

latter work the two-scale transforms Sε
kw

ε and Sε
−kw

ε were analyzed separately and the macroscopic
boundary conditions were lacking. Moreover, the model derivation in [8] is starting from the wave
equation written as a first order system. So, for the sake of comparison, we derive the homogenized
spectral equation from a first order formulation.

In addition, we report exploration results regarding approximations of physical eigenmodes by
two-scale modes. First, for a given ε and each high frequency physical eigenelement (λε, wε), we show
how to find quadruplets

(

λkn, λ1, φ
k
n, u

k
n

)

n,k
satisfying the approximations (2) and (5). This shows

that each high frequency eigenelement can be approximated by a two-scale mode. Conversely, the
high-frequency physical eigenelements can be built from the two-scale eigenelements only. Namely,
for a given Bloch mode

(

λkn, φ
k
n

)

, a macroscopic eigenelement
(

λ1, ukn
)

is minimizing the error on the
physical equation (1) where wε and λε are replaced by their approximations (2) and (5).

This paper is organized as follows. In Section 2 we state the physical spectral equation with
Dirichlet boundary conditions. In Section 3 the notations and elementary properties, which are used
throughout the paper, are introduced. In Section 4 and 5, the model homogenization is derived
based on the second order and first order formulations respectively. Finally, the numerical results are
reported in the last section.

2 Statement of the problem

We consider Ω = (0, α) ⊂ R+ an interval, which boundary is denoted by ∂Ω, and two functions
(aε, ρε) assumed to obey a prescribed profile,

aε := a
(x

ε

)

and ρε := ρ
(x

ε

)

, (6)

where ρ ∈ L∞ (R), a ∈ W 1,∞ (R) are both Y -periodic where Y is an open interval. Moreover, they
are required to satisfy the standard uniform positivity and ellipticity conditions:

ρ0 ≤ ρ ≤ ρ1 and a0 ≤ a ≤ a1, (7)

for some given strictly positive ρ0, ρ1, a0 and a1.
With the operators P ε = −∂x (aε∂x.), the spectral problem with Dirichlet boundary conditions is

P εwε = λερεwε in Ω and wε = 0 on ∂Ω, (8)

where as usual ε > 0 denotes a small parameter intended to go to zero.
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The eigenvectors wε ∈ H2 (Ω) ∩H1
0 (Ω) are normalized by

‖wε‖L2(Ω) =

(
∫

Ω

|wε|2 dx
)

1
2

= 1, (9)

and we search the eigenvalues such that

ε2λε = λ0 + ελ1 + εO(ε), (10)

where λ0 is a non negative real number and O(ε) tends to zero with ε. The weak formulation of the
spectral problem (8) is: find wε ∈ H1

0 (Ω) such that
∫

Ω

aε∂xw
ε∂xv dx = λε

∫

Ω

ρεwεv dx for all v ∈ H1
0 (Ω). (11)

Since ε2λε is bounded, it results the uniform bound

||ε∂xwε||L2(Ω) ≤ N0. (12)

3 Notations and elementary properties

The functional space L2 (Ω) of square integrable functions is over C. Let u = (ui)i and v = (vi)i be
m-dimensional complex vector valued functions in L2 (Ω), the dot product is denoted by u.v :=

∑

i

uivi

and the hermitian inner product by
∫

Ω

u · v dx =

∫

Ω

u(x).v(x) dx. (13)

The notation O (ε) refers to numbers or functions tending to zeros when ε → 0 in a sense made
precise in each case. The notations ∂xu = ∂u

∂x
, ∂yu = ∂u

∂y
are for x− and y−derivatives of a function u.

The vectors nΩ, nY are the outer unit normals of ∂Ω and ∂Y.
Bloch decomposition We follow the definition of Bloch decomposition in [8] with N = 1,

L = Z, and Y = (0, 1), so R =Y +L. The dual lattice is necessarily L∗ = Z, and the equivalence class
Y ∗ = R/L∗ is chosen as Y ∗ = (−1/2, 1/2). For K ∈ N∗, considering the dual lattices KL = KZ and
L∗/K = Z/K, we pose

LK =

{

{−K
2
, .., K

2
− 1} ⊂ L if K is even,

{−K−1
2
, .., K−1

2
} if K is odd,

so that L = LK +KL. Posing L∗
K = LK/K yields L∗/K = L∗ + L∗

K .
Functional spaces of quasi-periodic functions For any k ∈ Y ∗, we define the k−quasi-

periodic L2−vector space over C with the hermitian inner product (13) by

L2
k = {u ∈ L2

loc(R) | u(x+ ℓ) = u(x)e2iπkℓ a.e. in R for all ℓ ∈ L},

or equivalently

L2
k = {u ∈ L2

loc(R) | ∃v ∈ L2
♯ such that u(x) = v(x)e2iπkx a.e.},

where L2
♯ is the traditional notation for L2

k in the periodic case i.e. when k = 0. Likewise, for s ≥ 0
we set

Hs
k := L2

k ∩Hs
loc (R)
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bearing in mind that the subscript ♯ would be more appropriate in the periodic case k = 0.
The modulated two-scale transform Let us assume from now that the domain Ω is the union

of a finite number of entire cells of size ε or equivalently that the sequence ε is exactly εn = α
n
for

n ∈ N∗. Setting Cε := {ωε = εl + εY | l ∈ L, εl + εY ⊂ Ω} is the set of all cells of Ω.

Definition 1 For any k ∈ Y ∗, the modulated two-scale transform of the function u ∈ L2 (Ω), Sε
k :

L2 (Ω) → L2 (Ω× Y ) is defined by

Sε
ku (x, y) =

∑

ωε∈Cε

u (εlωε
+ εy)χωε

(x) e−2iπklωε , (14)

where εlωε
stands for the unique node in εL of ωε and χωε

is the characteristic function of ωε.

The three following properties can be checked by using (14) and are admitted. For u, v ∈ L2 (Ω)

‖Sε
ku‖2L2(Ω×Y ) =

∫

Ω×Y

|Sε
ku|2 dxdy =

∑

ε

∫

ωε

|u|2 dx = ‖u‖2
L2(Ω)

, (15)

Sε
k(uv) = Sε

0(u)S
ε
k(v),

and Sε
k (∂xu) (x, y) =

1

ε
∂yS

ε
ku (x, y) for u ∈ H1 (Ω) .

Remark 2 Let k ∈ Y ∗ and a sequence uε bounded in L2 (Ω) such that Sε
ku

ε converges to uk in
L2(Ω × Y ) weakly when ε → 0, then Sε

−ku
ε converges to some u−k in L2(Ω × Y ) weakly. Moreover,

since Sε
ku

ε and Sε
−ku

ε are conjugate then uk and u−k are also conjugate.

The adjoint Sε∗
k : L2 (Ω× Y ) → L2 (Ω) of Sε

k, is defined by
∫

Ω

(Sε∗
k v) (x) · w (x) dx =

∫

Ω×Y

v (x, y) · (Sε
kw) (x, y) dxdy, (16)

for all w ∈ L2 (Ω) and v ∈ L2 (Ω× Y ), and we denote by R the operator operating on functions
v(x, y) defined in Ω× R,

(Rv)(x) = v(x,
x

ε
). (17)

The next Lemma shows that R is an approximation of Sε∗
k for k−quasi-periodic functions.

Lemma 3 Let v ∈ C1 (Ω× Y ) a k−quasi-periodic function in y then

Sε∗
k v = Rv +O (ε) in the L2 (Ω) sense. (18)

Proof. The proof is carried out in two steps. First the explicit expression of Sε∗
k v is derived, then

the approximation is deduced.
(i) Let us prove that

(Sε∗
k v) (x) =

∑

ωε∈Cε

ε−1

∫

ωε

v

(

z,
x− εlωε

ε

)

dz χωε
(x)e2iπklωε .

From the definition of the two-scale transform with r = εlωε
+ εy ∈ ωε,

∫

Ω×Y

v (x, y) · (Sε
kw) (x, y) dxdy =

∑

ωε∈Cε

∫

Ω×ωε

ε−1v

(

x,
r − εlωε

ε

)

· w (r)χωε
(x)e−2iπklωε dxdr
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or equivalently,

=

∫

Ω

∑

ωε∈Cε

ε−1

∫

ωε

v

(

x,
r − εlωε

ε

)

dx · w (r)χωε
(r)e−2iπklωε dr.

Changing the variable names and using the definition of Sε∗
k ,

∫

Ω

(Sε∗
k v) (x) · w (x) dx =

∫

Ω

∑

ωε∈Cε

ε−1

∫

ωε

v

(

z,
x− εlωε

ε

)

dze2iπklωε · w (x)χωε
(x) dx.

This establishes the explicit expression of Sε∗
k .

(ii) Let us derive the expected approximation for v ∈ C1 (Ω× Y ) and k−quasi-periodic in y. Since
ε |Y | = |ωε| and

v (z, y) = v (x, y) + ∂xv (x, y) (z − x) + εO (ε) in L2(Ω) for a.e. y ∈ Y

then

(Sε∗
k v) (εlωε

+ εy) =
1

|ωε|

∫

ωε

v (x, y) + ∂xv (x, y) (z − x) dz e2iπklωε +O (ε)

for a.e. y ∈ Y and all ωε ∈ Cε. Remarking that z − x = (z − εlωε
) + (εlωε

− x) and

∫

ωε

(z − εlωε
) dz = −1

2
εO (ε) .

So for all ωε and y ∈ Y ,

e−2iπklωε |ωε| (Sε∗
k v) (εlωε

+ εy) = |ωε| v (x, y) + (−1

2
εO (ε) +

(

ε2y
)

)∂xv (x, y) + εO (ε) .

Therefore,

(Sε∗
k v) (x) =

∑

ωε

v
(

x,
x

ε
− lωε

)

χωε
(x) e2iπklωε +O (ε) .

Using the k−quasi-periodic of v in y,

(Sε∗
k v) (x) =

∑

ωε

v
(

x,
x

ε

)

χωε
(x) +O (ε)

in L2(Ω), hence the formula (18) follows.
In the proof, we constantly use the following consequence.

Corollary 4 Let v ∈ C1 (Ω× Y ) and k−quasi-periodic in y, for any sequence uε bounded in L2 (Ω)
such that Sε

ku
ε converges to u in L2(Ω× Y ) weakly when ε → 0 then

∫

Ω

uε ·Rv dx→
∫

Ω×Y

u · v dxdy when ε → 0.

Note that for k = 0, this corresponds to the definition of two-scale convergence in [1] and [23].
Two-scale operators For a function v(x, y) defined in Ω× R, we pose

P 0v = −∂x (a∂xv) , P 1v = −∂x (a∂yv)− ∂y (a∂xv) and P 2v = −∂y (a∂yv) ,
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so that

P ε
Rv =

2
∑

n=0

ε−n
RP nv. (19)

Bloch waves For a given k ∈ Y ∗, we denote by (λkn, φ
k
n) the Bloch wave eigenelements indexed

by n ∈ N∗ that are solution to

P(k) : P 2φk
n = λknρφ

k
n in Y with φk

n ∈ H2
k(Y ) and

∥

∥φkn
∥

∥

L2(Y )
= 1. (20)

The corresponding weak formulation is: find φk
n ∈ H1

k(Y ) solution to
∫

Y

a∂yφ
k
n · ∂yv − λknρφ

k
n · v dy = 0 for all v ∈ H1

k(Y ). (21)

Since the operator P 2 : H2
k(Y ) ⊂ L2

k(Y ) → L2
k(Y ) is self-adjoint, its spectra is real. Furthermore, for

n,m ∈ N∗, we introduce the coefficients

c(k, n,m) =

∫

Y

a∂yφ
k
m · φkn − φk

m · a∂yφk
n dy and b(k, n,m) =

∫

Y

ρφk
m · φkn dy (22)

and observe that the following properties hold,

c(k, n,m) = c(−k, n,m), c(k,m, n) = −c(k, n,m), c(k, n,m) = −c(−k,m, n)

and
b(k, n,m) = b(k,m, n), b(k, n,m) = b(−k,m, n), b (k, n, n) > 0.

In particular for k = 0, if the eigenvectors are chosen as real functions thus c (0, n, n) = 0. In the
special case ρ = 1, b(k, n,m) = 1 for n = m and b(k, n,m) = 0 otherwise.

Notation 5 For k 6= 0, φk
n ∈ H2

−k(Y ), the conjugate of φk
n, is solution of P(−k). We choose the

numbering of eigenvectors φ−k
n so that φ−k

n = φk
n and remark that λ−k

n = λkn.

Remark 6 In one dimension, for k ∈ Y ∗, it is well-known that all eigenvalue λkn are simple, except
for k = 0 where they are double.

Finally, we denote

Ik = {k,−k} if k ∈ Y ∗� {0} and I0 = {0} otherwise.

4 Homogenization of the high-frequency eigenvalue problem

For k ∈ Y ∗, we decompose

αk

ε
= hkε + lkε with hkε =

[

αk

ε

]

and lkε ∈ [0, 1) , (23)

and assume that the sequence of the ε is varying in a set Ek ⊂ R+∗ depending on k so that

lkε → lk when ε→ 0 and ε ∈ Ek with lk ∈ [0, 1) . (24)

We note that for k = 0, hkε = 0, lkε = 0, so lk = 0 and E0 = R+∗.

7



4.1 Main result

The macroscopic equation is stated for each k ∈ Y ∗ and each Bloch wave eigenvalue λkn. For k 6= 0,
we assume that c (σ, n, n) 6= 0 for each σ ∈ Ik, so it is stated as an eigenvalue problem

c (σ, n, n) ∂xu
σ
n + λ1b (σ, n, n) uσn = 0 in Ω (25)

for each σ, with the boundary conditions

∑

σ∈Ik
uσn (x)φ

σ
n (0) e

sign(σ)2iπ lkx
α = 0 on x ∈ ∂Ω, (26)

where lk is defined in (24). We observe that the first order operator c (k, n, n)

(

∂x 0
0 −∂x

)

of this

system is self-adjoint on the domain

Dk =
{

(un, vn) ∈ H1 (Ω)2 satisfying (26)
}

so λ1 is real.
For k = 0, assuming that λ0n is a double eigenvalue corresponding to two eigenvectors φ0

n and φ0
m,

and that c (0, n,m) 6= 0, the macroscopic system states

∑

q∈{n,m}
c (0, p, q)∂xu

0
q + λ

1
b (0, p, q)u0q = 0 in Ω for p ∈ {n,m} , (27)

with the boundary conditions

∑

q∈{n,m}
u0q (x)φ

0
q (0) = 0 on x ∈ ∂Ω. (28)

Again λ1 ∈ R since c (0, n,m)

(

0 ∂x
−∂x 0

)

is self-adjoint on

D0 =
{

(un, um) ∈ H1 (Ω)2 satisfying (28)
}

.

Remark 7 (i) If c (k, n, n) = 0 for k 6= 0 or c (0, p, q) = 0 for all p, q varying in {n,m} , the
macroscopic equations (25) or (27) are λ1 = 0 or u = (uσn)n,σ = 0. But u = 0 is impossible since

‖wε‖L2(Ω) = 1 for all eigenmodes wε. So λ1 = 0 and this model does not provide any equation for uσn.

(ii) For k 6= 0, if φk
m (0) = 0 then φkm (1) = 0 and φk

m is a periodic solution that is a solution of
k = 0. So, we consider always that φk

m (0) 6= 0 for k 6= 0.
(iii) For k = 0, in case where φn(0) = φm(0) = 0 the boundary conditions of the macroscopic

equation vanishes.

Remark 8 This work focuses on the Bloch spectrum. To avoid eigenmodes related to the bound-
ary spectrum, according to Proposition 7.7 in [6] we shall assume that the weak limit of Sε

kw
ε in

L2 (Ω;H1(Y )) is not vanishing.

The main Theorem states as follows.
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Theorem 9 For k ∈ Y ∗, let (λε, wε) be solution of (8) then
∑

σ∈Ik
Sε
σw

ε is bounded in L2 (Ω;H1(Y )).

For ε ∈ Ek, as in (23, 24), assuming that the weak limit of Sε
kw

ε in L2 (Ω;H1(Y )) is non-vanishing
and the renormalized sequence ε2λε satisfies the decomposition (10), there exists n ∈ N∗ such that
λ0 = λkn with λkn an eigenvalue of the Bloch wave spectrum and the limit gk of any weakly converging
extracted subsequence of

∑

σ∈Ik
Sε
σw

ε in L2 (Ω;H1(Y )) can be decomposed on the Bloch modes

gk (x, y) =
∑

σ∈Ik
uσn (x)φ

σ
n (y) for k 6= 0 and g0 (x, y) =

∑

q∈{n,m}
u0q (x)φ

0
q (y) otherwise (29)

Moreover, uσm ∈ H1(Ω) and (uσm)m,σ are solutions of the macroscopic equations (25, 26) and (27, 28).

Finally, ukm and u−k
m are conjugate.

Thus, it follows from (29) that the physical solution wε is approximated by two-scale modes

wε (x) ≈
∑

σ∈Ik
uσn (x)φ

σ
n

(x

ε

)

for k 6= 0 and wε (x) ≈
∑

q∈{n,m}
u0q (x)φ

0
q

(x

ε

)

otherwise. (30)

The boundary conditions (26) and (28) can be directly derived by replacing wε in the physical
boundary condition by its approximations,

∑

σ∈Ik
uσn (x)φ

σ
n

(x

ε

)

= 0 for k 6= 0 and
∑

q∈{n,m}
u0q (x)φ

0
q

(x

ε

)

= 0 otherwise at x ∈ ∂Ω. (31)

For k 6= 0, they result from

φσ
n

(x

ε

)

= φσ
n (0) e

2iπσ x
ε

= φσ
n (0) e

sign(σ)2iπx
hkε+lkε

α = φσ
n (0) e

sign(σ)2iπx
lkε
α for x ∈ ∂Ω

and the assumption lkε → lk. For k = 0, the conditions follow from the periodicity of φ0
n. Furthermore,

we observe that gk (x, 0) and gk (x, 1) are generally not vanishing except for k = 0.

Proposition 10 For k ∈ Y ∗, n ∈ N∗, if the macroscopic solution ukn is a non-vanishing constant,
then any two-scale mode (30) is a physical eigenmode i.e. a solution to (8).

Proof. For k ∈ Y ∗, n ∈ N∗, if the macroscopic solution ukn is constant then λ1 = 0 and (uσm)m,σ

are constant for all σ ∈ Ik and m ∈ N∗ such that λσm = λσn. Now, we consider ρ = 1 and the proof
is similar for ρ 6= 1. Based on Remark 14 about the macroscopic solutions in Section 4.4, λ1 = 0 is
equivalent to ℓ = 2kα

ε
. From the σ−quasi-periodicity of φσn,

φσ
n

(α

ε

)

= φσ
n (0) e

sign(σ)2iπk α
ε = φσ

n (0) e
sign(σ)iπℓ = ±φσ

n (0) ,

then φσn is α−periodic or α−anti-periodic for σ ∈ Ik. Hence φσ
n

(

x
ε

)

is a solution of the equation

∂x

(

a
(x

ε

)

∂xφ
σ
n

(x

ε

))

= −λ
σ
n

ε2
φσ
n

(x

ε

)

in Ω (32)

and φσ
n

(x

ε

)

is α− periodic or α− anti-periodic,
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and uσmφ
σ
m

(

x
ε

)

is also a solution of (32). Denote by wε :=
∑

σ∈Ik

∑

m

uσmφ
σ
m

(

x
ε

)

and observe that wε is a

solution of the equation
∂x (a

ε∂xw
ε) = −λεwε in Ω

with the boundary conditions

wε (0) =
∑

σ∈Ik

∑

m

uσmφ
σ
m (0) = 0 and wε (α) =

∑

σ∈Ik

∑

m

uσmφ
σ
m

(x

ε

)

= ±wε (0) = 0.

Finally, Proposition 10 is concluded.

Remark 11 The converse is probably true, and is numerically studied in Section 6.2, i.e. for any
(λε, wε) solution to (8), there exist k ∈ Y ∗, n ∈ N∗ and two complex numbers ξ1 and ξ2 such that
λε = λkn/ε

2 and

wε (x) = ξ1φ
k
n

(x

ε

)

+ ξ2φ
−k
n

(x

ε

)

if k 6= 0 and wε (x) = ξ1φ
0
n

(x

ε

)

+ ξ2φ
0
m

(x

ε

)

otherwise (33)

for ξ1, ξ2 two numbers such that the boundary conditions (28), respectively (26), are satisfied for
k = 0, respectively for k 6= 0. In the later case ξ1 and ξ2 are conjugate.

Remark 12 (i) The case of non-constant coefficients ukn is used for approximations of the solution
to the homogenized wave equation that may be derived from [8]. In such case k belongs to a finite
subset L∗

K of Y ∗ made with values distant from 1/K and including 0. We cannot expect that there
always exists a pair (k, n) such that ukn is a constant.

(ii) The case of non-constant coefficients ukn is also seen as a preparation to derive homogenized
spectral problems in higher dimension where the boundary conditions constitute a more difficult prob-
lem and may require a more general solution than constant ukn.

Proof of Theorem 9
Proof. The proof is based on Lemma 13 in Section 4.2 and on the macroscopic model derivation

in Section 4.3. For a given k ∈ Y ∗, let wε be solution of (8) which is bounded in L2(Ω), the
property (15) yields the uniform boundness of ‖Sε

σw
ε‖L2(Ω×Y ) for any σ ∈ Ik. So there exist wσ ∈

L2(Ω × Y ) such that up the extraction of a subsequence Sε
σw

ε → wσ in L2 (Ω× Y ) weakly. Since
‖Sε

σ (ε∂xw
ε)‖L2(Ω×Y ) = ‖∂ySε

σw
ε‖

L2(Ω×Y ) is uniformly bounded as ‖ε∂xwε‖L2(Ω). Hence

lim
ε→0

∫

Ω×Y

∂yS
ε
σw

ε · vdxdy = lim
ε→0

∫

Ω×Y

−Sε
σw

ε · ∂yvdxdy = −
∫

Ω×Y

wσ · ∂yvdxdy

for all v ∈ L2(Ω;H1
0 (Y )), and wσ ∈ L2(Ω;H1(Y )) then

lim
ε→0

∫

Ω×Y

∂yS
ε
σw

ε · vdxdy =
∫

Ω×Y

∂yw
σ · vdxdy.

Therefore Sε
σw

ε tends weakly to wσ also in L2(Ω;H1 (Y )). Hence,
∑

σ∈Ik
Sε
σw

ε converges to

gk (x, y) =
∑

σ∈Ik
wσ (x, y) .

10



Using the decomposition (34) of wσ in Lemma 13, for
(

φσ
p

)

σ,p
the Bloch wave eigenmodes correspond-

ing to λ0,






gk (x, y) =
∑

σ∈Ik
uσn (x)φ

σ
n (y) for k 6= 0,

g0 (x, y) =
∑

p∈{n,m}
u0p (x)φ

0
p (y) for k = 0.

Finally,
(

uσp
)

σ,p
is solution of the macroscopic problem as proved in Section 4.3.

4.2 Modal decomposition on the Bloch modes

Lemma 13 For (λε, wε) solution of (8) and satisfying (10), for a fixed k ∈ Y ∗ there exists at least
a subsequence of Sε

kw
ε converging weakly towards non-vanishing function wk in L2 (Ω× Y ) when ε

tends to zero. If wk ∈ L2(Ω;H2(Y )) then
(

λ0, wk
)

is solution of the Bloch wave equation (20) and
wk admits the modal decomposition,

wk (x, y) =
∑

m

ukm (x)φk
m (y) for ukm ∈ L2 (Ω) (34)

where the sum is over all Bloch modes φk
m associated to λ0. Moreover for k 6= 0 the two factors ukm

and u−k
m are conjugate.

Proof. The test functions of the weak formulation (11) are chosen as

vε := Rv ∈ H1
0 (Ω) ∩H2(Ω), (35)

with
v ∈ H1

0 (Ω;L
2
k(Y )) ∩ L2(Ω;H2

k(Y )) ∩H2
(

Ω;L2
k (Y )

)

. (36)

Applying two integrations by parts and the boundary conditions satisfied by wε and by Rv, it remains

∫

Ω

wε · (P ε − λερε)vε dx = 0. (37)

From (19) multiplied by ε2 and (10),

∫

Ω

wε ·R((P 2 − λ0ρ)v) dx = O(ε).

Since (P 2 − λ0ρ)v is k−quasi-periodic and Sε
kw

ε → wk in L2(Ω × Y ) weakly, Corollary 4 allows to
pass to the limit

∫

Ω×Y

wk · (P 2 − λ0ρ)v dxdy = 0,

or equivalently
∫

Ω×Y

wk · ∂y (a∂yv) + wk · λ0ρv dxdy = 0. (38)

Using the assumption wk ∈ L2(Ω;H2(Y )) and applying integrations by parts,

∫

Ω×Y

∂y
(

a∂yw
k
)

· v + wk · λ0ρv dxdy +
∫

Ω×∂Y

awk · ∂yv − a∂yw
k · v dxdy = 0.

11



Then, choosing test functions v ∈ L2(Ω;H2
0 (Y )) comes the strong form

− ∂y
(

a∂yw
k
)

= λ0ρwk in Ω× Y. (39)

So, it remains
∫

Ω

[

awk · ∂yv − a∂yw
k · v

]1

0
dx = 0

for general test functions (36), which implies that wk and ∂yw
k are k−quasi-periodic in the variable

y.
As we know that λ0 is an eigenvalue λkn of the Bloch wave spectrum, then wk is a Bloch eigenvector

and is decomposed as

wk (x, y) =
∑

m

ukm (x)φk
m (y) with ukm ∈ L2 (Ω)

the sum being over all Bloch modes φk
m associated to λ0 where ukm(x) =

∫

Y
wk(x, y) · φk

m(y) dy. For

k 6= 0, φk
m =φ−k

m and from Definition 1 of modulated two-scale transform, Sε
kw

ε = Sε
−kw

ε thus ukm and

u−k
m are conjugate i.e. ukm = u−k

m .

4.3 Derivation of the macroscopic equation

In the macroscopic model derivation, we distinguish between the two cases k 6= 0 and k = 0.

4.3.1 Case k 6= 0

We consider λ0 = λkn and the two conjugate eigenvectors φk
n and φ−k

n discussed in Notation 5. We
restart from the very weak formulation (37) with the test function

vε(x) := R(vk + v−k) ∈ H1
0 (Ω) ∩H2 (Ω) . (40)

Furthermore, we pose vσ(x, y) = ψσ(x)φσ
n(y) with ψσ ∈ H2(Ω) for σ ∈ Ik and use the σ−quasi-

periodicity of φσn, i.e. φσn
(

x
ε

)

= φσ
n (0) e

2iπk x
ε at any x ∈ ∂Ω. So the boundary condition in (40) is

equivalent to

ψk (x)φk
n(0)e

2iπk x
ε + ψ−k (x)φ−k

n (0)e−2iπk x
ε = 0 at any x ∈ ∂Ω.

Applying the relation (23),

ψk(x)φk
n(0)e

2iπx
hkε+lkε

α + ψ−k(x)φ−k
n (0)e−2iπx

hkε+lkε
α = 0.

Since xhk
ε

α
= 0 at x = 0 and xhk

ε

α
= hkε at x = α with hkε ∈ Z then e±2iπx

hkε
α = 1. From (24),

e±2iπ
lkεx

α → e±2iπ lkx
α when ε → 0. Passing to the limit, the boundary conditions of the test function

are

ψk(x)φk
n(0)e

2iπ lkx
α + ψ−k(x)φ−k

n (0)e−2iπ lkx
α = 0 on ∂Ω. (41)

From (19) multiplied by ε, (10) and P 2vσ − λ0ρvσ = 0,

∑

σ∈Ik

∫

Ω

wε ·R(−P 1vσ + λ1ρvσ) dx = O(ε). (42)
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Extracting a subsequence of wε so that Sε
kw

ε and Sε
−kw

ε are converging to wk and w−k in L2(Ω× Y )
weak, since −P 1vσ + λ1ρvσ is σ−quasi-periodic then Corollary 4 infers that

∑

σ∈Ik

∫

Ω×Y

wσ · (−P 1vσ + λ1ρvσ) dxdy = 0,

i.e.
∑

σ∈Ik

∫

Ω×Y

wσ ·
(

∂x (a∂yv
σ) + ∂y (a∂xv

σ) + λ1ρvσ
)

dxdy = 0.

This is the very weak form of the macroscopic equation for all test functions vσ ∈ H1 (Ω;H1
k (Y )),

reached by density, satisfying (41). Now, we derive the strong formulation. We assume that wσ ∈
H1(Ω;L2(Y )), since wσ ∈ L2(Ω;H1(Y )) after two integrations by parts,

∑

σ∈Ik

[
∫

Ω×Y

∂y (a∂xw
σ) · vσ + ∂x (a∂yw

σ) · vσ + λ1ρwσ · vσ dxdy

+

∫

∂Ω×Y

wσ · a∂yvσ − a∂yw
σ · vσ dxdy

+

∫

Ω×∂Y

wσ · a∂xvσ − a∂xw
σ · vσ dxdy

]

= 0.

From Lemma 13, wσ is solution to the Bloch mode equation and is decomposed as

wσ(x, y) = uσ(x)φσ
n(y). (43)

After replacement,

∑

σ

[
∫

Y

∂y(aφ
σ
n) · φσ

n + a∂yφ
σ
n · φσ

n dy

∫

Ω

∂xu
σ · ψσdx+ λ1

∫

Y

ρφσn · φσ
n dy

∫

Ω

uσ · ψσdx (44)

+

∫

Y

φσ
n · a∂yφσ

n − a∂yφ
σ
n · φσ

n dy

∫

∂Ω

uσ · ψσ dx

+

∫

∂Y

φσ
n · aφσ

n dy

∫

Ω

uσ · ∂xψσ − ∂xu
σ · ψσ dx

]

= 0.

Let us recall that b(., ., .) and c(., ., .) have been defined in (22). For the sake of simplicity, we use
c(σ, n) := c(σ, n, n) and b(σ, n) := b(σ, n, n) and observe that

∫

Y

∂y(aφ
σ
n) · φσ

n + a∂yφ
σ
n · φσ

n dy = c(σ, n),

which results from integrations by parts and from the σ−quasi-periodicity of φσ
n. So, using the

σ-quasi-periodicity of φσ
n, (44) can be rewritten as

∑

σ

[
∫

Ω

(c(σ, n)∂xu
σ + λ1b (σ, n) uσ) · ψσ dx− c(σ, n)

∫

∂Ω

uσ · ψσ dx

]

= 0.

Choosing the test function ψσ = 0 on ∂Ω, the boundary condition (41) is satisfied and by density of
H1

0 (Ω) in L
2 (Ω) , the internal equation satisfied by uσ follows,

c(σ, n)∂xu
σ + λ1b (σ, n)uσ = 0 in Ω for each σ. (45)
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Choosing general ψσ ∈ H1 (Ω) satisfying (41) yields the boundary conditions

∑

σ

c(σ, n)uσψσ = 0 on ∂Ω. (46)

We introduce the matrices C1 = diag((c(σ, n))σ), C2 = diag((b(σ, n))σ) and the vectors u = (uσ)σ,

ψ = (ψσ)σ, ϕ =
(

φσ
n (0) e

sign(σ)2iπ lkx
α

)

σ
with σ ∈ Ik, so that (41, 45, 46) can be written on the matrix

form

C1∂xu+ λ1C2u = 0 in Ω ,

and C1u(x).ψ(x) = 0 on ∂Ω for all ψ such that ϕ(x, 0).ψ(x) = 0 on ∂Ω.

The boundary condition is equivalent to C1u(x) is collinear with ϕ(x, 0) i.e. det(C1u(x), ϕ(x, 0)) = 0.
Equivalently

{

c(k, n)uk (0)φ−k (0)− c(−k, n)u−k (0)φk (0) = 0,

c(k, n)uk (α)φ−k (0) e−2iπlk − c(−k, n)u−k (α)φk (0) e2iπlk = 0.

Finally, since c(k, n) = −c(−k, n) and c(k, n) is assumed to do not vanish, the boundary conditions
of macroscopic equation (45) are

uk (x)φk
n (0) e

2iπ lkx
α + u−k (x)φ−k

n (0) e−2iπ lkx
α = 0 at x ∈ ∂Ω.

4.3.2 Case k = 0

In case k = 0, to avoid any confusion with λ0, the upper indices k = 0 are removed. We denote by
φn, φm the eigenvectors associated to λ0 = λn = λm, solutions to P(0) in (20), and by

∑

p,
∑

q the
sums over p or q varying in {n,m}. We restart with a test function

vε(x) := R(
∑

p

vp) ∈ H1
0 (Ω) ∩H2 (Ω) (47)

for the very weak formulation (42). We pose vp(x, y) = ψp(x)φp(y) with ψp(x) ∈ H1 (Ω) for p ∈
{n,m} . Since φp is periodic thus φp(

x
ε
) = φp(0) at x ∈ ∂Ω and the boundary condition in (47) is

equivalent to
∑

p

ψp(x)φp(0) = 0 at x ∈ ∂Ω.

By setting c(p, q) := c(0, p, q) for p, q ∈ {n,m}, using the expression in Lemma 13 of the weak limit
w0 of Sε

0w
ε,

w0 (x, y) =
∑

p

up (x)φp(y), (48)

using the periodicity of
(

φp

)

p
and conducting the same calculations as for k 6= 0, we obtain

∑

p,q

[
∫

Ω

(c(p, q)∂xuq + λ1b(p, q)uq) · ψp dx−
∫

∂Ω

c(p, q)uq · ψp dx

]

= 0.

With u = (up)p, ψ = (ψp)p, φ =
(

φp

)

p
and C1 = (c(p, q))p,q, C2 = (b(p, q))p,q, the macroscopic

problem turns to be
C1∂xu+ λ1C2u = 0 in Ω, (49)
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with the boundary conditions

C1u(x).ψ(x) = 0 on ∂Ω for all ψ such that ψ(x).φ(0) = 0 on ∂Ω.

Equivalently, C1u(x) is collinear to φ(0) on ∂Ω or

det (C1u(x), φ(0)) = 0 on ∂Ω. (50)

But c(p, p) = 0, so (50) simplifies to

{

c (n,m) um (0)φm (0)− c (m,n) un (0)φn (0) = 0,
c (n,m) um (α)φm (0)− c (m,n) un (α)φn (0) = 0.

Finally, since c (n,m) = −c (m,n) and c (n,m) 6= 0, the boundary conditions are

un (x)φn (0) + um (x)φm (0) = 0 on ∂Ω.

4.4 Analytic solutions

For k ∈ Y ∗ and ρ = 1, we solve the macroscopic equations In Section 4.4.1. These solutions are
used to validate the numerical results in the final Section. Moreover, in Section 4.4.2, the exact
formulations of the two-scale eigenmodes are found for ρ = 1 and a = 1.

4.4.1 The case ρ = 1

For k 6= 0 and b (n, n) = 1, the exact solutions of the macroscopic equation (25) are

uσn (x) = dσe−λ1c(σ,n)−1x for each σ ∈ Ik

where dσ is any complex number. Applying the boundary condition (26) and assuming that φkn (0) 6= 0,
the eigenvalue is

λ1 =
c(k, n)

α

(

2iπlk − iℓπ
)

for ℓ ∈ Z. (51)

Furthermore, ukn = u−k
n and φkn (0) = φ−k

n (0) then Re
(

dkφk
n (0)

)

= 0, or dkφk
n (0) = iδ for any δ ∈ R.

Thus,

dk =
iδ

φk
n (0)

and d−k = − iδ

φ−k
n (0)

for any δ ∈ R.

For k = 0, using the equalities c (n, n) = c (m,m) = 0, b (n,m) = b (m,n) = 0 and b (n, n) =
b (m,m) = 1, the macroscopic equation (27) is rewritten

{

c (n,m) ∂xu
0
m + λ

1
u0n = 0 in Ω,

c (m,n) ∂xu
0
n + λ

1
u0m = 0 in Ω.

(52)

If λ1 = 0, ∂xu
0
m = 0 and ∂xu

0
n = 0 in Ω, then u0m and u0n are independent on x, equivalently, u0m

and u0n are complex numbers.

If λ1 6= 0, the first equation gives u0n = − c(n,m)∂xu0
m

λ1 in Ω and since c(n,m) = −c(m,n) then

∂xxu
0
m = −

(

λ1

c (n,m)

)2

u0m (53)
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and

u0m (x) = d1 cos

(

λ1

c (n,m)
x

)

+ d2 sin

(

λ1

c (n,m)
x

)

for two constants for d1, d2 ∈ C and u0n follows by its above expression. Applying the boundary
condition (28), if φ0

m (0) 6= 0,

λ1 =
ℓπc (n,m)

α
for ℓ ∈ Z and d1 =− d2

φ0
n (0)

φ0
m (0)

(54)

for any ℓ ∈ Z and d2 ∈ C. If φ0
m (0) = 0 then φ0

n (0) = 0 or u0n (x) = 0 on ∂Ω. In the case φ0
n (0) = 0,

the macroscopic equation is lacking of boundary conditions and their solutions are not unique, they
depend on arbitrary coefficients d1, d2 and λ1. When u0n (x) = 0 at ∂Ω, there is an alternative, or u0n
is the trivial solution or

det

(

0 1

− sin
(

λ1

c(n,m)
α
)

cos
(

λ1

c(n,m)
α
)

)

= 0

and then d2 = 0, λ1 = ℓπc(n,m)
α

for any ℓ ∈ Z and d1 ∈ C.

Remark 14 According to (51) and (54), λ1 = 0 iff ℓ = 2lk for k 6= 0 and iff ℓ = 0 otherwise. So, in
any case small values of λ1,ℓ correspond to indices ℓ in a vicinity of 2lk or to 2kα

ε
when ε > 0.

4.4.2 The case a = ρ = 1

We consider the spectral problem
−∂2yyφk = λkφk in Y

with the k−quasi-periodicity conditions.
For k 6= 0, for a mapping m 7→ n(m) from Z to N∗ not detailed here, λkn(m) = 4π2(m + k)2 and

there are exactly two conjugated solutions φσ
n(m)(y) = esign(σ)2iπ(m+k)y for any m ∈ Z and σ ∈ Ik. It

follows that c(σ, n(m)) = sign (σ) 4iπ(m+ k), b (σ, n(m)) = 1 and λ1 = −4π2

α
(2lk − ℓ)(m+ k) for any

ℓ ∈ Z, so

uσn(m)(x) = dσe
sign(σ)iπ

α
(2lk−ℓ)x

and the resulting two-scale eigenmode is

wσ(x, y) = dσe
sign(σ)iπ

α
(2lk−ℓ)xesign(σ)2iπ(n+k)y.

For k = 0, for each λ0n(m) = (2πm)2 there are two eigenvectors φn(m)(y) = cos(2πmy) and φn(m)+1(y) =
sin(2πmy) so

C1 = 2mπ

(

0 1
−1 0

)

, C2 =
1

2

(

1 0
0 1

)

,

(

φn(m)(0)

φn(m)+1(0)

)

=

(

1
0

)

.

It implies that λ1 = 4mℓπ2

α
for any ℓ ∈ Z and

un(m)(x) = d0 sin
(

ℓπ
x

α

)

and un(m)+1(x) = d0 cos(ℓπ
x

α
),

then the two-scale eigenmode is

w(x, y) = d0[sin
(

ℓπ
x

α

)

cos(2πmy) + cos(ℓπ
x

α
) sin(2πmy)] for ℓ,m ∈ Z.
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4.5 Neumann boundary conditions

We consider the spectral problem with Neumann boundary conditions

P εwε = λερεwε in Ω and ∂xw
ε = 0 on ∂Ω.

The process of homogenization and the results are similar to the case of Dirichlet boundary conditions.
The microscopic problem and the internal macroscopic equation are unchanged while the boundary
conditions of the latter are

∑

σ∈Ik

∑

m

uσm (x) ∂yφ
σ
m (0) esign(σ)2iπ

lkx
α = 0 on ∂Ω

where the cases k 6= 0 and k = 0 are not separated so a general notation is adopted for the sum
over m and σ. Their derivation follows the same steps, so we only mention the boundary condition
satisfied by the test functions. They are chosen to satisfy ∂xv

ε (x) = 0 on ∂Ω or equivalently,

∑

σ∈Ik

∑

m

∂xψ
σ
m (x)φσm

(x

ε

)

+
1

ε
ψσ

m (x) ∂yφ
σ
m

(x

ε

)

= 0 on ∂Ω.

Multiplying by ε,
∑

σ∈Ik

∑

m

ψσ
m (x) ∂yφ

σ
m

(x

ε

)

+O(ε) = 0 on ∂Ω, (55)

then using the σ−quasi-periodicity of φσ
m and passing to the limit

∑

σ∈Ik

∑

m

ψσ
m (x) ∂yφ

σ
m (0) esign(σ)2iπ

lkx
α = 0 on ∂Ω.

5 Homogenization based on a first order formulation

In this section, the homogenized model is derived based on a first order formulation. The calculations
are less detailed than in Section 4, only the main results and the proof principles are given.

5.1 Reformulation of the spectral problem and the main result

We start by setting

Uε =

(
√
aε∂xw

ε

i
√
λε

,
√
ρεwε

)

, µε =
√
λε,

Aε =

(

0
√
aε∂x

(

1√
ρε
.
)

1√
ρε
∂x
(√

aε.
)

0

)

, nAε =
1√
ρε

(

0
√
aεnΩ√

aεnΩ 0

)

with the domain of the operator Aε,

D (Aε) :=
{

(ϕ, φ) ∈ L2 (Ω)× L2 (Ω)
∣

∣

∣

√
aεϕ ∈ H1 (Ω) , φ ∈ H1

0 (Ω)
}

⊂ L2(Ω)2,

so that iAε is self-adjoint on L2(Ω)2 as proved in [8]. The spectral equation (8) can be recasted as a
first-order system

AεUε = iµεUε in Ω and Uε
2 = 0 on ∂Ω, (56)
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where Uε
2 is the second component of Uε. We observe that ‖√ρεwε‖

L2(Ω) ≤ ‖√ρε‖
L∞(Ω) and that

∥

∥

∥

√
aε∂xw

ε

i
√
λε

∥

∥

∥

L2(Ω)
≤ M0 can be deduced from the weak formulation (11), therefore Uε is uniformly

bounded,
‖Uε‖2L2(Ω) ≤M1. (57)

We start our analysis from the system expressed in a distributional sense,
∫

Ω

Uε · (iµε − Aε)Ψ dx = 0, (58)

for all admissible test functions Ψ = (ϕ, ψ)∈ H1 (Ω)×H1
0 (Ω). We choose µ0 =

√
λ0 and µ1 = λ1

2µ0
,

so µε can be decomposed as

µε =
µ0

ε
+ µ1 +O (ε) . (59)

The asymptotic spectral problem (20) is also restated as a first order system by setting

Ak :=

(

0
√
a∂y

(

1√
ρ
.
)

1√
ρ
∂y (

√
a.) 0

)

and nAk
=

1√
ρ

(

0
√
anY√

anY 0

)

,

and

ekn :=
1√
2

( −i sn
√

λk
|n|

√
a∂y

(

φk
|n|
)

√
ρφk

|n|

)

and µk
n = sn

√

λk|n| for all n ∈ Z∗, (60)

sn denoting the sign of n. As proved in [8], iAk is self-adjoint on the domain

D (Ak) :=

{

(ϕ, φ) ∈ L2 (Y )2 |
√
aϕ ∈ H1

k (Y ) ,
φ√
ρ
∈ H1

k (Y )

}

⊂ L2 (Y )2 .

The Bloch wave spectral problem P(k) is equivalent to finding pairs
(

µk
n, e

k
n

)

indexed byn ∈ Z∗

solution to
Q(k) : Ake

k
n = iµk

ne
k
n in Y with ekn ∈ H1

k (Y )
2 . (61)

The corresponding weak formulation is
∫

Y

ekn ·
(

Ak − iµk
n

)

Ψ dy = 0 for all Ψ ∈ D (Ak) . (62)

The relation between the operator Aε and the scaled operator Ak is obtained by considering any
regular vector ψ = ψ (x, y) depending on both space scales,

Aε
(

ψ
(

x,
x

ε

))

=

((

1

ε
Ak +B

)

ψ

)

(

x,
x

ε

)

, (63)

where the operatorB is defined as the result of the formal substitution of x−derivatives by y−derivatives
in Ak, i.e.

B :=

(

0
√
a∂x

(

1√
ρ
.
)

1√
ρ
∂x (

√
a.) 0

)

.

For any n ∈ Z∗ and k ∈ Y ∗, Mk
n :=

{

i ∈ Z∗ | µk
i = µk

n

}

is the set of indices of eigenvectors related to
the same eigenvalue µk

n. For all k ∈ Y ∗� {0} , since µk
n = µ−k

n then Mk
n =M−k

n .
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Remark 15 From now on, we shall assume that the weak limit of Sε
kU

ε in L2 (Ω× Y ) is not vanishing
to avoid eigenmodes related to the boundary spectrum (see Proposition 7.7 in [6]).

Theorem 16 For k ∈ Y ∗, let (µε, Uε) be solution of (56) then
∑

σ∈Ik S
ε
σU

ε is bounded in L2 (Ω× Y ).
For ε ∈ Ek, assuming that the renormalized sequence εµε satisfies the decomposition (59) with µ0 = µk

n

an eigenvalue of the Bloch wave spectrum, any weak limit Gk of
∑

σ∈Ik S
ε
σU

ε in L2 (Ω× Y ) has the
form

Gk (x, y) =
∑

σ∈Ik

∑

m∈Mσ
n

uσm (x) eσm (y), (64)

where (uσm)m,σ are the solutions of the macroscopic equations (25, 26) or (27, 28).

Therefore, the physical solution Uε can be approximated by

Uε (x) ≈
∑

σ∈Ik

∑

m∈Mσ
n

uσm (x) eσm

(x

ε

)

. (65)

Proof. For a given k ∈ Y ∗, let Uε be solution of (56) which is bounded in L2(Ω), the property
(15) yields the boundness of ‖Sε

σU
ε‖L2(Ω×Y ). So there exist Uσ ∈ L2(Ω × Y )2 such that, up the

extraction of a subsequence, Sε
σU

ε tends weakly to Uσ in L2(Ω× Y )2 and hence,
∑

σ∈Ik
Sε
σU

ε converges

to Gk (x, y) =
∑

σ∈Ik
Uσ (x, y). Using the decomposition (66) of Uσ in the forthcoming Lemma 17,

Gk (x, y) =
∑

σ∈Ik

∑

m∈Mσ
n

uσm (x) eσm (y)

The macroscopic problem solved by the coefficients (uσm)σ,m is derived in Section 5.2.2.

5.2 Model derivation

5.2.1 Modal decomposition on the Bloch modes

Lemma 17 Let a sequence (µε, Uε) be solution of (56) and satisfies (59) with µ0 = µk
n for given

n ∈ Z∗ and k ∈ Y ∗, we extract a subsequence of ε, still denoted by ε, such that Sε
kU

ε converges weakly
to Uk in L2 (Ω× Y )2. If Uk ∈ D (Ak) then

(

µk
n, U

k
)

is solution of the Bloch wave equation (61) and
Uk admits the modal decomposition

Uk (x, y) =
∑

m∈Mk
n

ukm (x) ekm (y) with ukm ∈ L2 (Ω) . (66)

Proof. For each k ∈ Y ∗, taking Ψ (x, y) := θ(x)φ(y) with θ(x) ∈ C∞
c (Ω) and φ(y) ∈ C∞(Y )2

k−quasi-periodic in y, considering ℜΨ as a test functions in (58), and using (63,59),

∫

Ω

Uε · ℜ
(

i
µ0

ε
+ iµ1 −

Ak

ε
−B

)

Ψ dx+O (ε) = 0.

Multiplying by ε
∫

Ω

Uε · ℜ (iµ0 −Ak) Ψ dx+O (ε) = 0,
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and passing to the limit thanks to Corollary 4,

1

|Y |

∫

Ω×Y

Uk · (iµ0 −Ak) Ψ dxdy = 0

which is the weak formulation of the Bloch wave equations. If in addition Uk ∈ D (Ak) , integrating
by parts yields

1

|Y |

∫

Ω×Y

(Ak − iµ0)U
k ·Ψ dxdy − 1

|Y |

∫

Ω×∂Y

Uk · nAk
Ψ dxdy = 0 (67)

providing in turn the strong formulation,

AkU
k = iµ0U

k in Ω× Y. (68)

Since the product of a periodic function by a k−quasi-periodic function is k−quasi-periodic then nAk
Ψ

is k−quasi-periodic in y. Therefore, Uk is k−quasi-periodic in y and finally is a Bloch eigenvector
in y. By projection, it can be decomposed as

Uk (x, y) =
∑

m∈Mk
n

ukm (x) ekm (y) with ukm =
1

b (k,m,m)

∫

Y

Uk · ekm dy ∈ L2 (Ω) .

5.2.2 Derivation of the macroscopic equation

The macroscopic equation is stated for each k ∈ Y ∗ and each eigenvalue µk
n of the Bloch wave spectral

problem Q(k). We pose

κ (k, n,m) =
−ic (k, n,m)

2µ0

for m ∈Mk
n (69)

where c (k, n,m) is defined in (22) and notice that

κ (k, n,m) = −κ (−k,m, n) , κ (k, n,m) = −κ (−k, n,m),

κ (k, n,m) = −κ (k,m, n), and κ (0, n, n) = 0.

For the sake of simplicity, we do the proof for n ∈ Z∗+ only and denote by κ (k, n) = κ (k, n, n) and
κ (n,m) = κ (0, n,m). For general n, the proof is the same but φk

n is replaced by φk|n|.

Case k 6= 0 The pairs
(

µk
n, e

k
n

)

and
(

µ−k
n , e−k

n

)

are the eigenmodes of the spectral equations Q(±k) in
(61) corresponding to the eigenvalue µ0 = µk

n = µ−k
n . We pose Ψε = ℜ

(

Ψk +Ψ−k
)

∈ H1(Ω)×H1
0 (Ω)

as a test function in the weak formulation (58), with each Ψσ (x, y) = ψσ (x) eσn(y) where ψ
σ ∈ H1(Ω)

and satisfies the boundary conditions,

∑

σ

ψσ (x)φσ
n

(x

ε

)

= 0 on ∂Ω.

Notice that this condition is related to the second component of Ψε only. Proceeding as in Section
4.3.1 yields (41). Since (iµ0 −Aσ) Ψ

ε = 0 for all σ, applying (59, 63), then Equation (58) yields

∑

σ

∫

Ω

Uε · ℜ (iµ1 − B) Ψσ dx+O (ε) = 0. (70)
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But (iµ1 −B) Ψσ is σ−quasi-periodic so passing to the limit thanks to Corollary 4,

1

|Y |
∑

σ

∫

Ω×Y

Uσ · (iµ1 −B) Ψσdxdy = 0. (71)

From Lemma 17, Uσ is decomposed as

Uσ (x, y) = uσn (x) e
σ
n (y) .

After replacement,

∑

σ

∫

Ω

(−iµ1b (σ, n) u
σ
n · ψσ+κ (σ, n)uσn · ∂xψσ) dx = 0

for all ψσ ∈ H1 (Ω) fulfilling (41). Moreover, if uσn ∈ H1 (Ω) it satisfies the strong form of the internal
equations

κ (σ, n) ∂xu
σ
n − iµ1b (σ, n) u

σ
n = 0 in Ω for all σ ∈ Ik, (72)

and the boundary conditions
∑

σ

κ (σ, n)uσn·ψσ = 0 on ∂Ω.

Following the same calculations as in Section 4.3.1, with the matrices C1 = diag (κ (σ, n)), C2 =

diag (b (σ, n)) and the vectors u = (uσn)σ , ψ = (ψσ)σ , ϕ =
(

φσ (0) esign(σ)2iπx
lk

α

)

σ
, (72) is written on

the matrix form
C1∂xu = iµ1C2u in Ω ,

with boundary condition

C1u (x) .ψ (x) = 0 on ∂Ω for all ψ such that ϕ (x, 0) .ψ (x) = 0 on ∂Ω.

Equivalently, Cu (x) is collinear with ϕ (x, 0) yielding the boundary conditions

ukn (x)φ
k
n (0) e

2iπ lkx
α + u−k

n (x)φ−k
n (0) e−2iπ lkx

α = 0 on ∂Ω (73)

after remarking that κ (σ, n) 6= 0. Finally, with (69) and λ1 = 2µ0µ1 the macroscopic problem (25,
26) is recovered.

Case k = 0 We adopt the same simplifications of notations that in Section 4.3.2. Let en and
em be the Bloch eigenmodes of Q(0) in (61) regarding the double eigenvalue µ0 = µn = µm. In
this case M0

n = {n,m}. Taking Ψε =
∑

p∈M0
n

ℜ (Ψp) ∈ H1 (Ω) × H1
0 (Ω) as a test function with

Ψp (x, y) = ψp (x) ep(y) and ψp ∈ H1(Ω). Due to the periodicity of φp, the second component of Ψε

satisfies the boundary conditions

∑

p∈M0
n

ψp (x)φp (0) = 0 on ∂Ω. (74)

Following similar calculations as for the case k 6= 0, the weak limit U0 of Sε
0U

ε in L2(Ω× Y )2 is

U0 (x, y) =
∑

p∈M0
n

up (x) ep (y)
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and up is solution to the weak formulation

∑

q∈M0
n

∫

Ω

−iµ1b (p, q)uq · ψp + κ (p, q)uq · ∂xψp dx = 0

for all ψp ∈ H1 (Ω) with p ∈M0
n. If uq ∈ H1 (Ω) it is a solution to the internal equations

∑

q∈M0
n

κ (p, q) ∂xuq − iµ1 b (p, q)uq = 0 in Ω for p ∈M0
n , (75)

and to the boundary conditions

∫

∂Ω

∑

p,q∈M0
n

κ (p, q)uq·ψp dx = 0.

Here, with C1 = ( κ (p, q))p,q, C2 = ( b (p, q))p,q, u = (up)p , ψ =
(

ψp

)

p
, φ =

(

φp

)

p
,

C1∂xu = iµ1C2u in Ω ,

and Cu (x) .ψ (x) = 0 on ∂Ω for all ψ such that φ (0) .ψ (x) = 0 on ∂Ω.

But κ (p, p)= 0, therefore
un (x)φn (0) + um (x)φm (0) = 0 on ∂Ω. (76)

As for k 6= 0, these macroscopic equations are equivalent to (27, 28).

6 Numerical simulations

We report simulations regarding comparisons of physical eigenmodes and their approximation by
two-scale modes for ρ = 1. In Subsection 6.2, for each given high frequency physical eigenelement
a two-scale eigenelement realizing a good approximation is identified. This shows that the two-scale
model can actually be used as an approximation of the complete high-frequency spectra. Conversely,
Subsection 6.3 addresses the modeling problem i.e. it introduces a way to generate approximations of
high-frequency spectra from the two-scale model only. Finally, in 6.4 the order of convergence with
respect to ε is analyzed. The next section describes the main simulation parameters.

6.1 Simulation methods and conditions

Both, the physical spectral problem and the Bloch wave spectral problem are discretized by a
quadratic finite element method. The number of elements are respectively denoted Nphys and Nbloch.
The implementation of the k−quasi-periodic boundary condition is achieved by elimination of the
last degree of freedom. More precisely, for n ∈ {1, ..., 2Nbloch + 1} the node indices, φn a degree of
freedom of φ a Bloch eigenmode and ϕn the corresponding quadratic Lagrange interpolation function,

φ (y) ≃
2Nbloch
∑

n=2

φnϕn + φ1ϕ1 + φ2Nbloch+1ϕ2Nbloch+1.
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Using the relation φ (1) = e2iπkφ (0) and taking ϕ1 + e2iπkϕ2Nbloch+1 as the first base function allows
to eliminate φ2Nbloch+1,

φ (y) ≃
2Nbloch
∑

n=2

φnϕn + φ1

(

ϕ1 + e2iπkϕ2Nbloch+1

)

.

The sets of indices considered in the simulations of high frequency physical modes and Bloch modes
are denoted by J ε and Jk, the former being generally included in (α/2ε,Nphys/2). The Bloch modes
are calculated for k ≥ 0 only, and the other cases can be deduced by conjugation. For each Bloch
eigenmode

(

λkn, φ
k
n

)

, the macroscopic solutions
(

λ1,ℓ, ukm,ℓ

)

m,ℓ
are given in Section 4.4.1 with δ = 1

and d2 = φ0
m (0) for any m such that λkm = λkn and ℓ ∈ Z. In fact, according to Remark 14 the index

ℓ should vary in Jk
n =

[

2k
ε

]

+ {−r, ..., r} , for a small integer r, so that only the first macroscopic
eigenmodes be taken into account. In the next discussions, we use the following notations for the
two-scale approximations of the eigenvalues and eigenmodes exhibiting clearly their parameters ε, k, n
and ℓ,

γε,kn,ℓ := λkn + ελ1,ℓ and ψε,k
n,ℓ (x) :=

∑

σ∈Ik

∑

m

uσm,ℓ (x)φ
σ
m

(x

ε

)

for ℓ ∈ Jk
n , n ∈ Jk. (77)

In the simulations reported in Sections 6.2 and 6.3 only one physical problem is used, namely Ω =
(0, 1), aε (x) = sin (2πx/ε) + 2, 50 cells (i.e. ε = 1/50), and Nphys = 2, 000. Other number of cells
are used in Section 6.4 for the convergence analysis. Consequently, the coefficient of the Bloch wave
spectral problem is a (y) = sin (2πy)+2. The set Y ∗ of positive wave numbers in Y ∗ is discretized by
L∗+
125 = {0, ..., 62/125} with step ∆k = 1/125 and Nbloch = 50. The subset of macroscopic eigenvalues

is restricted by r = 15.
The first ten graphs (k 7→ λkn)n=1,...,10 of Bloch eigenvalues are described in Figure 1. The graphs

are symmetric about the axis k = 0 which confirms that λkn = λ−k
n as remarked in Notation 5.

Moreover, all eigenvalues λkn are simple for k 6= 0 and double for k ∈
{

0,±1
2

}

.
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Figure 1: First ten eigenvalues of the Bloch wave spectral problem.

6.2 Approximation of physical modes by two-scale modes

We discuss the approximation of a given solution
(

λεp, w
ε
p

)

of Equation (8) for a given value of ε.
From Remark 11 we expect to show numerically that there exists a suitable pair (k, n) such that
the equality

(

λεp, w
ε
p

)

= (γε,kn,ℓ, ψ
ε,k
n,ℓ) is exact with (γε,kn,ℓ, ψ

ε,k
n,ℓ) defined in (77) and λ1,ℓ = 0. Moreover,
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in the perspective of Remark 12, k varies in L∗+
125 only and approximations with λ1,ℓ 6= 0 are ex-

pected. Whatever if λ1,ℓ vanishes or not, we expect to search approximations for both eigenvalues
and eigenvectors which turns to be an multi-objective optimization problem that might be solved by
a dedicated method. However, to reduce the computational cost, we propose an alternate approach
consisting in minimizing the error on eigenvalues in the approximation (10),

ervalue (k) = min
n∈N, ℓ∈Jk

n

∣

∣

∣

∣

∣

ε2λεp − γε,kn,ℓ

ε2λεp

∣

∣

∣

∣

∣

, (78)

for each k ∈ L∗+
125, and then in finding which one minimizes

ervector (k) =

∥

∥

∥
wε

p − ψε,k
nk,ℓk

∥

∥

∥

L2(Ω)
∥

∥wε
p

∥

∥

L∞(Ω)

the error on eigenvectors in the approximation (30) where ℓk, nk are the optimal arguments in (78).
The optimal error on eigenvectors is then

ervector = min
k∈L∗+

125

ervector (k) . (79)
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Figure 2: (a) Errors for p = 85 and k ∈ L∗+
125. (b) Errors for a selection of k s.t. ervector(k) ≤ 0.2.

Figure 2 (a) shows the distributions of errors ervalue(k) and ervector(k) in logarithmic scale for the
index p = 85 of physical eigenmode with respect to k varying in L∗+

125. The minimal error is reached
for k = 0.16, n = 2, ℓ = 17, λkn = 51.1 and λ1,ℓ = 58.9 yielding the errors ervalue = 10−4 and
ervector = 4.10−3. Figure 2 (b) focuses on values of k such that ervector(k) ≤ 0.2. In Figure 3 (a) the
real (dashed line) and the imaginary (solid line) parts of the Bloch wave φk

n are shown when Figure
3 (b) presents the real (solid line) and the imaginary (dashed-dotted line) parts of ukn,ℓ and also the

real (dotted line) and the imaginary (dashed line) parts of u−k
n,ℓ. In addition, the physical eigenmode

wε
p and the relative error vector between wε

p and ψε,k
n,ℓ are plotted in Figure 4 (a) and (b).

After presenting a detailed study of the approximation of a given physical mode, i.e. for a single
physical mode index p, we report approximation results for the list J ε

0 = {40, ..., 150} \ {50} of
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Figure 3: (a) Bloch wave solution φk
n. (b) Macroscopic solutions ukn,ℓ and u

−k
n,ℓ.

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

 e
ig

en
ve

ct
or

 w
pε

(a)

0 0.2 0.4 0.6 0.8 1
−0.01

−0.005

0

0.005

0.01

x

E
rr

or
 o

f e
ig

en
ve

ct
or

(b)

Figure 4: (a) Physical eigenmode wε
p. (b) Relative error between between wε

p and ψε,k
n,ℓ.

consecutive physical mode indices. The list starts at p = 40 corresponding to an intermediary mode
between the low frequency modes approximated by the classical homogenized method and the high
frequency modes considered in this paper. The index p = 50 is excluded from the list since the
corresponding eigenvector is evanescent, and as such corresponds to an element of the boundary
spectrum. The previous optimization has been applied to each p yielding errors plotted in logarithm
scale in Figure 5 (a). The error bounds are ervalue ≤ 6.10−3 and ervector ≤ 8.10−2.

Globally, the errors start by growing before to decrease except around p = 100 where they exhibit
a peak that we do not explain. Figure 5 (b) reports the corresponding macroscopic eigenvalues λ1,ℓ.
Some of them are close to pairs (k, n) such that λ1,ℓ vanishes as discussed in Remark 11; their relative
errors on eigenvalues are in the order of 10−5. A way to answer the question in Remark 11 is to
decrease the step ∆k and see if all error decrease. A detailed presentation is made in the table
below for two indices, namely p = 66 related to an eigenvalue in the beginning of the high frequency
spectrum and p = 102 corresponding to one of the large errors. In both cases, the error diminishes
as the step ∆k is reduced from 8e-3 to 3e-3.
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Figure 5: (a) Errors for p varying in J ε
0 . (b) Macroscopic eigenvalues.

∆k p k n λ1,ℓ ervalue ervector
8.0e-3 66 2.16e-1 2 -92 1.2e-3 1.9e-2
3.0e-3 66 3.4e-1 2 21.7 9.0e-5 5.3e-3
8.0e-3 102 4.0e-2 3 -147 4.0e-4 5.8e-3
3.0e-3 102 1.5e-2 3 35.9 3.0e-5 1.4e-3
Table 1: Errors for ∆k = 8.e− 3 and 3e− 3.

Figure 6 (a) is a global view of the errors in logarithm scale when ∆k = 8.e− 3 for 90 ≤ p ≤ 110. It
shows that for this k-step a large part of the errors on eigenvalues is in the range of 1.0e-5 i.e. almost
the roundoff error. A measure of the error reduction is provided in Figure 6 (b) where the two ratios

Evalue =
er∆k=3.e−3

value

er∆k=8.e−3
value

and Evector =
er∆k=3.e−3

value

er∆k=8.e−3
vector

of error reduction are represented in logarithmic scale.
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Figure 6: (a) Error of approximation for ∆k = 3.0e − 3. (b) Ratios Evalue and Evector of error
reduction.
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6.3 The modeling problem

The modeling problem is reciprocal to the previous one. It consists in fixing a period ε as well as the
parameters (k, n) of a Bloch mode and to search if there exists ℓ ∈ Jk

n such that (γε,kn,ℓ, ψ
ε,k
n,ℓ) is close

from a physical mode or in other words if it is almost a solution to the physical spectral problem i.e.
if

ε2P εψε,k
n,ℓ − γε,kn,ℓψ

ε,k
n,ℓ = O(ε) in Ω. (80)

Posing for ℓ ∈ Jk
n ,

F ε,k
n (ℓ) =

∥

∥

∥
ε2P εψε,k

n,ℓ − γε,kn,ℓψ
ε,k
n,ℓ

∥

∥

∥

L2(Ω)
∥

∥

∥
γε,kn,ℓψ

ε,k
n,ℓ

∥

∥

∥

L2(Ω)

(81)

the modeling problem relies to the minimization problem F ε,k
n (ℓ0) = min

ℓ∈Jk
n

F ε,k
n (ℓ). If the minimum is

small enough, (γε,kn,ℓ0
, ψε,k

n,ℓ0
) is close from a physical eigenelement and it is a solution to the modeling

problem. A subsequent problem is to identify the corresponding physical eigenelement. This is done
be minimizing the errors ervalue and ervector introduced in the previous section but considered as
depending on the parameter p ∈ J ε instead of k. Two illustrative examples are reported in the table
below, one yielding λ1,ℓ = 0 and the other λ1,ℓ 6= 0. The solution ψε,k

n,ℓ and the relative error between

ψε,k
n,ℓ and w

ε
p are reported in Figures 7 (a) and (b).

k n λkn F ε,k
n (ℓ) λ1,ℓ p ervalue ervalue

1.6e-1 2 5.11e1 8.9e-3 0 84 3.4e-5 2.1e-5
3.52e-1 2 3.14e1 4.5e-2 -8.55 65 1.5e-2 4.3e-3

Table 2: Results for the modeling problem
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Figure 7: (a) Two-scale eigenmode ψε,k
n,ℓ. (b) Relative error vector between ψε,k

n,ℓ and w
ε
p.

Additional results for k = 3.52e−1 with n = {1, ..., 15} are reported in Figures 8 (a) and (b) showing
λ1,ℓ and γkn,ℓ respectively.
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Figure 8: (a) λ1,ℓ with respect to n. (b) γkn,ℓ with respect to n.

6.4 Order of convergence

For a given pair k and n ∈ Jk, we investigate the order of convergence of the errors ervalue and ervector
when the number of cells increases. To follow the convergence result, the sequence of periods ε is in
fact a subsequence εh satisfying

1

εh
=
h+ l

k
∈ N∗

with l ∈ [0, 1) and for a sequence of h ∈ N∗. Table 3 summarizes the results for k = 0.3, l = 0.6 and
h ∈ {3, 9, 15, 21}.

h εh erh,ℓ

value erh,lvector p
3 8.3e− 2 4.3e− 2 6.3e− 3 17
9 3.1e− 2 1.6e− 2 2.4e− 3 45
15 1.9 1e− 2 1.0e− 2 1.5e− 3 73
21 1.4e− 2 7.0e− 3 1.0e− 3 101

Table 3: Errors for a decreasing subsequence εh

To evaluate the decay rate of the errors, we pose erh,ℓ

value = cvalue (εh)
qvalue and erh,ℓ

vector = cvector (εh)
qvector ,

so the decay rates satisfy

qvalue =
log
(

erh,ℓ

value/er
h′,ℓ

value

)

log (εh/εh′)
and qvector =

log
(

erh,ℓ

vector/er
h′,ℓ

vector

)

log (εh/εh′)
.

Using successive results for h and h′, yields

qvalue = {0.988, 0.995, 0.985} ≈ 1 and qvector = {0.985, 0.993, 0.994} ≈ 1

with coefficients

cvalue = {0.504, 0.518, 0.497} ≈ 0.5 and cvector = {0.0734, 0.0755, 0.0757} ≈ 0.07.
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