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Abstract

The asymptotic behavior of a one-dimensional spectral problem with periodic coefficient is
addressed for high frequency modes by a method of Bloch wave homogenization. The analysis
leads to a spectral problem including both microscopic and macroscopic eigenmodes. Numerical
simulation results are provided to corroborate the theory.
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1 Introduction

We consider the spectral problem
— 0, (a0, w°) = N p°w® (1)

posed in an one-dimensional open bounded domain €2 C R with Dirichlet boundary conditions. An
asymptotic analysis of this problem is carried out where € > 0 is a parameter tending to zero and
the coefficients are e-periodic, namely a° = a (£) and p° = p (%) where a (y) and p (y) are 1-periodic
in R. The homogenization of such spectral problem has been studied in various works providing
the asymptotic behaviour of eigenvalues and eigenvectors. The low frequency part of the spectrum
has been investigated in [17], [I8], [25]. Then, many configurations have been analyzed, as [16] and
[13] for a fluid-structure interaction, [7], [3] for neutron transport, [22], [24] for p which changes sign
or [4] for the first high frequency eigenvalue and eigenvector for a one-dimensional non-self-adjoint
problem with Neumann boundary conditions. In [6], G. Allaire and C. Conca studied the asymptotic
behaviour of both the low and high frequency spectrum. In order to analyze the asymptotic behaviour
of the high frequency eigenvalues, they used the Bloch wave homogenization method. It is a blend of
two-scale convergence, see e.g. [1], [2], [21], and Bloch wave decomposition, see e.g. [15], [12], [I4], and
was previously introduced in [5] to a fluid-solid interaction problem. They have shown that the limit
of the set of renormalized eigenvalues £2)\° is the union of the Bloch spectrum and the boundary layer
spectrum, when ¢ goes to 0. However, the asymptotic behaviour of the corresponding eigenvectors
was not addressed. This is the goal of the present work which focuses on the Bloch spectrum of the
high frequency part. Precisely, we search eigenvalues A\° such that

N =M el +20 (¢) (2)

where )\fl is solution of the Bloch wave spectral problem, also called the microscopic equation in this
work,

=0y (a(y) 9,0, (v)) = \op (y) &, (y) for n e N’ (3)

with k—quasi-periodic boundary conditions for some k € R. From [6], it is known that each A" can
be reached as a limit of a subsequence of e?A°. For each n € N* and each k, A\* is either a simple
or a double eigenvalue and \* = A% We pose I* = {—k,k} if k # 0 and I* = {0} otherwise. To
guarantee that Bloch waves are kept in the weak limit, we apply the modulated two-scale transform
S%, defined in [§] from the usual two-scale transform in [20], [19], [10], [9] or [II]. Passing to the limit

in the weak formulation, it is shown that »_ SSw® is weakly converging to two-scale modes
oelk

g (z,y) = Y Y ud (2) 67, (y)

oclk m

where the second sum runs over all modes ¢7, with the same eigenvalue A*. Here, the modes ¢, are
called microscopic modes. The factors (uZ,),, are solution of the macroscopic system of first order

m



differential equation,

Zc(a,n,m) dpul, + A'b (0, n,m)us, = 0 in Q for each o € I*, (4)

m

which boundary conditions and the constant ¢ (o, n,m) are depending on the involved microscopic
modes and eigenvalues. The physical solution w® is then approximated by two-scale modes

wf ()~ Y () o, () (5)

ocelk m

These results are established for Neumann boundary conditions.

In fact, this method is inspired from [8] dedicated to the wave equation, except that in the
latter work the two-scale transforms S;w® and S, w® were analyzed separately and the macroscopic
boundary conditions were lacking. Moreover, the model derivation in [§] is starting from the wave
equation written as a first order system. So, for the sake of comparison, we derive the homogenized
spectral equation from a first order formulation.

In addition, we report exploration results regarding approximations of physical eigenmodes by
two-scale modes. First, for a given € and each high frequency physical eigenelement (A°, w®), we show
how to find quadruplets ()\fl, A1, fl,u’;)n ., satisfying the approximations @) and (B). This shows
that each high frequency eigenelement can be approximated by a two-scale mode. Conversely, the
high-frequency physical eigenelements can be built from the two-scale eigenelements only. Namely,
for a given Bloch mode ()\fl, gbﬁ), a macroscopic eigenelement ()\1, ufl) is minimizing the error on the
physical equation (I]) where w® and A° are replaced by their approximations (2]) and ().

This paper is organized as follows. In Section [2] we state the physical spectral equation with
Dirichlet boundary conditions. In Section [3 the notations and elementary properties, which are used
throughout the paper, are introduced. In Section [ and Bl the model homogenization is derived
based on the second order and first order formulations respectively. Finally, the numerical results are
reported in the last section.

2 Statement of the problem

We consider = (0,a) C R an interval, which boundary is denoted by 02, and two functions
(a®, p°) assumed to obey a prescribed profile,

a®:=a (g) and p°:=p (g) , (6)

where p € L (R), a € W (R) are both Y-periodic where Y is an open interval. Moreover, they
are required to satisfy the standard uniform positivity and ellipticity conditions:

P <p<ptanda® <a<dl, (7)

for some given strictly positive p°, pt, a” and a'.
With the operators P¢ = —0, (a°0,.), the spectral problem with Dirichlet boundary conditions is

Pw®=Xp°w® in Q andw®=0 on 0f, (8)

where as usual € > 0 denotes a small parameter intended to go to zero.



The eigenvectors w® € H? (Q) N H} () are normalized by

2y = ( / |w€|2dx) Y )

and we search the eigenvalues such that
20 =\ 4 e +e0(e), (10)

where \” is a non negative real number and O(g) tends to zero with e. The weak formulation of the
spectral problem () is: find w® € HJ(Q) such that

/ a0, w0, v dr = \° / pwv dx for all v € Hy(Q). (11)
Q Q

Since £2)\° is bounded, it results the uniform bound

||50xw5||L2(Q) S NO. (12)

3 Notations and elementary properties

The functional space L? () of square integrable functions is over C. Let u = (u;); and v = (v;); be
m-dimensional complex vector valued functions in L? (), the dot product is denoted by w.v := > uv;

and the hermitian inner product by

/Qu~v dr = /Qu(x).@ dx. (13)

The notation O (¢) refers to numbers or functions tending to zeros when € — 0 in a sense made
precise in each case. The notations d,u = %, Oyu = g—Z are for x— and y—derivatives of a function u.
The vectors ng, ny are the outer unit normals of 92 and 0Y.

Bloch decomposition We follow the definition of Bloch decomposition in [§] with N = 1,
L=17Z,andY = (0,1), so R =Y + L. The dual lattice is necessarily L* = Z, and the equivalence class
Y* =R/L* is chosen as Y* = (—1/2,1/2). For K € N*, considering the dual lattices KL = KZ and
L*/K =7Z/K, we pose

I {—%,..,% — 1} C Lif K is even,
E2U {52 L 5L if K s odd,

B
so that L = Lx + K L. Posing L} = Ly /K yields L*/K = L* + L.

Functional spaces of quasi-periodic functions For any k£ € Y* we define the k—quasi-
periodic L?—vector space over C with the hermitian inner product (I3) by

Li={uc L} R)|ulxz+l) = u(a:)e%”kg a.e. in R for all £ € L},
or equivalently
Li={uecll (R)|Ic L§ such that u(z) = v(z)e* ™ a.e.},

where Lg is the traditional notation for L? in the periodic case i.e. when k = 0. Likewise, for s > 0
we set

H = Li N Hi, (R)
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bearing in mind that the subscript § would be more appropriate in the periodic case k = 0.

The modulated two-scale transform Let us assume from now that the domain €2 is the union
of a finite number of entire cells of size € or equivalently that the sequence ¢ is exactly ¢, = & for
n € N*. Setting C. := {w. =el+¢eY |l € L,el + Y C Q} is the set of all cells of .

Definition 1 For any k € Y*, the modulated two-scale transform of the function u € L* (), S :
L2 (Q) — L2 (Q x Y) is defined by

Siu(z,y) = Y u (el +ey) X, () e e, (14)

we€Ce

where €l stands for the unique node in €L of w. and x,,_ is the characteristic function of we.

The three following properties can be checked by using (I4]) and are admitted. For u,v € L? (Q)

ISEul ey = | IS5ul* dody =3 [ Juf?da = ul?, . (15)
Si(uv) = S5(u)Si(v),
1
and S; (O,u) (z,y) = gﬁySzu (z,y) forue H' ().
Remark 2 Let k € Y* and a sequence u® bounded in L? () such that Siu® converges to u* in

L*(Q x Y) weakly when € — 0, then S, u¢ converges to some u=* in L*(Q x Y) weakly. Moreover,
since S{u® and S, uf are conjugate then u* and u=* are also conjugate.

The adjoint S¢* : L2 (Q x Y) — L? () of S%, is defined by
[ seo@ wie o= [ vta) (Sio) ) dody. (16)
xY

for all w € L?(Q) and v € L?(Q x Y), and we denote by R the operator operating on functions
v(z,y) defined in Q x R,

(%) (z) = vz, g). (17)
The next Lemma shows that R is an approximation of S;* for k—quasi-periodic functions.
Lemma 3 Let v € C' (Q xY) a k—quasi-periodic function in y then
v =Rv+0(c) inthe L*(Q) sense. (18)

Proof. The proof is carried out in two steps. First the explicit expression of S;*v is derived, then
the approximation is deduced.
(i) Let us prove that

E% — l’—Elws ikl
(Siv) (z) = Z £ 1/%11 (z, f) dz X, (@)e* ™.

we€Ce

From the definition of the two-scale transform with r = el,. + ey € w.,

/ v(z,y) - (Spw) (z,y) dedy = Z / e (:5, r _;lws) w (1) X, (x)e 2 s dadr
QxY

we€Ce f2xwe



or equivalently,
el ,
:/ Z 5_1/ v (:5, U 5) dz - w (r)x,, (r)e” > dr,
Q we€Ce We <
Changing the variable names and using the definition of S}*,
- 1 T — €ly, 2irkl
/ (S20) (2) - w (x) d = / D / . (z, 7> d=?o: o (2)y, (2) de.
Q Qe we €

This establishes the explicit expression of S;*.
(ii) Let us derive the expected approximation for v € C* (Q x Y') and k—quasi-periodic in y. Since
elY| = |we| and

v(z,y) =v(z,y) + 0w (z,y) (z —2) +0 (¢) in L*(Q) for ae. y €Y
then
1

|we|

(Sgv) (elo, +ey) = / v(z,y) + 0 (2,y) (2 — x) dz *™ + 0 (¢)

for a.e. y € Y and all w,. € C.. Remarking that z — 2z = (z — €l,,.) + (¢l,. — x) and

1
/ (z —ely,)dz = —550 (e).
So for all w, and y € Y,

' 1
€2 | (S) (el + ) = |wel v (2,y) + (=520 () + (€9))0ev (3,9) +20 (&)

Therefore,

(Si0) (@) = D0 (1% = o) X (@) €27 40 (e).

We

Using the k—quasi-periodic of v in y,

(Si0) (@) = > v (5. 2) x @) + 0 @)

We

in L?(Q), hence the formula (I8)) follows. m
In the proof, we constantly use the following consequence.

Corollary 4 Let v € C' (2 xY) and k—quasi-periodic in y, for any sequence u® bounded in L? ()
such that S{u® converges to u in L*(Q2 X Y') weakly when ¢ — 0 then

/ue-%vdx—) u-v drdy when e — 0.
Q QxY

Note that for k& = 0, this corresponds to the definition of two-scale convergence in [1] and [23].
Two-scale operators For a function v(x,y) defined in Q x R, we pose

P% = -0, (a0,v), P'v=—0, (ad,v) — 9, (ad,v) and P*v = —9, (ad,v),

6



so that )
P*Rv =Y e "RP". (19)

n=0

Bloch waves For a given k£ € Y*, we denote by ()\f” ¢]:L) the Bloch wave eigenelements indexed
by n € N* that are solution to

P(k) : P, = Xypdy, in Y with ¢, € HZ(Y) and |65 2, = 1. (20)
The corresponding weak formulation is: find ¢F € H}(Y") solution to
/ ady ¢ - 0,v — Nepgk v dy = 0 for all v € HE(Y). (21)
Y

Since the operator P?: HZ(Y) C Li(Y) — L2(Y) is self-adjoint, its spectra is real. Furthermore, for
n,m € N*, we introduce the coefficients

(k,n,m) = / adyoh, - o — 0, - ad, gl dy and b(k,n,m) = / polk, - o dy (22)
Y Yy
and observe that the following properties hold,
clk,n,m) =c(—=k,n,m), c(k,m,n) = —c(k,n,m), c(k,n,m) = —c(—k,m,n)

and
b(k,n,m) = b(k,m,n), b(k,n,m) =0b(—k,m,n), b(k,n,n) > 0.

In particular for £ = 0, if the eigenvectors are chosen as real functions thus ¢ (0,n,n) = 0. In the
special case p =1, b(k,n,m) = 1 for n = m and b(k,n, m) = 0 otherwise.

Notation 5 For k # 0, qb_fL € H?,(Y), the conjugate of ¢%, is solution of P(—k). We choose the

numbering of eigenvectors qb;zk so that ¢;’“ = qbﬁ and remark that )\;k = )\ﬁ.

Remark 6 In one dimension, for k € Y*, it is well-known that all eigenvalue )\fl are simple, except
for k =0 where they are double.

Finally, we denote

I* = {k,—k} if k € Y™\ {0} and I° = {0} otherwise.

4 Homogenization of the high-frequency eigenvalue problem

For k € Y*, we decompose

%k = b +1F with pF = [%k] and I¥ € [0,1), (23)

and assume that the sequence of the ¢ is varying in a set E;, C R™ depending on k so that
I* — 1" when ¢ — 0 and € € E}, with (¥ € [0,1). (24)

We note that for k =0, k¥ =0, [¥ =0, so I¥ =0 and E, = R**.

7



4.1 Main result

The macroscopic equation is stated for each k € Y* and each Bloch wave eigenvalue Aﬁ. For k # 0,
we assume that ¢ (o,n,n) # 0 for each o € I*, so0 it is stated as an eigenvalue problem

c(o,n,n)0uul +A'b(o,n,n)us =0 in Q (25)

for each o, with the boundary conditions

Z uy (x) @7 (0) 192 ) on 1 € O, (26)
oclk
where [* is defined in (24)). We observe that the first order operator c (k,n,n) ( %C _Oa ) of this

system is self-adjoint on the domain
D" = {(un, v,) € H' (Q)* satisfying 26) }

so Al is real.
For k = 0, assuming that A\’ is a double eigenvalue corresponding to two eigenvectors ¢ and ¢2,,
and that ¢ (0,n, m) # 0, the macroscopic system states

> c(0.p,q) 2+ A (0,p,g)u) = 0in Q for p € {n,m}, (27)

g€{n,m}

with the boundary conditions

> ud(z) ) (0) =0 on x € 00 (28)

0 0O,

Again \' € R since ¢ (0,n,m) ( 5 0

) is self-adjoint on

D% = {(up, up) € H' (Q)* satisfying @8)} .

Remark 7 (i) If ¢c(k,n,n) = 0 for k # 0 or ¢(0,p,q) = 0 for all p,q varying in {n,m}, the
macroscopic equations (Z3) or (Z7) are \' = 0 or u = (ug)pe = 0. But u = 0 is impossible since

[w®][ 2y = 1 for all eigenmodes w*. So M = 0 and this model does not provide any equation for ug.
(ii) For k # 0, if ¢& (0) = 0 then ¢ (1) = 0 and ¢*, is a periodic solution that is a solution of
k=0. So, we consider always that ¢F, (0) # 0 for k # 0.
(11i) For k = 0, in case where ¢,(0) = ¢,,(0) = 0 the boundary conditions of the macroscopic
equation vanishes.

Remark 8 This work focuses on the Bloch spectrum. To avoid eigenmodes related to the bound-
ary spectrum, according to Proposition 7.7 in [6] we shall assume that the weak limit of Sgw® in

L? (Q; HY(Y)) is not vanishing.

The main Theorem states as follows.



Theorem 9 For k € Y*, let (\°,w®) be solution of [§) then > Scw® is bounded in L* (Q; HY(Y)).
oelk

For e € Ey, as in (23, [24), assuming that the weak limit of Siw® in L* (2 HY(Y)) is non-vanishing

and the renormalized sequence e2)° satisfies the decomposition (I0), there exists n € N* such that

A = N with ¥ an eigenvalue of the Bloch wave spectrum and the limit gj, of any weakly converging

extracted subsequence of > Stw® in L? (Q; HY(Y)) can be decomposed on the Bloch modes

oelk

g () = > uf ()¢5 (y) for k#0 and go (v,y) = Y u)(x) ¢y (y) otherwise (29

oelk q€{n,m}

Moreover, u?, € H'(Q) and (uZ))

k
m

are solutions of the macroscopic equations (23, [28) and (27, [28).

m,o

Finally, uk and u_ ¥ are conjugate.

Thus, it follows from (29) that the physical solution w* is approximated by two-scale modes

w® (x) ~ Z uy (x) 7 (g) for k # 0 and w® (z) =~ Z ug () qbg <§) otherwise. (30)

oelk q€{n,m}

The boundary conditions (26) and (28]) can be directly derived by replacing w® in the physical
boundary condition by its approximations,

Z u) (x) ¢ <§> =0 for k # 0 and Z ug () ¢y <§) = 0 otherwise at z € Q2.  (31)
oelk qe{n,m}

For k # 0, they result from

2ito L

o <E) =¢7(0)e = ¢?(0)e

£

k. k
i e tle
«@

= ¢7 (0) e IL for & € 90

and the assumption I* — [¥. For k = 0, the conditions follow from the periodicity of ¢°. Furthermore,
we observe that gy (z,0) and gy (z, 1) are generally not vanishing except for k = 0.

Proposition 10 For k € Y*, n € N*, if the macroscopic solution uf is a non-vanishing constant,

then any two-scale mode (30) is a physical eigenmode i.e. a solution to (8).

k

Proof. For k € Y*, n € N*, if the macroscopic solution u; is constant then A= 0 and (ugl)mﬂ

are constant for all ¢ € I* and m € N* such that X7, = \7. Now, we consider p = 1 and the proof
is similar for p # 1. Based on Remark [ about the macroscopic solutions in Section B4, A\' = 01is
equivalent to ¢ = %TO‘ From the o—quasi-periodicity of ¢,

05 () = 0. (0) eom@2mE — g (0) e @im — 7 (0)

€
then ¢7 is a—periodic or a—anti-periodic for o € I*. Hence ¢ (%) is a solution of the equation

o (o (2)r0n (£)) = ~Zon (2) mo )

and ¢; <—) is a — periodic or a — anti-periodic,
€



and u? ¢ (f) is also a solution of ([32). Denote by w® := Y > uZ ¢% (f) and observe that w*® is a

celk m "
solution of the equation
0y (a°0,w") = = A*w® in Q

with the boundary conditions

w (0) =33 uggg, (0) = 0 and wf (a) = 3 3 ul,ég, (f) = +wf (0) = 0.

o€l m o€l m

Finally, Proposition [0 is concluded. =

Remark 11 The converse is probably true, and is numerically studied in Section[6.2, i.e. for any
(A, w®) solution to (8), there exist k € Y*, n € N* and two complex numbers &, and &, such that
2=\ /e? and

wh () = &105 (2) +&07" () ik £ 0 and wf (@) = €405 (2) +&0%, () otheruise  (33)
for &,,&, two numbers such that the boundary conditions (28), respectively (28), are satisfied for
k = 0, respectively for k # 0. In the later case £, and &, are conjugate.

Remark 12 (i) The case of non-constant coefficients uk is used for approzimations of the solution
to the homogenized wave equation that may be derived from [§]. In such case k belongs to a finite
subset L. of Y* made with values distant from 1/K and including 0. We cannot expect that there
always exists a pair (k,n) such that u* is a constant.

(ii) The case of non-constant coefficients u® is also seen as a preparation to derive homogenized
spectral problems in higher dimension where the boundary conditions constitute a more difficult prob-
lem and may require a more general solution than constant uk.

Proof of Theorem

Proof. The proof is based on Lemma [13]in Section and on the macroscopic model derivation
in Section 3l For a given k € Y*, let w® be solution of (B) which is bounded in L*(Q2), the
property (IH) yields the uniform boundness of ||S5w®|| 2y for any o € I*. So there exist w? €

L*(2 x Y') such that up the extraction of a subsequence SSw® — w? in L? (2 X Y') weakly. Since

155 (05w || 120y = 110y S5w%| L2y 18 uniformly bounded as [0, w? | 2. Hence
lim Oy S,w® - vdxdy = lim =S w* - Oyvdrdy = — / w’ - Oyvdxdy
=0 Jaoxy =0 Jaxy Qxy

for all v € L*(Q; H3(Y)), and w° € L*(Q; H'(Y)) then
lim Oy S,w® - vdxdy = Oyw? - vdzdy.
=20 Jaoxy Qxy

Therefore SSw® tends weakly to w? also in L?(Q; H' (Y)). Hence, > SZw® converges to

oIk

gk (x,y) = Z w’ (z,y) .

oelk

10



Using the decomposition (34]) of w? in Lemma [I3] for (gb;)o ) the Bloch wave eigenmodes correspond-

ing to \°,
gk (,y) = 2 up (@) oy (y) for k0,
oel”
g (z,y)= > ud(x)d)(y) for k=0.
pe{n,m}

Finally, (u;)op is solution of the macroscopic problem as proved in Section 4.3 m

4.2 Modal decomposition on the Bloch modes

Lemma 13 For (A\°,w®) solution of (8) and satisfying (10), for a fired k € Y* there exists at least
a subsequence of Siw® converging weakly towards non-vanishing function w® in L? (2 X Y) when ¢
tends to zero. If w* € L*(Q; H*(Y)) then (X°,w*) is solution of the Bloch wave equation (20) and
w® admits the modal decomposition,

wh (z,y) =D ub, () ¢l (y) for ul, € L*(Q) (34)
where the sum is over all Bloch modes gbﬁl associated to \°. Moreover for k # 0 the two factors uF,
and u ¥ are conjugate.

Proof. The test functions of the weak formulation (III) are chosen as
v® = Rv € Hy(Q) N H*(Q), (35)

with
v e HY(Q: LA(Y)) N LA(Q: HA(Y)) 1 H? (0 12 (V). (36)

Applying two integrations by parts and the boundary conditions satisfied by w® and by fRv, it remains
/ w® - (P*— A p°)v° do = 0. (37)
)
From (I9) multiplied by £? and (I0),

/QwE “R((P% = Xp)w) dz = O(e).

Since (P? — A\%p)v is k—quasi-periodic and S{w® — w* in L*(Q x Y') weakly, Corollary @ allows to
pass to the limit

/ w” - (P? — \p)v drdy = 0,
QxY

or equivalently
/ w* - 9, (ad,v) +w* - \°pv dady = 0. (38)
Qxy

Using the assumption w* € L2(Q; H?(Y)) and applying integrations by parts,

/ Oy (aﬁywk) v+ wh - Apu dady + / aw® - Oyv — aﬁywk -vdxdy = 0.
QxY Qx9Y

11



Then, choosing test functions v € L*(Q; HZ(Y)) comes the strong form
— 9y (adyw*) = Apw* in Q x Y. (39)

So, it remains

/ [awk - Oyv — aaywk . v}(l] dr =0
Q

for general test functions (B6]), which implies that w* and 9,w* are k—quasi-periodic in the variable
Y.

As we know that \° is an eigenvalue )\ﬁ of the Bloch wave spectrum, then w* is a Bloch eigenvector
and is decomposed as

Z uf () ¢F (y) with uf € L* (Q)
the sum being over all Bloch modes qb associated to A\” where u” fY (y) dy. For
k#0, ¢F =¢ % and from Definition [ of modulated two-scale transform Sfws = Sikw6 thus v and

—k

u,” are conjugate i.e. uk

ukl

4.3 Derivation of the macroscopic equation

In the macroscopic model derivation, we distinguish between the two cases k # 0 and k£ = 0.

4.3.1 Case k #0

We consider A\’ = A\* and the two conjugate eigenvectors ¢* and ¢, * discussed in Notation B We
restart from the very weak formulation ([B7) with the test function

v(z) = R* + v F) € HE(Q) N H2(Q). (40)

Furthermore, we pose v7(z,y) = 7 (x)¢%(y) with 7 € H?(Q) for ¢ € I* and use the o—quasi-
periodicity of ¢7, i.e. ¢ (%) = ¢7 (0) 62”’“6 at any = € 0. So the boundary condition in (40) is
equivalent to

VP () @5 (0)e¥ ™5 4 p7F (1) ¢, %(0)e 2% = 0 at any = € 0.

n n

Applying the relation (23)),

PRk o) <

. k k . . pk
Since 2= = 0 at z = 0and 2% = Bf at © = o with h¥ € Z then 2™ = 1. From (24,
. l’;z
6:|:2Z7TT S e

are

+aim e * when ¢ — 0. Passing to the limit, the boundary conditions of the test function

. lk:c . lkz
P (x)ph (0)e* ™" + 9~ ()¢, (0)e™* ™" = 0 on O, (41)
From (I9) multiplied by ¢, (I0) and P?*v7 — \°pv” = 0,

Z/w SR(=PY? 4+ M p?) dz = O(e). (42)

oIk
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Extracting a subsequence of w® so that S{w® and S¢, w® are converging to w* and w=* in L2(Q2 x V)
weak, since —P'v7 + A pv? is o—quasi-periodic then Corollary @ infers that

Z / w” - (=P + XN'pv?) dxdy = 0,
oelk Qxy
l.e.

/ w - (8, (a0yv7) + 0, (ad,v”) + A pv” ) dady = 0.
QxY

oelk

This is the very weak form of the macroscopic equation for all test functions v € H' (Q; H. (Y)),
reached by density, satisfying (4I]). Now, we derive the strong formulation. We assume that w? €
HY(Q; LA(Y)), since w’ € L*(2; H'(Y)) after two integrations by parts,

Z [ 9y (a0, w%) - v7 + 0y (adyw?) - v7 + AN pw” - v7 dady
Qxy

oclk

+ / w’ - a0y’ — adyw’ - v dxdy
oONxY
+ / w? - ad, v’ — ad,w’ - v’ d:l:dy] =0.
Qx9Y

From Lemma [I3] w? is solution to the Bloch mode equation and is decomposed as

w?(z,y) = u’ ()97 (y). (43)

After replacement,

Z {/Y Oy(agy) - ¢y + adyd;, - &) dy /Q Oy’ - 7 dx + N /Y poo - 7 dy /Q u’ - Ydx (44)

+/¢g-a6y¢g—aay¢;{-¢g dy/ u’ -7 dx
Y

o0

+ oy - ad) dy/ u’ - 07 — Oyu’ - 7 dx} =0.
oy Q

Let us recall that b(.,.,.) and ¢(.,.,.) have been defined in (22)). For the sake of simplicity, we use
c(o,n) :=c(o,n,n) and b(o,n) := b(c,n,n) and observe that

/Y 0,(ad?) - 67 + ady 8 - & dy = c(o ),

which results from integrations by parts and from the o—quasi-periodicity of ¢7. So, using the
o-quasi-periodicity of ¢7, (44]) can be rewritten as

Z {/Q(C(Uan)&puo + Mo (o,n)u’) -¢7 dox — c(o, n)/

u? - ? dx} = 0.
o0

[

Choosing the test function ) = 0 on 0f2, the boundary condition (4I]) is satisfied and by density of
H} () in L? (), the internal equation satisfied by u? follows,

c(o,n)0,u’ + N'b(o,n)u’ =0 in Q for each o. (45)

13



Choosing general ¢ € H' (Q) satisfying (1)) yields the boundary conditions

Z c(o,n)u’y” =0 on 9. (46)
We introduce the matrices Cy = kdz'ag((c(a, n)),), Co = diag((b(o,n)),) and the vectors u = (u?),,
V=), p= (gbg (0) 65"9"(")2"“[71> with o € I*, so that (@], E5] H6) can be written on the matrix

form

C10u+ N'Chu=0in Q ,

and Cyu(x).y)(x) = 0 on 0N for all ¢ such that B(z,0).¢)(x) = 0 on .

The boundary condition is equivalent to Cyu(z) is collinear with @(x,0) i.e. det(Ciu(x),®(z,0)) = 0.
Equivalently

c(k,n)ut (0) ¢~ (0) —e(=km)u™(0)¢* (0) =0,
ol m)u* (@) 67 (0) 27 — o —k, mu~* (a) & (0) 27 — 0,

Finally, since ¢(k,n) = —c(—k,n) and c(k,n) is assumed to do not vanish, the boundary conditions
of macroscopic equation (45]) are

L

ub () ¢F (0) ™ 4 u" () 97 (0) 6_2”1% =0 at x € 09.

n

4.3.2 Case k=0

In case k = 0, to avoid any confusion with \°, the upper indices k& = 0 are removed. We denote by
b,,, b, the eigenvectors associated to A’ = A, = \,,, solutions to P(0) in (20), and by > pr 2, the
sums over p or ¢ varying in {n,m}. We restart with a test function

v(z) =R _v,) € Hy () NH*(Q) (47)

for the very weak formulation ([@2). We pose v,(x,y) = ¥,(x)¢,(y) with ¢ () € H' (Q) for p €
{n,m} . Since ¢, is periodic thus ¢,(£) = ¢,(0) at z € 9 and the boundary condition in (&7) is
equivalent to

> 1, (2)6,(0) =0 at = € 00

By setting ¢(p, q) := ¢(0,p, q) for p,q € {n,m}, using the expression in Lemma [I3] of the weak limit
w? of S5w*,

w’ (z,y) =D up (z) ¢,(y), (48)

using the periodicity of (gbp)p and conducting the same calculations as for k£ # 0, we obtain

> ng(c(p’ Q) 0atiq + X'b(p, q)uy) - b, dx — / c(p, q)uq - ¥, dx| = 0.

p.q 0%

With u = (up)p, ¥ = (¥,)p, ¢ = (gbp)p and C7 = (¢(p,q))pg, Co = (b(p,q))p.q, the macroscopic
problem turns to be

C10u + N'Cyu = 0 in ©, (49)
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with the boundary conditions
Cru(z).4p(x) = 0 on OS2 for all ¢ such that ¢(x).¢(0) = 0 on 0.
Equivalently, Cyu(z) is collinear to ¢(0) on 02 or
det (Cyu(x), ¢(0)) = 0 on 0. (50)

But ¢(p,p) = 0, so (BQ) simplifies to
0) ¢, (0) = c(m,n) u, (0) ¢, (0) =0,

{ c(n,m) up, 0
c(n,m) upy, (@) ¢, (0) — c(m,n) u, (a) ¢, (0) = 0.

(
) tm (
Finally, since ¢ (n,m) = —c(m,n) and ¢ (n,m) # 0, the boundary conditions are
(

un () ¢, (0) + wp, () ¢,,, (0) = 0 on ON.

4.4 Analytic solutions

For k € Y* and p = 1, we solve the macroscopic equations In Section .41l These solutions are
used to validate the numerical results in the final Section. Moreover, in Section [1.4.2] the exact
formulations of the two-scale eigenmodes are found for p =1 and a = 1.

4.4.1 The case p=1

For k # 0 and b (n,n) = 1, the exact solutions of the macroscopic equation (25]) are

ug () = de™'eem e o1 each o € I*

where d” is any complex number. Applying the boundary condition (28] and assuming that ¢ (0) # 0,
the eigenvalue is
c(k,n)

o

A= (2i7rlk —ilm) for { € Z. (51)
Furthermore, u* = u-* and ¢* (0) = ¢—(0) then Re (d*¢F (0)) = 0, or d*¢; (0) = id for any & € R.
Thus,

d* = 0 and d* 0 for any ¢ € R.

ol (0) 6" (0)
For k = 0, using the equalities ¢ (n,n) = ¢(m,m) = 0, b(n,m) = b(m,n) = 0 and b(n,n) =
b(m,m) = 1, the macroscopic equation (21) is rewritten

0 Lo _ :
{c(n,m)&vumjL)\ u, =0 in £, (52)

¢(myn) ,ul + X', =0 in Q.

If \' =0, 0,u® =0 and 9,u’ = 0 in ©Q, then u® and u® are independent on , equivalently, 1’
and u? are complex numbers.

If \' # 0, the first equation gives u’ = % in  and since ¢(n,m) = —c¢(m,n) then
ALY
Dppttl, = — <7) ul, (53)
¢(n,m)

15



and

) oo () ()

for two constants for di,d, € C and u? follows by its above expression. Applying the boundary

condition (28, if ¢° (0) # 0,

0
bre(m) ¢ ez and dy = — dy ¢0 ©)
o Gm (0)

for any ¢ € Z and dy € C. If ¢° (0) = 0 then ¢° (0) = 0 or ©? () = 0 on 9. In the case ¢° (0) = 0,

the macroscopic equation is lacking of boundary conditions and their solutions are not unique, they

depend on arbitrary coefficients d;,d, and A'. When u? (z) = 0 at 9, there is an alternative, or u®

is the trivial solution or
0 1
det < — sin (ﬁa) Ccos (C(;\;n)a) ) =0

and then dy = 0, \' = Z”C("m for any ¢ € Z and d; € C.

Al =

(54)

Remark 14 According to (137]) and (5), \' =0 iff £ = 20 for k # 0 and iff { = 0 otherwise. So, in
any case small values of \V* correspond to indices € in a vicinity of 21¥ or to 2’” when € > 0.

4.4.2 Thecasea=p=1

We consider the spectral problem
—02,¢" = N¢"inY
with the k—quasi-periodicity conditions.

For k # 0, for a mapping m + n(m) from Z to N* not detailed here, A% . = 472(m + k)? and
there are exactly two conjugated solutions gbn(m (y) = es9n(@)2m(m+k)y for any m € Z and o € I*. It
follows that c(o,n(m)) = sign (o) 4ir(m+k), b(c,n(m)) =1 and \' = —%(2[‘C —0)(m+ k) for any
€7, so

n(m)

. ( )_dU szgn(o')”r(2lk Z)

Upy(m) (T

and the resulting two-scale eigenmode is

szgn(o’)wr k
w ( ) d%e (21 —=0)x szgn(a)2z7r(n+k)

For k = 0, for each >\n(m (27m)? there are two eigenvectors @,,(,,) (y) = cos(2mmy) and @, (41 (y) =

s1n(27rmy)80
) 0 1 1(10 Onm(0) ) _ (1
Cl—2m7r<_1 O),Cz—§<o 1)’ (cbn(n(z)il(O))_(O)

It implies that \' = 4"”“ for any ¢ € Z and

Un(m) (x) = dosin <£7rE

T
a) and up(m)41(z) = do cos(ﬁﬂa),

then the two-scale eigenmode is

w(z,y) = dplsin (67?2) cos(2mmy) + cos(ﬁﬂg) sin(2mmy)| for £, m € Z.
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4.5 Neumann boundary conditions

We consider the spectral problem with Neumann boundary conditions
Pow® = Xp*w® in Q and O,w®=0 on 0.

The process of homogenization and the results are similar to the case of Dirichlet boundary conditions.
The microscopic problem and the internal macroscopic equation are unchanged while the boundary
conditions of the latter are

S5 ug, (@) 9,65, (0) 9O = 0 on 90
ocelk m

where the cases k # 0 and k = 0 are not separated so a general notation is adopted for the sum
over m and o. Their derivation follows the same steps, so we only mention the boundary condition
satisfied by the test functions. They are chosen to satisfy 0,v° (z) = 0 on 92 or equivalently,

S S0 @ e (2) + v a6 (1) =0 on o0,

oelk m

S50 (2) 0,65, (g) +0(2) = 0 on 99, (55)

oelk m

Multiplying by e,

then using the o—quasi-periodicity of ¢; and passing to the limit

S S v (@) 8,68, (0) e OHTE 0 on 90,

oelk m

5 Homogenization based on a first order formulation

In this section, the homogenized model is derived based on a first order formulation. The calculations
are less detailed than in Section (], only the main results and the proof principles are given.

5.1 Reformulation of the spectral problem and the main result

We start by setting

(BB ).

0 JaFo, (L) 1 ( 0 an )
A = ) ) e = Q
( =0, (Va©.) 0 ) " pF\ Varng 0

with the domain of the operator A®,

D (A7) = {(p,0) € L2 (Q) x L* (@) |Vaty € H' (), 6 € H} () } € L2()?

so that 7A4° is self-adjoint on L?(Q2)? as proved in [§]. The spectral equation (8) can be recasted as a

first-order system
A*U® = ipfU° in Q and US = 0 on 012, (56)
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where U3 is the second component of U?. We observe that [|v/p*w|| 2q) < [|V/P"[| (g and that

vV ag 0, we
iV

bounded,

L) < My can be deduced from the weak formulation (III), therefore U¢ is uniformly

U720y < M. (57)

We start our analysis from the system expressed in a distributional sense,
/ U® - (ip" — A%) U dz =0, (58)
Q

for all admissible test functions U = (p,¢) € H* (Q) x HE (). We choose 1y = VA? and p, = %,

so pu° can be decomposed as

W= 406 (59)

The asymptotic spectral problem (20)) is also restated as a first order system by setting

o 0 \/Eéy Lp. _i 0 \/any
Ak‘_<#ay(\/5.) 0<f>>andn,4k—\/ﬁ<\/any 0 ),

and

i Vad, ¢kn
< VA ) v ( | ‘) ) and ,ufl = s, )\‘kn‘ for all n € Z*, (60)
VPO

s, denoting the sign of n. As proved in [§], Ay is self-adjoint on the domain

9
NG
The Bloch wave spectral problem P(k) is equivalent to finding pairs (uﬁ, n) indexed byn € Z*
solution to

E\H

{ o) € L2 (Y)* |Vap € HE (Y), eH;(Y)}cL%Y)z.

Q(k) : Aper =ipFef in Y with ef € H} (V)2 (61)

The corresponding weak formulation is
/ er - (Ap —ipy) Udy =0 for all U € D (Ay). (62)
Y

The relation between the operator A° and the scaled operator Ay is obtained by considering any
regular vector ¥ = 1 (z,y) depending on both space scales,

(D) - ((ar8)) (=) e

where the operator B is defined as the result of the formal substitution of z—derivatives by y—derivatives

in Ay, i.e.
B = ( 0 Vad; (#) ) )
70 (Va.) 0

For any n € Z* and k € Y*, MF := {z €L | uf= ,u’fL} is the set of indices of eigenvectors related to
the same eigenvalue pf. For all k € Y™\ {0}, since u* = p* then M* = M *.
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Remark 15 From now on, we shall assume that the weak limit of S;U® in L? (2 X Y') is not vanishing
to avoid eigenmodes related to the boundary spectrum (see Proposition 7.7 in [6]).

Theorem 16 Fork € Y™, let (u°, U®) be solution of [20) then " S2U® is bounded in L* (A X V).
For e € E),, assuming that the renormalized sequence eu® satisfies the decomposition (59) with pg = pk
an eigenvalue of the Bloch wave spectrum, any weak limit Gy of Y . S5U* in L?(Q xY) has the

form
Gi(w,y) =Y > ug(z)e, (), (64)

oelk meMg

where (u;,),, , are the solutions of the macroscopic equations (23, or (27, 128).

Therefore, the physical solution U¢ can be approximated by

U? (z) = Z Z ul (x) el <§> (65)

ocelk meMg

Proof. For a given k € Y*, let U? be solution of (56) which is bounded in L?(€2), the property
(I3 yields the boundness of [|S;U®|12qxyy- So there exist U7 € L*(Q x Y)? such that, up the

extraction of a subsequence, S2U¢ tends weakly to U° in L?(Q x Y)? and hence, Y SSU® converges
oelk

to Gy (z,y) = > U? (z,y). Using the decomposition (66]) of U? in the forthcoming Lemma [I7]

oelk

Gr(r,y) =) > uj(z)en(y)

oelk meMg

The macroscopic problem solved by the coefficients (u%)mm is derived in Section [5.2.2l m

5.2 Model derivation
5.2.1 Modal decomposition on the Bloch modes

Lemma 17 Let a sequence (u,U®) be solution of (58) and satisfies (59) with u, = p* for given
n € Z* and k € Y™, we extract a subsequence of ¢, still denoted by e, such that S;U® converges weakly
to U* in L2 (Q x Y)2. If U* € D (Ag) then (1k,U*) is solution of the Bloch wave equation ([61) and
U* admits the modal decomposition

Ub (z,y) = > ub (z) ek, (y) with uf, € L*(9). (66)

meMk

Proof. For each k € Y*, taking W (z,y) = 0(z)p(y) with 6(z) € C=°(Q) and ¢(y) € C®(Y)*
k—quasi-periodic in y, considering RV as a test functions in (58)), and using (6359,

/U€-§R<z"u0+iu1—%—B)\Ifd:):+O(5):O.
Q

€
Multiplying by e
/Uﬂm@%—Aww¢pux@=a
Q
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and passing to the limit thanks to Corollary @]
1

|Y| QxY

which is the weak formulation of the Bloch wave equations. If in addition U* € D (A), integrating
by parts yields

U (ipg — Ap) U dedy =0

1 , 1
v, (A —ipo) U* - U dady — g Uk - na W dody = 0 (67)
XY xaY

providing in turn the strong formulation,
AU =ip U in Qx Y. (68)

Since the product of a periodic function by a k—quasi-periodic function is k—quasi-periodic then n 4, ¥
is k—quasi-periodic in y. Therefore, U* is k—quasi-periodic in y and finally is a Bloch eigenvector
in y. By projection, it can be decomposed as

1
U (z,y) = uy, () ey, (y) with u}, = ———
m%\:/[k b(k,m,m)

/Uk~ekmdyeL2(Q).
Y
|

5.2.2 Derivation of the macroscopic equation

The macroscopic equation is stated for each k € Y* and each eigenvalue p* of the Bloch wave spectral
problem Q(k). We pose

—ic(k,n,m)
2419
where ¢ (k,n,m) is defined in (22]) and notice that

k(k,n,m)= for m € M~ (69)

k(k,n,m)=—k(=k,m,n), k(k,n,m)=—x(—k,n,m),
k(k,n,m) = —k(k,m,n), and k (0,n,n) = 0.

For the sake of simplicity, we do the proof for n € Z** only and denote by x (k,n) = x (k,n,n) and
% (n,m) = £ (0,n,m). For general n, the proof is the same but ¢ is replaced by qbffn‘.

Case k # 0 The pairs (,u’,i, e’fL) and (,u;k, e;k) are the eigenmodes of the spectral equations Q(+k) in
(GT) corresponding to the eigenvalue iy = ¥ = p*. We pose ¥ = R (UF + U*) € H'(Q) x Hj(Q)
as a test function in the weak formulation (B8], with each W9 (z,y) = ¥ (z) €%(y) where ¢ € H'(Q)
and satisfies the boundary conditions,

T

Zw” (x) oo (—) =0 on OS2

€

Notice that this condition is related to the second component of W only. Proceeding as in Section
43T yields (4I]). Since (ipy — Ay) W= = 0 for all o, applying (59 [63)), then Equation (58] yields

Z/ U - R (i, — B) U7 dz+0 () = 0. (70)
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But (ip; — B) V7 is o —quasi-periodic so passing to the limit thanks to Corollary @l

1

4 Z/Q y U? - (ipy — B) ¥2dxdy = 0. (71)

From Lemma [I7 U’ is decomposed as

After replacement,

S [ Cimblovn) g 6oy us - 0,0°) dn =0
o Q

for all 7 € H' (Q) fulfilling (&I)). Moreover, if u? € H* () it satisfies the strong form of the internal
equations
K (0,n) Opul — ipyb (0,n)u’ =0 in Q for all o € I*, (72)

and the boundary conditions
Z K (o,n)us-y? =0 on 0.

Following the same calculations as in Section 3.1l with the matrices C) = diag (k (o,n)), Cy =
. ok
diag (b(o,n)) and the vectors v = (u?),_,v = (V7),,¢ = <¢” (0) eszg”(")m”%) , ([2) is written on

n
the matrix form
C10,u =iy, Cyu in

with boundary condition

Ciu () 4 (x) =0 on 09 for all ¥ such that 3 (z,0) .4 (x) =0 on Q.

Equivalently, Cu (x) is collinear with @ (z,0) yielding the boundary conditions

() @ (0) ™S 4w () 6 (0) e 2T = 0 on OO (73)

n n n n

after remarking that  (o,n) # 0. Finally, with (3) and \' = 2u,p, the macroscopic problem (23]
20)) is recovered.

Case £k =0 We adopt the same simplifications of notations that in Section Let e, and
em be the Bloch eigenmodes of Q(0) in (6I]) regarding the double eigenvalue p, = u,, = p,,. In
this case M. = {n,m}. Taking V¢ = > R(¥,) € H'(Q) x Hy(Q) as a test function with

peEM
U, (z,y) = v, () e,(y) and 1, € H'(Q). Due to the periodicity of ¢,, the second component of ¥*
satisfies the boundary conditions

> 4, (x) ¢, (0) =0 on OQ. (74)

peMS

Following similar calculations as for the case k # 0, the weak limit U° of S5U¢ in L?(2 x Y)? is

U (z,y) = Yy (@) ey ()

peMS
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and u,, is solution to the weak formulation

Z /—iulb(p,q)uq~¢p+ K (D, q) ug - 0u), dx =0
Q

qeMY

for all ¢, € H' () with p € M,). If u, € H' (Q) it is a solution to the internal equations

Z K (p, q) Opig — ipty b(p,q)u, =0 in Q for p € M, (75)

qeMy

and to the boundary conditions

/aQ Z /i(p,q)qup dr = 0.

P.a€M})
Hereu with Cl = ( K (p7 q))p,qv 02 = ( b(p7 Q))nq; u = (U‘p)p7 w = (wp) ) ¢ = (¢p)p7
C10,u = ipuCyu in ),

and Cu (x) .4 (x) = 0 on 99 for all ¢ such that ¢ (0) .7 (z) = 0 on IN.

But « (p,p)= 0, therefore
Up, () ¢, (0) + Uy, (z) ¢, (0) = 0 on 0. (76)

As for k # 0, these macroscopic equations are equivalent to (27 28]).

6 Numerical simulations

We report simulations regarding comparisons of physical eigenmodes and their approximation by
two-scale modes for p = 1. In Subsection [6.2] for each given high frequency physical eigenelement
a two-scale eigenelement realizing a good approximation is identified. This shows that the two-scale
model can actually be used as an approximation of the complete high-frequency spectra. Conversely,
Subsection addresses the modeling problem i.e. it introduces a way to generate approximations of
high-frequency spectra from the two-scale model only. Finally, in the order of convergence with
respect to € is analyzed. The next section describes the main simulation parameters.

6.1 Simulation methods and conditions

Both, the physical spectral problem and the Bloch wave spectral problem are discretized by a
quadratic finite element method. The number of elements are respectively denoted Nppys and Niyjoen-
The implementation of the k—quasi-periodic boundary condition is achieved by elimination of the
last degree of freedom. More precisely, for n € {1,...,2Nyoen + 1} the node indices, ¢, a degree of
freedom of ¢ a Bloch eigenmode and ¢,, the corresponding quadratic Lagrange interpolation function,

2Npioch
¢ (y) = Z ¢n£p’n + ¢1£p1 + ¢2Nbloch+1(p2Nbloch+1'

n=2
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Using the relation ¢ (1) = 2™ ¢ (0) and taking ¢, + e*™ g,y . as the first base function allows
to eliminate ¢yy, 4,

2Nbpioch

¢ (y) = Z ¢n90n + ¢1 (901 + 62mk902Nbloch+1) .
n=2

The sets of indices considered in the simulations of high frequency physical modes and Bloch modes
are denoted by J¢ and J*, the former being generally included in (a/2e, Nppys/2). The Bloch modes
are calculated for £ > 0 only, and the other cases can be deduced by conjugation. For each Bloch
eigenmode ()\k qbk) the macroscopic solutions ()\M, Uy, Z) are given in Section L4 with § = 1

and dy = gb (0) for any m such that )\k = )\k and £ € Z. In fact according to Remark [14] the index
¢ should vary in J¥ = [%ﬂ + {-r, ...,r}, for a small integer r, so that only the first macroscopic
eigenmodes be taken into account. In the next discussions, we use the following notations for the

two-scale approximations of the eigenvalues and eigenmodes exhibiting clearly their parameters ¢, k, n
and /,

Yol = e+ e and O3 () = D Y up, () <§> for £ € Jy, € J". (77)

oelk m

In the simulations reported in Sections [6.2] and [6.3] only one physical problem is used, namely 2 =
(0,1), a® (z) = sin (27Tx/5) + 2, 50 cells (i.e. € =1/50), and Nppys = 2,000. Other number of cells
are used in Section [6.4] for the convergence analysis. Consequently, the coefﬁ(nent of the Bloch wave
spectral problem is a (y) = sin (27y) + 2. The set Y* of positive wave numbers in Y* is discretized by
L5 ={0,...,62/125} with step Ay, = 1/125 and Ny,er, = 50. The subset of macroscopic eigenvalues
is restricted by r = 15.

The first ten graphs (k — A¥),_; 1o of Bloch eigenvalues are described in Figure Il The graphs
are symmetric about the axis £ = 0 which confirms that M = A~% as remarked in Notation [
Moreover, all eigenvalues )\Z are simple for k # 0 and double for k € {O, i—%}

1400 Double eigenvalue

k
n

8001
6001

Bloch eigenvalue A
N
o
o
T

N

o

o
T

oF

200 i i i i i i i i i i
-05 -04 -03 -02 -01 O 01 02 03 04 05
k

Figure 1: First ten eigenvalues of the Bloch wave spectral problem.

6.2 Approximation of physical modes by two-scale modes

We discuss the approximation of a given solution ()\;,w;) of Equation (&) for a given value of €.
From Remark [I1] we expect to show numerically that there exists a suitable pair (k,n) such that

the equality (A5, wg) = (7 g,zbn ") is exact with (7" Uy ) defined in (77) and A\"* = 0. Moreover,
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in the perspective of Remark [[2, k varies in Lj3; only and approximations with A £ 0 are ex-
pected. Whatever if \* vanishes or not, we expect to search approximations for both eigenvalues
and eigenvectors which turns to be an multi-objective optimization problem that might be solved by
a dedicated method. However, to reduce the computational cost, we propose an alternate approach
consisting in minimizing the error on eigenvalues in the approximation (I0),

2y¢€ gk
€ )\p ~ Yt

e )= Ry | e | (7%)
) n p

for each k € Lj3, and then in finding which one minimizes

15 E,kt
pr - ¢nk75k

L2(2)

ETvector (k) - -
HwPHLOO(Q)

the error on eigenvectors in the approximation (B0) where ¢;, ny are the optimal arguments in ([78]).
The optimal error on eigenvectors is then

ETvector = NI ETyector (k> . (79>
keL}ss
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Figure 2: (a) Errors for p = 85 and k € Lj5;. (b) Errors for a selection of k s.t. eryecor (k) < 0.2.

Figure 2] (a) shows the distributions of errors er .. (k) and eryeqor (k) in logarithmic scale for the
index p = 85 of physical eigenmode with respect to k varying in Lj5-. The minimal error is reached
for Kk = 0.16, n = 2, { = 17, )\fl = 51.1 and A" = 58.9 yielding the errors eryqu. = 107% and
eTvector = 4.1073. Figure @ (b) focuses on values of k such that eryeqor(k) < 0.2. In Figure 3 (a) the
real (dashed line) and the imaginary (solid line) parts of the Bloch wave ¢* are shown when Figure
(b) presents the real (solid line) and the imaginary (dashed-dotted line) parts of u} , and also the
real (dotted line) and the imaginary (dashed line) parts of u;]z. In addition, the physical eigenmode

w; and the relative error vector between wy and wilz are plotted in Figure [ (a) and (b).

After presenting a detailed study of the approximation of a given physical mode, i.e. for a single
physical mode index p, we report approximation results for the list J§ = {40,...,150} \ {50} of
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Figure 4: (a) Physical eigenmode wy. (b) Relative error between between wy and 1.

consecutive physical mode indices. The list starts at p = 40 corresponding to an intermediary mode
between the low frequency modes approximated by the classical homogenized method and the high
frequency modes considered in this paper. The index p = 50 is excluded from the list since the
corresponding eigenvector is evanescent, and as such corresponds to an element of the boundary
spectrum. The previous optimization has been applied to each p yielding errors plotted in logarithm
scale in Figure [ (a). The error bounds are eryuue < 6.1072 and eryeeor < 8.1072.

Globally, the errors start by growing before to decrease except around p = 100 where they exhibit
a peak that we do not explain. Figure [l (b) reports the corresponding macroscopic eigenvalues ABE
Some of them are close to pairs (k,n) such that ALY vanishes as discussed in Remark [T} their relative
errors on eigenvalues are in the order of 107°. A way to answer the question in Remark [l is to
decrease the step Ay and see if all error decrease. A detailed presentation is made in the table
below for two indices, namely p = 66 related to an eigenvalue in the beginning of the high frequency
spectrum and p = 102 corresponding to one of the large errors. In both cases, the error diminishes
as the step Ay is reduced from 8e-3 to 3e-3.
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Figure 5: (a) Errors for p varying in J§. (b) Macroscopic eigenvalues.

)\17é €Tvalue | €Tvector
-92 | 1.2e-3 | 1.9e-2
21.7 | 9.0e-5 | 5.3e-3
8.0e-3 | 102 | 4.0e-2 -147 | 4.0e-4 | 5.8e-3
3.0e-3 | 102 | 1.5e-2 35.9 | 3.0e-5 | 1.4e-3
Table 1: Errors for A, = 8.e — 3 and 3e — 3.

Ak P k
8.0e-3 | 66 | 2.16e-1
3.0e-3 | 66 | 3.4e-1

wl|w| ool 3

Figure[d] (a) is a global view of the errors in logarithm scale when A;, = 8.e — 3 for 90 < p < 110. It
shows that for this k-step a large part of the errors on eigenvalues is in the range of 1.0e-5 i.e. almost
the roundoff error. A measure of the error reduction is provided in Figure [f] (b) where the two ratios

erAk:?).e—?) e,rAk:?).e—?)
_ value _ value
Evalue - AL=8.e—3 and Evector — AL=8.e—3
€T value €T vector

of error reduction are represented in logarithmic scale.
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Figure 6: (a) Error of approximation for Ay = 3.0e — 3. (b) Ratios Eyuue and Eyeeor of error
reduction.
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6.3 The modeling problem

The modeling problem is reciprocal to the previous one. It consists in fixing a period ¢ as well as the
parameters (k,n) of a Bloch mode and to search if there exists ¢ € J* such that (fy;’fz, ;]z) is close
from a physical mode or in other words if it is almost a solution to the physical spectral problem i.e.

if
SP = 0 i 0

n,l

Posing for ¢ € J*,
2 pe. 1.,k ek ek
HE P wn,@ - fyn,éqbn,é

the modeling problem relies to the minimization problem F=*({y) = min F£*(¢). If the minimum is
tegk

L2(Q)

FH(0) = (81)

ek ek
fyn,f nt

L2(Q)

small enough, (7‘;’120, wi’lzo) is close from a physical eigenelement and it is a solution to the modeling

problem. A subsequent problem is to identify the corresponding physical eigenelement. This is done
be minimizing the errors er,gue and erye.o introduced in the previous section but considered as
depending on the parameter p € J°¢ instead of k. Two illustrative examples are reported in the table
below, one yielding A = 0 and the other A # 0. The solution ¢2’fz and the relative error between

¢ and w are reported in Figures [ (a) and (b).

k n )\Z Frf’k (ﬁ) )‘176 P €Tvalue | €ETvalue

1.6e-1 |2 | 5.11el | 8.9e-3 | 0 84 | 3.4e-5 | 2.1e-5

3.52e-1 | 2 | 3.14el | 4.5e-2 | -8.55 | 65 | 1.5e-2 | 4.3e-3
Table 2: Results for the modeling problem

5 €)) | | 0.01 (b)
8 L g 0.005
< TR R R
Lc:gja 1 “ U J u ngJ -0.005}
_20 012 014 O‘.G 018 1 _0.010 0:2 0:4 0:6 0:8 1
X X

Figure 7: (a) Two-scale eigenmode w;]z (b) Relative error vector between w;]z and w3,

Additional results for k = 3.52e — 1 with n = {1, ..., 15} are reported in Figures@® (a) and (b) showing
A and Vb respectively.
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6.4 Order of convergence

For a given pair k and n € J*, we investigate the order of convergence of the errors erygue and eryector
when the number of cells increases. To follow the convergence result, the sequence of periods ¢ is in

fact a subsequence ¢, satisfying
1 h +1 .
— eN
Eh ]{Z
with [ € [0,1) and for a sequence of h € N*. Table 3 summarizes the results for £k = 0.3, [ = 0.6 and

h € {3,9,15,21}.

h €n 6ryalue 6r3élctor p
3| 83e—2 [ 43¢—2|63e¢—3| 17
9 | 31le—2 | 16e—2|24e—3| 45
151191le—2|1.0e—2|15e—3| 73
21| 14e—2 | 7.0e—3 | 1.0e—3 | 101
Table 3: Errors for a decreasing subsequence ¢y,
To evaluate the decay rate of the errors, we pose ermlue Coatue (€n) ™™ and er.

so the decay rates satisfy

IOg (ervalue/ervalue)

Qualue =

log (en/en)

Using successive results for h and /', yields

Qualue

with coefficients

Coatue = {0.504, 0.518, 0.497} ~ 0.5 and Cpeetor = {0.0734, 0.0755, 0.0757} ~ 0.07.

= {0.988, 0.995, 0.985} ~ 1 and Guector =

28

and Quector =

Uector

IOg (ervector /ervector)

log (en/en)

{0.985, 0.993, 0.994} ~ 1

= Cyector (gh)/ er
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