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Abstract

This Note is focused on the derivation of state-realizations of diffusive type for linear operator solutions of some linear partial
differential operational equations. It allows the implementation of a large class of linear operators on semi-decentralized architec-
tures. The practical interest of this work relates, for example, to the realization of optimal control law for linear partial differential
equationsTo citethisarticle: M. Lenczner, G. Montseny, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
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Résumé

Réalisation diffusive d'opérateurs solutions de certaines équations aux dérivées partielles opérationnell€ette Note
concerne la réalisation d'opérateurs linéaires solutions d'équations aux dérivées partielles opérationnelles basée sur la métho
dite des réalisations diffusives. Elle permet d’envisager I'implantation de tels opérateurs sur des calculateurs ayant une architectur
semi-décentralisée. L'intérét pratique du résultat est relatif & la mise en oeuvre de lois de contréle optimal pour des problémes régi
par des équations aux dérivées partielRmsur citer cet article: M. Lenczner, G. Montseny, C. R. Acad. Sci. Paris, Ser. | 341
(2005).
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1. Introduction

The optimal control theories, including the LQHR> or H, control, are now well established for linear problems
even in infinite-dimension, see [5,6,8]. However, their use for real complex applications, as for real systems governed
by partial differential equations, remains a difficult problem due to computation and communication complexity. The
field of applications that we have had in mind when we were working on this Note was that of large arrays of coupled
microsystems that appears as an unreachable field of application for optimal control theories when using conventiona
computational means.

A possible way to overcome this difficulty could be the use of computational systems made of a large array of
processors connected only between neighbors so that they constitute a semi-decentralized arrayed architecture (SDA
for shortness). The Cellular Neural Networks stands as the more popular example of SDAA that we have in mind, see
[2] for further details. Let us mention the papers [1,3,4], where the question of approximating an optimal control law
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on a SDAA was already addressed in much more restricted cases. SDAAs operate on arrays of data and we consi
that the allowed elementary operations are the usual algebraic operations, application of finite differences operato
and of their inverse.

In an optimal control problem related to partial differential equations, the determination of a control law requires the
computation of realizationBu of P solution of a Riccati equation which is a nonlinear partial differential operatorial
equation. The operata? is linear and acts on functions belonging to an infinite-dimensional space. In the case of a
one-dimensional domai@ and of a causal integral operatBr, the realizationPu may be formulated thanks to the
diffusive representation, see [7], under the fatRu)(x) = [ u(x, &)Y (x, §) dé, wherey is the unique solution of
the Cauchy problem parameterized§yp, v (x, &) + y (E) ¥ (x, &) = u(x) for x € w andys (0, £) = 0 wheny andy
are respectively a function and a path of integratio€ idepending orP only. Using this formula, it is easy to build
an approximate realization d@f that is implementable on a SDAA. This is the approach followed in this paper which
also applies to noncausal operators.

The main result of this Note consists in the determination of the equations satisfied by the syrmbos sufficient
characterization of the admissible pattprovided thatP is a linear operator solution of a linear partial differential
operatorial equation. This result constitutes a necessary stage before the treatment of the Riccati equations.

2. An example of a Lyapunov equation

Throughout this Note, we shall use the superscriptsr — to refer to causal or anti-causal operators or to the
function’s domain on which they operate and the conventior- —(+). We denotew :=10,1[, 2 := v X o,
Q% ={(x,y) € £2 so that+y < +x} and V := (3, dy). The boundary of2+ U £2~ is divided in the closure of
IF={) xw Iy ={0} xo, lo={(x,y) € 2stx=y} I," =wx {0} and I, = x {1}. For a given self-
adjoint positive bounded operat@ € £(L?(w)), consider the solutiorP e E(H(}(.Q)) of the Lyapunov equation
fw VuV(Pv)+ V(Pu)Vvdx = fw Quudx forallu,v e H&([Z) that appears in the context of internal stabilization of
a system governed by the heat equation with Dirichlet boundary conditions and that may be seen as a simplificatic
of the Riccati equation associated to an optimal control problem. The opérédtas an integral representation

(Pu)(x) =/p(x, y)u(y)dy 1)

w

and its kernep is the unique solution of the two boundary value problemsg;: € H(2%),
—Ap=gq inQ%, hpiet=0 onlp and p(x,y)=0 ond* — Iy,

wheregq is the kernel ofQ.
3. Diffusive realization of integral operators

Consider an operatd? in L?(w) defined by its integral form (1) witp € L%(w; L(w)). This framework is chosen
for simplicity, but may be enlarged so as to take into account unbounded operators. Let us start by defining the conce
of the diffusive realization of such an operator which requires some preliminary definitions.

Causal and anti-causal parté\n operatorP is said to be causal (respectively anti-causap(if, y) =0 fory > x
(respectively fory < x). Diffusive realizations ofP are based on its unique decomposition into causal and anti-causal
parts:P = Pt + P~, where(PTu)(x) = [y p(x, y)u(y)dy and(P~u)(x) = fxlp(x, Yu(y)dy.

Impulse responsd he so-called impulse respong&s are defined by* (x, y) = pop™*(x, y) for p*(x, y) € 2F
whereg* (x, y) = (x, x F y). The variables: andy are treated on an unequal footing, assuming that 5+ (x, y)
is analytic with respect tg, with a locally integrable analytic extension R);f* and that for eacty the function
x — p(x,y) belongs toL2(w).

Integration pathsy®: For givena® € R, we consideft — y*(£) two complex Lipschitz functions frorR to
[a*, +oo[ +iR C C such thaty*’| > b > 0 almost everywhere which define simple arcs closed at infinity. Moreover
we assume that they are included in some sectoe =% +¥IR* with 0 < o < .

Diffusive representationy* of u: Considery*(x) defined as the unique solutions of the following direct and
backward Cauchy problems, parameterized lyR, of diffusive type thanks to the sector condition p#:
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Ry &) ==y eV, H+ux) Vxew, ¢¥T(0§=0 and
Wy (. =y GV .EH+ulkx) Vreo, ¥ (1§ =0

From now on, we use the convenient notat{jpny) := fRM(S)W@) dg.

Definition 3.1. (i) We shall say that a causal operatBr- (resp. anti-causal operatdt—) admits ay ™ -diffusive
realization (respy ~-diffusive realization) if there exists a so-called diffusive symitlx, £) (resp..™ (x, £)) so that
Pru(x) = (ut, v+ @) (resp.P u(x) = (u™, ¥~ ())). (i) We shall say that an operat@ admits ay *-diffusive
realization if both its causal and anti-causal pdtts and P~ admit a diffusive realization associated respectively to
yTandy~.

Let us state some sufficient conditions for the existence of the so-called canonical diffusive realization of an op-
erator P for general pathg®. They pertain to the Laplace transforms with respect t@f the impulse responses
PE(x,) = L(pT(x,-)). Their holomorphic extension to the left of the half plane where the Laplace transform is
defined is still denoted bp*(x, -).

Theorem 3.2.For a given pathy™ (resp.y ™), a causal(resp. anti-causdl operator P+ (resp. P~) admits a
yt-diffusive realization if the two following conditions are fulfilled

(i) A~ Pt(x,1) (resp.A — P~ (x, A)) is holomorphic in a domaiD™ (resp. D) that contains the closed set
located at right of the are-y* (resp. of the arc-y ~);
(i) P*(x, 1) vanish wheni| — oo uniformly with respect targh.

Then the so-called canonical symbols are given by

G
2in
and have the same regularity s’

nE @, £) = — PE(x, —yE(©®))

4. Diffusive symbolic formulation of linear partial differential operational equations

If P solves a partial differential operatorial equation as a Lyapunov equation then its symbol solves a boundary
value problem. For the sake of shortness, we start directly from the boundary value problem satisfied by the kernel
and we derive the equations satisfied by the symh@lsTo avoid too much complexity, we restrict the presentation
to the case where the two problems related to the causal and the anti-causal parts are discoupled as it was the case
the example of the Lyapunov equation in Section 2:

A, V)p(x,y) =qx,y) in@2tue” €
with a number of boundary conditions depending on the ordek, of
B(x,V)p(x,y)=r(x,y) ondRtuan, (3)

whereg is the kernel of a given operat@ with diffusive symbolv*. The restrictions of to the boundariefyjE are
assumed to be the kernels of a causal opertoand an anti-causal operatr with diffusive symbolso™ andp ™.
The partial differential equation solved i is

A*(x, VIp* =G, (4)
whereA£(x, V) = A(x, K¥V) andK* = (é i) Consider thapp® has an analytic continuation with respectyto
onR** and let us extend it by O iR~. From (4) formulated Or]ﬁ‘i, one deduces the equation on the extengirin
the sense of distributions

A, VPE+ ) Af(x, V)t =gt in DL (R),

k
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WhereZ,:—L(x, V) are suitable partial differential operators a&ﬁ‘f is the kth derivative of the Dirac distribution at
point y = 0. We are now in position to introduce two differential operators associatacdaiody *:

yEE)
2im

AT(x, 8, 0) = A(x, KF' (0, —0)) and AZ(x,V,y*(©)=— Z(—yi(g))" Af(x, (k)71

k
In the same way operatd@™ can be derived fronB on 32+ U2~ and BSE from B on Fyi.

Theorem 4.1.Assuming that?, Q and R fulfill the assumptions of Theore®2, the kernelp is solution of the
boundary value problert), (3) iff its canonicaly *-symbols are solution of

A (x, e, y @) T (0, 6) + AG (x, V. y @) p(x, x) =vE(x,§)  ¥(x,8) ew x RT,
BE(x, 8y, y T ) uF (x, ) + By (x, V.y=(®)) p(x.x) = pF(x,8) V(x,8) € ({1} or {0}) x R,
(B*(x, 85, y* (&) * (x, &), €77 OO0 — 1 (x yo(x)) onIFU Ty

with yo(x) =x,00r lon Iy, It or I, .

Finally, we state some sufficient conditions on the operatoed B which insure thatP satisfies the assump-
tion (i) of Theorem 3.2. The differential operatoss™ and B* can be expanded with respect to the derivatives:
AE(x, 0, 0) =, as(x, —2)d™ and BE(x, 3y, 1) = 3, bz (x, —1)3", which allows us to define the union of ze-

ros of the analytic functions — a (x, —A) andi — b (x, —A) over allx andm:

Wi ::U[a,f;(x,-)]‘l(O) and Wi :=U[b3;(x,-)]_1(0)-

xX,m Xx,m

Theorem 4.2.If D* is such thathjt U W;'E C C— D* and if 9 and R fulfill the assumptiori) of Theoren8.2then
P fulfills it also.

4.1. Application to the Lyapunov equation

The application of the above results to the example of Section 2 leatis t:e(afx T2y (£)d, + 2y%(8)), BT =
(3 F 2y (&) on I'f and B* = Id on I'* U I,. Therefore W) = {0} and W = @, which says that any pathsy *
enlacing 0 and the singularities of by the right is admissible. The assumption (i) of Theorem 3.2 is established
using an elementary spectral argument. Numerical computatief ofiay be conducted from their equations or from
the kernel’s equations.

5. Concluding remarks

These results can be extended in three various directions without much effort. First when impulse responses a
analytic iny € w and singular aiy = 0, second for multi-dimensional domaiasas products of intervals third for
coupled kernel equations @™ ands2 . Finally, we think that extensions to operat®rsolutions of some nonlinear
equations will also be possible.
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