
1/

l

r partial
architec-
rential

la méthode
rchitecture
mes régis

ms
overned
ity. The
oupled

ventional

rray of
re (SDAA
ind, see

trol law
C. R. Acad. Sci. Paris, Ser. I 341 (2005) 737–740
http://france.elsevier.com/direct/CRASS

Optimal Control

Diffusive realization of operator solutions of certain operationa
partial differential equations

Michel Lencznera, Gérard Montsenyb
a North Carolina University, Campus Box 8205, 27695-8 Raileigh, NC, USA
b LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse cedex, France

Received 1 May 2005; accepted 27 September 2005

Available online 16 November 2005

Presented by Olivier Pironneau

Abstract

This Note is focused on the derivation of state-realizations of diffusive type for linear operator solutions of some linea
differential operational equations. It allows the implementation of a large class of linear operators on semi-decentralized
tures. The practical interest of this work relates, for example, to the realization of optimal control law for linear partial diffe
equations.To cite this article: M. Lenczner, G. Montseny, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Réalisation diffusive d’opérateurs solutions de certaines équations aux dérivées partielles opérationnelles.Cette Note
concerne la réalisation d’opérateurs linéaires solutions d’équations aux dérivées partielles opérationnelles basée sur
dite des réalisations diffusives. Elle permet d’envisager l’implantation de tels opérateurs sur des calculateurs ayant une a
semi-décentralisée. L’intérêt pratique du résultat est relatif à la mise en oeuvre de lois de contrôle optimal pour des problè
par des équations aux dérivées partielles.Pour citer cet article : M. Lenczner, G. Montseny, C. R. Acad. Sci. Paris, Ser. I 341
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The optimal control theories, including the LQR,H2 or H∞ control, are now well established for linear proble
even in infinite-dimension, see [5,6,8]. However, their use for real complex applications, as for real systems g
by partial differential equations, remains a difficult problem due to computation and communication complex
field of applications that we have had in mind when we were working on this Note was that of large arrays of c
microsystems that appears as an unreachable field of application for optimal control theories when using con
computational means.

A possible way to overcome this difficulty could be the use of computational systems made of a large a
processors connected only between neighbors so that they constitute a semi-decentralized arrayed architectu
for shortness). The Cellular Neural Networks stands as the more popular example of SDAA that we have in m
[2] for further details. Let us mention the papers [1,3,4], where the question of approximating an optimal con
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that the allowed elementary operations are the usual algebraic operations, application of finite differences
and of their inverse.

In an optimal control problem related to partial differential equations, the determination of a control law requ
computation of realizationsPu of P solution of a Riccati equation which is a nonlinear partial differential operat
equation. The operatorP is linear and acts on functions belonging to an infinite-dimensional space. In the ca
one-dimensional domainω and of a causal integral operatorP , the realizationPu may be formulated thanks to th
diffusive representation, see [7], under the form(Pu)(x) = ∫

µ(x, ξ)ψ(x, ξ)dξ , whereψ is the unique solution o
the Cauchy problem parameterized byξ , ∂xψ(x, ξ) + γ (ξ)ψ(x, ξ) = u(x) for x ∈ ω andψ(0, ξ) = 0 whenµ andγ

are respectively a function and a path of integration inC depending onP only. Using this formula, it is easy to buil
an approximate realization ofP that is implementable on a SDAA. This is the approach followed in this paper w
also applies to noncausal operators.

The main result of this Note consists in the determination of the equations satisfied by the symbolsµ and a sufficien
characterization of the admissible pathγ provided thatP is a linear operator solution of a linear partial differen
operatorial equation. This result constitutes a necessary stage before the treatment of the Riccati equations.

2. An example of a Lyapunov equation

Throughout this Note, we shall use the superscripts+ or − to refer to causal or anti-causal operators or to
function’s domain on which they operate and the convention∓ = −(±). We denoteω := ]0,1[, Ω := ω × ω,
Ω± = {(x, y) ∈ Ω so that±y < ±x} and∇ := t (∂x, ∂y). The boundary ofΩ+ ∪ Ω− is divided in the closure o
Γ +

y = {1} × ω, Γ −
y = {0} × ω, Γ0 = {(x, y) ∈ Ω s.t. x = y}, Γ +

x = ω × {0} andΓ −
x = ω × {1}. For a given self-

adjoint positive bounded operatorQ ∈ L(L2(ω)), consider the solutionP ∈ L(H 1
0 (Ω)) of the Lyapunov equatio∫

ω
∇u∇(P v)+∇(Pu)∇v dx = ∫

ω
Quv dx for all u,v ∈ H 1

0 (Ω) that appears in the context of internal stabilization
a system governed by the heat equation with Dirichlet boundary conditions and that may be seen as a simp
of the Riccati equation associated to an optimal control problem. The operatorP has an integral representation

(Pu)(x) =
∫
ω

p(x, y)u(y)dy (1)

and its kernelp is the unique solution of the two boundary value problems,p|Ω± ∈ H 1(Ω±),

−�p = q in Ω±, ∂np|Ω± = 0 onΓ0 and p(x, y) = 0 on∂Ω± − Γ0,

whereq is the kernel ofQ.

3. Diffusive realization of integral operators

Consider an operatorP in L2(ω) defined by its integral form (1) withp ∈ L2(ω;L1(ω)). This framework is chose
for simplicity, but may be enlarged so as to take into account unbounded operators. Let us start by defining the
of the diffusive realization of such an operator which requires some preliminary definitions.

Causal and anti-causal parts: An operatorP is said to be causal (respectively anti-causal) ifp(x, y) = 0 for y > x

(respectively fory < x). Diffusive realizations ofP are based on its unique decomposition into causal and anti-c
parts:P = P + + P −, where(P +u)(x) = ∫ x

0 p(x, y)u(y)dy and(P −u)(x) = ∫ 1
x

p(x, y)u(y)dy.
Impulse response: The so-called impulse responsesp̃± are defined bỹp±(x, y) = p ◦φ±(x, y) for φ±(x, y) ∈ Ω±

whereφ±(x, y) = (x, x ∓ y). The variablesx andy are treated on an unequal footing, assuming thaty �→ p̃±(x, y)

is analytic with respect toy, with a locally integrable analytic extension toR+∗
y and that for eachy the function

x �→ p(x, y) belongs toL2(ω).

Integration pathsγ ±: For givena± ∈ R, we considerξ �→ γ ±(ξ) two complex Lipschitz functions fromR to
[a±,+∞[+ iR ⊂ C such that|γ ±′| � b > 0 almost everywhere which define simple arcs closed at infinity. More
we assume that they are included in some sectork + ei[−α,+α]

R
+ with 0� α < π

2 .
Diffusive representationψ± of u: Considerψ±(u) defined as the unique solutions of the following direct a

backward Cauchy problems, parameterized byξ ∈ R, of diffusive type thanks to the sector condition onγ ±:
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∂xψ
+(x, ξ) = −γ +(ξ)ψ+(x, ξ) + u(x) ∀x ∈ ω, ψ+(0, ξ) = 0 and

∂xψ
−(x, ξ) = γ −(ξ)ψ−(x, ξ) + u(x) ∀x ∈ ω, ψ−(1, ξ) = 0.

From now on, we use the convenient notation〈µ,ψ〉 := ∫
R

µ(ξ)ψ(ξ)dξ .

Definition 3.1. (i) We shall say that a causal operatorP + (resp. anti-causal operatorP −) admits aγ +-diffusive
realization (resp.γ −-diffusive realization) if there exists a so-called diffusive symbolµ+(x, ξ) (resp.µ−(x, ξ)) so that
P +u(x) = 〈µ+,ψ+(u)〉 (resp.P −u(x) = 〈µ−,ψ−(u)〉). (ii) We shall say that an operatorP admits aγ ±-diffusive
realization if both its causal and anti-causal partsP + andP − admit a diffusive realization associated respectivel
γ + andγ −.

Let us state some sufficient conditions for the existence of the so-called canonical diffusive realization o
eratorP for general pathsγ ±. They pertain to the Laplace transforms with respect toy of the impulse response
P±(x, ·) = L(p̃±(x, ·)). Their holomorphic extension to the left of the half plane where the Laplace transfo
defined is still denoted byP±(x, ·).

Theorem 3.2. For a given pathγ + (resp. γ −), a causal(resp. anti-causal) operator P + (resp. P −) admits a
γ ±-diffusive realization if the two following conditions are fulfilled:

(i) λ �→ P+(x,λ) (resp.λ �→ P−(x,λ)) is holomorphic in a domainD+ (resp.D−) that contains the closed s
located at right of the arc−γ + (resp. of the arc−γ −);

(ii) P±(x,λ) vanish when|λ| → ∞ uniformly with respect toargλ.

Then the so-called canonical symbols are given by

µ±(x, ξ) = −γ ±′(ξ)

2iπ
P±(

x,−γ ±(ξ)
)

and have the same regularity asγ ±′.

4. Diffusive symbolic formulation of linear partial differential operational equations

If P solves a partial differential operatorial equation as a Lyapunov equation then its symbol solves a b
value problem. For the sake of shortness, we start directly from the boundary value problem satisfied by th
and we derive the equations satisfied by the symbolsµ±. To avoid too much complexity, we restrict the presenta
to the case where the two problems related to the causal and the anti-causal parts are discoupled as it was
the example of the Lyapunov equation in Section 2:

A(x,∇)p(x, y) = q(x, y) in Ω+ ∪ Ω− (2)

with a number of boundary conditions depending on the order ofA,

B(x,∇)p(x, y) = r(x, y) on∂Ω+ ∪ ∂Ω−, (3)

whereq is the kernel of a given operatorQ with diffusive symbolν±. The restrictions ofr to the boundariesΓ ±
y are

assumed to be the kernels of a causal operatorR+ and an anti-causal operatorR− with diffusive symbolsρ+ andρ−.
The partial differential equation solved bỹp± is

Ã±(x,∇)p̃± = q̃±, (4)

whereÃ±(x,∇) = A(x,K±∇) andK± = ( 1 ±1
0 ∓1

)
. Consider thatp̃± has an analytic continuation with respect toy

onR
+∗ and let us extend it by 0 inR−. From (4) formulated oñp±

|ω, one deduces the equation on the extensionp̃± in
the sense of distributions

Ã±(x,∇)p̃± +
∑

Ã±
k (x,∇)p̃±δ

(k)
0 = q̃± in D′+(R),
k
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whereÃ±
k (x,∇) are suitable partial differential operators andδ

(k)
0 is thekth derivative of the Dirac distribution a

pointy = 0. We are now in position to introduce two differential operators associated toA andγ ±:

A±(x, ∂x, λ) = A
(
x,K±t (∂x,−λ)

)
and A±

0

(
x,∇, γ ±(ξ)

) = −γ ±′(ξ)

2iπ

∑
k

(−γ ±(ξ)
)k

Ã±
k (x, (K±)−1∇).

In the same way operatorB± can be derived fromB on ∂Ω+ ∪ ∂Ω− andB±
0 from B onΓ ±

y .

Theorem 4.1.Assuming thatP , Q and R± fulfill the assumptions of Theorem3.2, the kernelp is solution of the
boundary value problem(2), (3) iff its canonicalγ ±-symbols are solution of:

A±(
x, ∂x, γ

+(ξ)
)
µ±(x, ξ) + A±

0

(
x,∇, γ ±(ξ)

)
p(x, x) = ν±(x, ξ) ∀(x, ξ) ∈ ω × R

+,

B±(
x, ∂x, γ

+(ξ)
)
µ±(x, ξ) + B±

0

(
x,∇, γ ±(ξ)

)
p(x, x) = ρ±(x, ξ) ∀(x, ξ) ∈ ({1} or {0}) × R

+,〈
B±(

x, ∂x, γ
±(ξ)

)
µ±(x, ξ),e∓γ ±(ξ)(x−y0(x))

〉 = r
(
x, y0(x)

)
onΓ ±

x ∪ Γ0

with y0(x) = x, 0 or 1 onΓ0, Γ +
x or Γ −

x .

Finally, we state some sufficient conditions on the operatorsA andB which insure thatP satisfies the assump
tion (i) of Theorem 3.2. The differential operatorsA± and B± can be expanded with respect to the derivativ
A±(x, ∂x, λ) = ∑

m a±
m(x,−λ)∂m

x andB±(x, ∂x, λ) = ∑
m b±

m(x,−λ)∂m
x , which allows us to define the union of z

ros of the analytic functionsλ �→ a±
m(x,−λ) andλ �→ b±

m(x,−λ) over allx andm:

W±
A :=

⋃
x,m

[
a±
m(x, ·)]−1

(0) and W±
B :=

⋃
x,m

[
b±
m(x, ·)]−1

(0).

Theorem 4.2.If D± is such thatW±
A ∪W±

B ⊂ C−D± and ifQ andR± fulfill the assumption(i) of Theorem3.2 then
P fulfills it also.

4.1. Application to the Lyapunov equation

The application of the above results to the example of Section 2 leads toA± = (∂2
xx ∓ 2γ (ξ)∂x + 2γ 2(ξ)), B± =

(∂x ∓ 2γ (ξ)) on Γ ±
y andB± = Id on Γ ±

x ∪ Γ0. Therefore,W±
A = {0} andW±

B = ∅, which says that any paths−γ ±
enlacing 0 and the singularities ofν± by the right is admissible. The assumption (ii) of Theorem 3.2 is establi
using an elementary spectral argument. Numerical computation ofµ± may be conducted from their equations or fro
the kernel’s equations.

5. Concluding remarks

These results can be extended in three various directions without much effort. First when impulse respo
analytic iny ∈ ω and singular aty = 0, second for multi-dimensional domainsω as products of intervals third fo
coupled kernel equations onΩ+ andΩ−. Finally, we think that extensions to operatorP solutions of some nonlinea
equations will also be possible.
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