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Abstract 3

The primary objective of this paper is to present a simplified model for an array of Atomic Force Microscopes (AFMs) operating 4

in static mode. Its derivation is based on the asymptotic theory of thin plates initiated by P. Ciarlet and P. Destuynder and on the 5

two-scale convergence introduced by M. Lenczner which generalizes the theory of G. Nguetseng and G. Allaire. As an example, 6

we investigate in full detail a particular configuration, which leads to a very simple model for the array. Aspects of the theory for 7

this configuration are illustrated through simulation results. Finally the formulation of our theory of two-scale convergence is fully 8

revisited. All the proofs are reformulated in a significantly simpler manner. 9

c© 2007 Elsevier Ltd. All rights reserved. 10

Keywords: Atomic force microscopy; Microsystems arrays; Multiscale modeling; Homogenization
11

1. Introduction 12

In recent years, a number of new Microsystem or Nanosystem Array architectures have been developed. These 13

architectures include microcantilevers, micromirrors, droplet ejectors, micromembranes, microresistors, biochips, 14

nanodots, nanowires to cite only a few, and applications are continually emerging in numerous areas of science and 15

technology. In some of these systems, units have a collective behavior whereas in others they are working individually. 16

However, in all cases their coupling is an important design parameter of the array that is promoted or avoided. The 17

coupling can be of various natures, including mechanical, thermal and electromagnetic. The numerical simulation 18

of such whole arrays based on classical methods like the Finite Element Method (FEM) is prohibitive for today’s 19

computers at least in a time compatible with the time scale of a designer. Indeed, the calculation of a reasonably 20

complex cell of a three-dimensional microsystem requires about 103 degrees of freedoms which leads to about 107
21

degrees of freedoms for a 100 × 100 array. Moreover usual microsystems involve strong nonlinearities that cannot be 22

ignored. 23

This work is focused on a relatively simple example of a Microsystem Array, namely an Atomic Force Microscope 24

Array (AFMA). A number of developments of AFMAs or of more simple Cantilever Arrays have already been 25

achieved, as noted in the abbreviated set of citations [29–62]. 26

The modeling of a single AFM has been extensively studied in the literature in many different configurations, 27

as noted in the review papers [14,21,13]. Most of the models are based on a spring–damper–mass model where the 28
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precise features of the mechanical systems are ignored. More careful modeling has been derived in various situations1

including tapping mode, interaction with a surrounding fluid; see [16–23]. They are based on the Euler–Bernoulli2

beam model with an applied force at the extremity of the beam, except in [12], where the tip is modeled as a rigid3

part and the force is applied to it. Until now, to the best of our knowledge, only the group of B. Bamieh (see [24]4

and the reference therein) has published a model of a coupled cantilever array. These authors take into account the5

electrostatic coupling with a rudimentary derivation.6

To simplify the discussion we focus on the simplest case of an AFMA in static operation. We establish a two-7

dimensional thin plate model for an elastic component including a rigid part corresponding to the tip that is assumed8

to be much stiffer than the supple part of the cantilever. Then a simplified model of an array of AFMs coupled9

through their base is derived from the thin plate model. Each of these models is illustrated by an example. Analytic10

calculations are conducted to yield very simple formulations. Finally a numerical simulation of the array is presented11

and discussed. The derivations of the two models are rigorously justified through asymptotic methods. The thin12

plate model is based on the asymptotic methods of Ciarlet [2] and Destuynder [1] as well as on our previous13

work [6]. The derivation of the AFMA two-scale model uses the two-scale transform and convergence introduced14

by one of the authors; see [15,11] and [10]. However, it is completely reformulated in a simpler and more intuitive15

manner.16

We note that, for the geometry considered in this paper, our two-scale convergence is equivalent to the two-scale17

convergence of Nguetseng [7] and Allaire [5]. However, it is worthwhile remarking that it has the of working also18

for electrical circuit homogenization (as a particular case of d − n dimensional periodic manifolds immersed in a19

d-dimensional space) when the other does not apply as it has also been recognized in [9]. This remark constitutes20

an encouragement to develop this method in the framework of Mechatronical Systems. We point out that these21

methods are in the vein of the homogenization methods by Sanchez-Palencia [3], L. Tartar and Bensoussan, Lions,22

Papanicolaou [4]. Finally, we cite the work of Griso and his coworkers initiated in [8], who have rediscovered the23

same method and named it the Unfolding Method.24

We review the main features of the simplified models presented in this paper. Simply stated, an AFM evaluates25

the interaction force between the tip and the sample through the deformation measurement of the supple part of the26

cantilever. To do so, the tip is designed so that its deformation is very weak so that it efficiently transmits the energy of27

deformation. This is why we assume that the tip is perfectly rigid. This assumption simplifies the model significantly28

by reducing the number of degrees of freedom. Then, the thin plate model is derived under the assumption that on the29

one side the supple part of the cantilever is very thin and at the same time that the tip is also thin, both with the same30

order of magnitude. The AFMA is constituted of cantilevers clamped in a common base. For the model derivation, we31

assume that the base is much stiffer than the cantilever. This is expressed by saying that their stiffnesses have different32

asymptotic behavior. Doing this, the effective stiffness of the base in the homogenized model is not affected by the33

presence of the cantilever and so is independent of the tip–sample forces (that produce nonlinearities). This is an34

appreciable simplification. In the example that we detail, the base and the cantilevers are rectangular. The tip–sample35

forces are the van der Waals forces and the chemical interaction forces. In this case the model is on the one side a36

fourth-order one-dimensional boundary value problem related to the deflection in the base coupled with the model37

of the cantilever at the microscale which reduces to a single nonlinear algebraic equation related to the tip–sample38

distance. The numerical simulations are conducted for simple sample profiles: flat, slope and a quadratic shape. The39

tip–sample distance is a distributed variable along the array that we discretize with Chebychev polynomials. The40

numerical experiments show that, even for simple sample shapes, a relatively large number of polynomials are required41

for an accurate approximation. It is also observed that even for a moderate number of cantilevers the deflection of the42

base is far from being negligible in comparison with the tip displacement. This is due to the fact that the deflection43

increases when the length of the base increase as its fourth power.44

We note that the derivation of a two-scale model for the evolution problem can be directly deduced from the static45

model. However, the dynamic problem requires much dedicated analysis, simulations and discussions so that we have46

chosen to postpone its presentation until a further publication.47

The paper is organized as follows. We establish aspects of the geometry and the nature of tip forces in the remainder48

of this section. The three-dimensional elastic model coupled with a rigid part is stated and derived in Section 2. The49

thin plate model is stated and derived in Section 3. The two-scale model is stated and derived in Section 4. It is based50

on the two-scale theory presented in the Appendix A. The examples and the numerical simulations are reported in51

Section 6.52
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Fig. 1. Three-dimensional plate with the rigid part.

2. Three-dimensional model 1

We start by considering a mechanical structure located in Ω ⊂ R3 made up of an elastic part and a rigid part 2

located respectively in ΩE and in ΩR as depicted in Fig. 1. The model is stated in the next section and subsequently 3

justified in Section 2.2. 4

2.1. Statement of the model 5

The elastic component is clamped along part of its boundary Γ0, is linked to the rigid part through the interface 6

ΓE,R and is free of applied forces in the remaining part Γ1. When the system is totally elastic (no rigid part), then ΩR 7

and ΓE,R are void and the related equation must be ignored. The mechanical displacements are denoted by the vector 8

u = (u1, u2, u3)
T defined over the entire structure. 9

The fourth-order elasticity tensor is denoted by R and may vary in space if the material is not homogeneous. 10

The symmetric matrix of linear strains is s(u) =
1
2 (∇u + ∇

Tu), where ∇ is the gradient operator. The equilibrium 11

equations, the linear stress–strain relation and the rigidity constraint are stated as 12

−div(σ ) = f, σ = Rs(u) in ΩE and s(u) = 0 in ΩR (1) 13

where the product between the fourth-order tensor R and the matrix s(u) gives the 3 × 3 matrix with entries 14

σi j =

3∑
k,l=1

Ri jklskl(u). 15

In the case of isotropic elasticity, the elasticity tensor has the form 16

Ri jkl = λδi jδkl + 2µδikδ jl 17

where δ is the Kronecker delta. 18

The boundary conditions are u = 0 on Γ0, σn = 0 on Γ1 (n being the outward normal vector to the boundary). 19

Moreover, u will be continuous at the interface ΓE,R . Finally, the force and force momentum transmissions satisfy 20∫
ΓE,R

σnds = ξ,

∫
ΓE,R

(σn).(x × ek)ds = Ξk for k ∈ {1, 2, 3} (2) 21

where 22

ξ =

∫
ΩR

f (x)dx, Ξk =

∫
ΩR

f (x).(x × ek)dx . 23

We note that the condition s(u) = 0 can be formulated through imposing a rigid displacement u = b + x × B whose 24

b and B are some three-dimensional vectors. The variational formulation, which is necessary for the formulation of 25

Galerkin-like numerical methods, can be formulated as follows: find u ∈ V such that 26∫
ΩE

σ :: s(v)dx =

∫
Ω

f.vdx (3) 27

Please cite this article in press as: M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Mathematical
and Computer Modelling (2007), doi:10.1016/j.mcm.2006.12.028
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for all v ∈ V for the previous stress–strain relationship where the admissible space of test functions is1

V = {v ∈ H1(Ω)3/s(v) = 0 in ΩR and v = 0 on Γ0}.2

The Sobolev space H1(Ω) is the set of square integrable functions in Ω ,
∫
Ω v

2(x)dx < ∞, such that each component3

of their gradient is also square integrable.4

2.2. Justification of the three-dimensional model5

Consider a sequence of elastic structures filling up Ω so that its rigidity in ΩR tends to infinity. Namely, the6

sequence of elasticity tensors has the form Rn
= R in ΩE and Rn

= n R in ΩR , where n varies in N∗ from one to7

infinity. The variational formulation of such a sequence of elastic problem is as follows: find un
∈ VE8 ∫

Ω
[Rns(un)] :: s(v)dx =

∫
Ω

f.vdx9

for all v ∈ VE where10

VE = {v ∈ H1(Ω)3/v = 0 on Γ0}.11

Using classical estimates, one may prove that ‖∇un
‖

2
Ω and n‖s(un)‖2

ΩR
are bounded uniformly with respect to n12

where ‖v‖2
Ω =

∫
Ω v

2(x)dx .13

The use of these estimates justifies the expansion un
= u + O(1/n) with u independent of n and satisfying14

s(u) = 0 in ΩR . Taking n to infinity in the variational formulation and posing v = 0 in ΩR , it follows that u solves15

the variational formulation (3). The derivation of the local form of the variational formulation (3) is routine and is not16

detailed here.17

3. A thin plate model18

The cantilever of an AFM is comprised of a thin plate equipped with a tip as depicted in Fig. 1. The thin plate is19

assumed to be elastic and the tip is modeled by a rigid body. A simplified model, based on the classical Love–Kirchhoff20

elastic thin plate theory, is stated in the forthcoming section and its justification is made in Section 3.2.21

3.1. Statement of the model22

Because the elastic component is a thin elastic plate with thickness 2a and mean section ωE , we consider the23

domain24

ΩE = {x ∈ R3/(x1, x2) ∈ ωE ,−a < x3 < a}. (4)25

The three parts Γ0, Γ1 and ΓE,R of its boundary are parameterized in a similar manner by referring to the26

corresponding boundaries γ P
0 , γ P

1 and γ P
E,R of ωE . The rigid part is parameterized as27

ΩR = {x ∈ R3/(x1, x2) ∈ ωR with −h(x1, x2) < x3 < a}. (5)28

When a is small enough the three-dimensional model can be simplified to a thin plate model. To justify it, we make29

some assumptions on the order of magnitude of the applied forces with respect to the thickness a:30

fα=1,2 = O(1), a−1 f3 = O(1) in Ω and a−1h = O(1) in ΩR . (6)31

It then follows that32

uα = u P
α + O(a) and au3 = au P

3 + O(a) in Ω (7)33

where O(a) is any vanishing quantity when a vanishes and u P satisfies the Love–Kirchhoff kinematic relations34

∂3u P
3 = 0, u P

α = u P
α − x3∂xαu P

3 with ∂3u P
α = 0 for α = 1, 2 in ΩE .35

Please cite this article in press as: M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Mathematical
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In this paper, we neglect the contribution of the membrane displacement u P so we state only the model satisfied by 1

the transverse displacement u P
3 . It is governed by the equilibrium equations, the stress–strain relations and the rigidity 2

constraint 3

div(div(M P )) = f P
+ div(gP ), M P

= R P
∇∇

Tu P
3 in ωE and u P

3 = bP
+ B P

1 x1 + B P
2 x2 in ωR (8) 4

where 5

gP
α (x1, x2) =

∫ a

−a
fα(x)x3dx3 and f P (x1, x2) =

∫ a

−a
f3(x)dx3 in ωE . (9) 6

In the case of isotropic materials, the elasticity can be formulated as 7

R P
αβγρ = a3

(
4λµ

3(λ+ 2µ)
δαβδγρ +

4µ
3
δαγ δβρ

)
. (10) 8

In addition, x = (x1, x2)
T, bP is a scalar and B P is a two-dimensional vector. 9

The boundary conditions are 10

u P
3 = ∇u P

3 .n = 0 on γ P
0 (11) 11

and nT M P n = 0, ∇(nT M Pτ).τ + div(M P ).n = gP .n on γ P
1 12

where n and τ are the unit outward normal and the unit tangent to the boundary of ωE . The transmission condition 13

at the interface γE,R results from the continuity conditions of the displacement u P
3 and of its gradient ∇u P

3 and the 14

continuity of the normal stresses. These can be expressed as 15

bP
= |γE,R |

−1
∫
γE,R

(u P
3 − ∇u P

3 .x)|ωE ds, B P
= |γE,R |

−1
∫
γE,R

(∇u P
3 )|ωE ds 16

−

∫
γE,R

div(M P ).nds = ξ P and
∫
γE,R

(nT M P )α − (div(M P ).n)xαds = Ξ P
α (12) 17

where 18

ξ P
= −

∫
γE,R

(gP .n)|ωE ds +

∫
ωR

f P dx, Ξ P
α = −

∫
γE,R

(gP .n)|ωE xαds +

∫
ωR

f P xα − gP
α dx, 19

|γE,R | denotes the length of the interface γE,R , gP and f P have been defined in ωE and are defined in ωR by 20

gP
α (x1, x2) =

∫ a

−h(x1,x2)

fα(x)x3dx3 and f P (x1, x2) =

∫ a

−h(x1,x2)

f3(x)dx3 in ωR . 21

The variational formulation associated with this model is 22

u P
3 ∈ V P and

∫
ωE

M P
:: ∇∇

Tvdx =

∫
ωP

f Pv − gP .∇vdx for all v ∈ V P (13) 23

taking into account the stress–strain relation. The set of admissible transverse displacements is 24

V P
= {v ∈ H2(ωP )/∇∇

Tv = 0 in ωR and v = ∇v.n = 0 on γ P
0 } 25

with H2(ωP ) being the set of square integrable functions on ωP so that their first-order and second-order derivatives 26

are also square integrable. 27

Remark 1. For the derivation of the two-scale model, we need an extension of this model for plates with varying 28

thickness, namely, when ΩE and ΩR are replaced by 29

ΩE = {x ∈ R3/(x1, x2) ∈ ωE and −k(x1, x2) < x3 < k(x1, x2)} 30

ΩR = {x ∈ R3/(x1, x2) ∈ ωR with −h(x1, x2) < x3 < k(x1, x2)} 31

where k is a positive function so that a−1k = O(1). In such a case, the model remains the same except that a is 32

replaced by k in the expressions of the two-dimensional forces (9) and of the two-dimensional rigidities (10). 33

Please cite this article in press as: M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Mathematical
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3.2. Justification of the thin plate model1

The justification of the thin plate model is based on the asymptotic method of Ciarlet [2] and of Destuynder [1].2

In these works, the thin plate model is derived for isotropic elastic bodies by calculating the asymptotic behavior of3

the elasticity system and of its solution when the parameter a vanishes. In this work we use the same method but4

our derivation is based on the paper by Canon and Lenczner [6] where material anisotropy was encompassed. The5

only difference between the new model and that in [6] comes from the presence of the rigid body which does not6

significantly affect the proofs. Hence we report only the main steps in the calculations.7

Since the asymptotic method consist of finding the limit when a vanishes, it is mandatory to introduce a scaled8

domain independent of a and to formulate the problem on it. To do so, one introduces the change of variable Fa
9

defined on Ω by Fa(x) = (x1, x2,
1
a x3) in Ω . The image Fa(Ω) is denoted by Ω̃ and there the coordinates are10

x̃ = Fa(x). The whole model is now expressed on the dilated domain. All variables or fields related to Ω̃ are covered11

by a tilde. The rigidity, the mechanical displacement and the forces are scaled in different manners:12

R̃(̃x) = R(x), ũ(̃x) = (u1, u2, au3)(x), f̃ (̃x) =

(
f1, f2,

1
a

f3

)
(x) for x ∈ Ω .13

From the assumption made on f , it is clear that ‖ f̃ ‖Ω̃ is bounded. We also apply a scaling to the test functions14

ṽ(̃x) = (v1, v2, av3)(x).15

For a given displacement field v, define the 3 × 3 matrix K (̃v) such that Kαβ (̃v) = sαβ (̃v), Kα3(̃v) = K3α (̃v) =16

a−1s3α (̃v) and K33(̃v) = a−2s33(̃v). Applying the variable change x̃ = Fa(x) in (3) yields the following variational17

formulation: find ũ ∈ Ṽ such that18

a
∫
Ω̃E

σ̃ :: K (̃v)dx̃ = a
∫
Ω̃

f̃ (̃x).̃v(̃x)dx̃ (14)19

for all ṽ ∈ Ṽ , where σ̃ = R̃K (̃u) and20

Ṽ = {̃v ∈ H1(Ω̃)3/K (̃v) = 0 in Ω̃R and ṽ = 0 on Γ̃0}.21

By equating ṽ = ũ, one may prove that ‖ũ‖Ω̃ and ‖K (̃u)‖Ω̃ are O(1) with respect to a. Thus we are led to formulate22

ũ = ũ P
+ O(a), K (̃u) = K P

+ O(a)23

where ũ P and K P are independent of a. It follows that24

K P
αβ = sαβ (̃u

P ) for α, β = 1, 2 and that si3(̃u
P ) = 0 for i = 1, 2, 3.25

This is equivalent to saying that ũ P fulfills the Love–Kirchhoff kinematics26

∂x̃3 ũ P
3 = 0 and ũ P

α = ũ
P
α − x̃3∂xα ũ P

3 with ∂x̃3 ũ
P
α = 0.27

When neglecting the membrane displacement ũα , it appears that ũ P
3 solves the variational formulation, which is28

independent of the parameter a,29

ũ P
3 ∈ V P ,

∫
ωE

M̃ P
:: ∇∇

Tṽ3dx̃ =

∫
Ω̃

f̃3ṽ3 − x̃3 f̃α∂x̃α ṽ3dx̃ for all ṽ3 ∈ V P .30

Here M̃ P
= R̃ P

∇∇
Tũ P

3 and R̃ P is defined under the name Q22 in Canon and Lenczner [6] and is equal to31

R̃ P
αβγρ =

4λµ
3(λ+ 2µ)

δαβδγ δ +
4µ
3
δαγ δβρ32

in the case of an isotropic material. Applying the inverse variable change, u P
3 solves the variational formulation: find33

u P
3 ∈ V P such that34 ∫

ωE

M P
:: ∇∇

Tv3dx =

∫
Ω
( f3v3 − x3 fα∂xαv3)dx35

Please cite this article in press as: M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Mathematical
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Fig. 2. Array of cantilevers and their reference cell.

for all v3 ∈ V P with M P
= R P

∇∇
Tu P

3 and R P
= a3 R̃ P . This leads directly to the variational formulation (13). 1

Since ∇∇
Tv3 = 0 in ΩR it may be written as v3 = d + D.x with D = (D1, D2)

T; thus the right-hand side may be 2

reformulated as 3∫
ωE

( f Pv3 − gP .∇v3)dx + ξ P d P
+ Ξ P .DP . 4

On application of the Green formula twice, and using the fact that v3 = d + D.x on γE,R , it follows that 5∫
ωE

div(div(M P )v3)dx +

∫
γ1

(nT M P
∇v3 − div(M P ).nv3)ds 6

−

(∫
γE,R

div(M P ).nds

)
d P

+

(∫
γE,R

(nT M P
− div(M P ).nx)ds

)
.DP

7

=

∫
ωE

( f P
3 + div(gP ))v3dx −

∫
γ1

gP .nv3ds + ξ P d P
+ Ξ P .DP

8

from which we deduce all the model equations except the continuity condition of u P
3 and ∇u P

3 that comes by 9

integrating the expressions u P
3 = bP

+ B P .x and ∇u P
3 = B P on γE,R . 10

4. Model for an AFM array 11

Consider a mechanical structure made of a periodic distribution of microcantilevers as shown on Fig. 2. In 12

Section 4.1 a simplified model is stated when its derivation is done in Section 4.2. 13

4.1. Statement of the model 14

The whole domain occupied by the cantilever array is still denoted by ωP and is assumed to be embedded in the 15

macroscopic domain ω = (0, L1)× (0, L2). It is constituted of n1 × n2 square cells Y εi of size ε× ε and fills up ω, so 16

L1 = n1ε and L2 = n2ε. The cells are indexed with multi-indices i = (i1, i2) varying from 1 to n1 and from 1 to n2. 17

The dilatation and shift of any cell Y εi give rise to a reference unit cell Y ⊂ (− 1
2 ,

1
2 )

2. For the derivation of the 18

array model, we assume that ε/L1 << 1. As ωP , this microscopic cell is comprised of a thin elastic plate YE and a 19

rigid part YR . In YE , we distinguish the base YB and the elastic part of the cantilever YF that is assumed to be much 20

more flexible than the base. The entire cantilever, made up of YF and of the rigid part YR , is denoted by YC . In ω, the 21

bases and the cantilevers are respectively denoted by ωB and ωC . 22

Consider a function v defined on ω. Its two-scale transform v̂(x, y) is the function defined on ω × Y by 23

v̂(x, y) =

∑
i

χY εi
(x)v(xεi + εy) (15) 24

where the sum holds for all the cells Y εi ⊂ ω, xεi are the centers of those cells and χY εi
is the characteristic function of 25

Y εi . The two-scale transform of a function v defined in ωP only is accomplished through the same definition but after 26

having extended v by zero to ω. The assumptions as well as the model are stated on the two-scale transforms of the 27

various fields playing a role. We quantify the fact that YF is much more supple than the base by saying that both 28

Please cite this article in press as: M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Mathematical
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ε−4 R̂ P
= RC

+ O(ε) in YF and R̂ P
= RB

+ O(ε) in YB1

with RC and RB independent of ε. In other words, we consider that the plate has a varying thickness which is equal to2

2aB in YB and 2aC in YC with the ratio a3
C/a

3
B ∼ ε4. The thin plate model with varying thickness has been discussed3

in Remark 1. In addition, we are led to assume that4

f̂ P
= f 0

+ O(ε) in Y, ĝP
= gB

+ O(ε) in YB and ε−1ĝP
= gC

+ O(ε) in YC5

with f 0, gB and gC independent of ε. Based on these assumptions in ωB , it follows that6

u P
3 = uM + O(ε), ∇u P

3 = D(uM , θ)+ O(ε) (16)7

and ∇∇
Tu P

3 = D2(uM , θ)+ LB D2(uM , θ)+ O(ε)8

whereas in ωC , it follows that9

u P
3 = uM + uC + O(ε), (17)10

ε∇u P
3 = ∇yuC + O(ε) and ε2

∇∇
Tu P

3 = ∇y∇
T
y uC + O(ε)11

where ∇y is the gradient with respect to y,12

D(uM , θ) =

(
∂x1uM

θ

)
and D2(uM , θ) =

(
∂2

x1x1
uM ∂x1θ

∂x1θ 0

)
13

and v is defined on ωP by14

v(x) =
1
ε

∫ i2ε

(i2−1)ε
v

(
x1, z,

x

ε
−

1
2

)
dz for all x ∈ Y εi and i = (i1, i2)15

after y 7→ v(x, y) has been extended by Y -periodicity to R2.16

The construction of (uM , θ), of the fourth-order tensor LB and of uC is done as follows. First, one builds LB so17

that18

(∇y∇
T
yw

B)αβ =

2∑
γ,ρ=1

LB
αβγρ

(
ν µ

µ 0

)
γρ

(18)19

where wB is solution of the microscopic Problem PB posed in the base YB . Once this is done, the calculation of20

(uM , θ) is made possible by solving the Problem macro PM related to the macroscopic domain ω and the base YB .21

Finally, uM being known, uC may be computed due to the microscopic Problem PC posed in YC . We note that in22

the case of atomic forces depending on uC , the macroscopic Problem PM and the microscopic Problem PC in the23

cantilever cannot be solved sequentially since they are fully coupled through the expression of the atomic forces when24

its action on the tip has a non-negligible effect on the base’s solution (uM , θ).25

Problem PM . The set of edges of the macroscopic domain ω where x1 = 0 or 1 splits in γ M
0 and γ M

1 corresponding,26

respectively, to the area where the base is clamped and where it is free. The statement of the macroscopic or27

homogenized Problem PM includes the equilibrium equations28

∂2
x1x1

M M
1 = f M

1 and ∂x1 M M
2 = f M

2 in ω (19)29

and the stress–strain relation30

M M
1 = RM

11∂
2
x1x1

uM
+ RM

12∂x1θ, M M
2 = RM

21∂
2
x1x1

uM
+ RM

22∂x1θ in ω (20)31

along with the boundary conditions32

uM
= ∂x1 uM

= θ = 0 on γ M
0 (21)33

and M M
1 = M M

2 = 0, ∂x1 M M
1 = gM on γ M

1 .34
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The new parameters are 1

gM
=

∫
YB

gB
1 dy, f M

1 =

∫
Y

f 0dy +

∫
YB

∂x1 gB
1 dy, f M

2 =

∫
YB

gB
2 dy 2

RM
=

(
R̃M

1111 2R̃M
1211

2R̃M
1211 4R̃M

1212

)
3

where the fourth-order tensor R̃M is defined by 4

R̃M
αβγρ =

∫
YB

RB
αβγρ + RB

αβξζL
B
ξζγρdy, 5

LB is defined by (18) and wB is solution of Problem P B . 6

The variational formulation is 7

(uM , θ) ∈ V M ,

∫
ω

M M .(∂2
x1x1

v, ∂x1η)
Tdx =

∫
ω

f M
1 v − gM .D(v, η)dx for all (v, η) ∈ V M (22) 8

where 9

V M
= {(v, η) ∈ L2(ω)2/∂2

x1x1
v and ∂x1θ ∈ L2(ω), v = ∂x1v = θ = 0 on γ M

0 }, 10

L2(ω) being the set of square integrable functions on ω. 11

Problem P B . The boundary of YB is made up of the interface γB,F between YB and YF , the area γper corresponding 12

to the junction between neighboring cells and the remaining part γB1. The microscopic equations stated in the base 13

YB are 14

divy(divy(M
B)) = −divy(divy(F

B)) with M B
= RB

∇y∇
T
yw

B and F B
= RB

(
ν α

α 0

)
. (23) 15

The boundary conditions are 16

∇y(n
T
y M Bτy).τy + divy(M

B).ny = −∇y(n
T
y F Bτy).τy − divy(F

B).ny 17

and nT
y M Bny = −nT

y F Bny on γB1 ∪ γB,F 18

and 19

wB, nT
y M Bny, ∇wB .n, ∇y(n

T
y M Bτy).τy + divy(M

B).ny are Y -periodic on γper. 20

The variational formulation is 21

u B
∈ V B,

∫
YB

M B
:: ∇y∇

T
y vdy = −

∫
YB

F B
∇y∇

T
y vdx for all v ∈ V B (24) 22

where 23

V B
= {v ∈ H2(YB)/v,∇yv are Y - periodic on γper}. 24

We note that the solution of this variational formulation is unique up to a function v such that ∇y∇
T
y v = 0 and v, ∇yv 25

are Y -periodic on γper, in short up to a function v(y) = a0 + a1 y2. 26

Problem PC . The boundary of the elastic part YF of the cantilever is the union of the interface γB,F between the 27

base and the cantilever, the interface γB,R between the elastic part and the rigid part and the remaining γF1. The data 28

f̂ P and gC being given, the Problem PC used for the calculation of uC is made up of the equilibrium equations, the 29

stress–strain relation and the rigidity constraint 30

divy(divy(M
C )) = f 0

+ divy gC and MC
= RC

∇y∇
T
y uC in YF , (25) 31

uC
= bC

+ BC .y in YR, 32

Please cite this article in press as: M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Mathematical
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the boundary conditions1

uC
= ∇yuC .ny = 0 on γB,F ,2

nT
y MC ny = 0, ∇y(n

T
y MCτy).τy + divy(M

C ).ny = 0 on γF1,3

the continuity of uC and ∇yuC through the interface γF,R and the normal stresses transmission4

bC
= |γF,R |

−1
∫
γF,R

(uC
− ∇yuC .y)|YF ds, BC

= |γF,R |
−1
∫
γF,R

(∇yuC )|YF ds5

−

∫
γF,R

divy(M
C ).nyds = ξC ,

∫
γF,R

nT
y MC

− (divy(M
C ).ny)yds = Ξ C

6

where7

ξC
=

∫
YR

f 0dy −

∫
γF,R

(gC .ny)|YF ds and Ξ C
=

∫
γF,R

−(gC .ny)|YF yds +

∫
YR

f 0 y − gC dy. (26)8

The corresponding variational formulation is9

uC
∈ V C ,

∫
YF

MC
:: ∇y∇

T
y vdy =

∫
YC

f 0v − gC .∇yvdy for all v ∈ V C (27)10

where11

V C
= {v ∈ H2(YC )/v = ∇yv.ny = 0 on γB,F ,∇y∇

T
y v = 0 in YR}.12

4.2. Derivation of the two-scale model13

The proof follows three steps. First a specific estimate of the growth of the mechanical displacement is derived with14

respect to the small parameter ε. In a second step we use the Taylor expansion of the two-scale transform of u P
3 and15

identify the global system which is verified by the coefficients of the Taylor expansion. It is from this global system16

that the wanted model is extracted.17

The mathematical formulation of the assumptions on the rigidity and on the external forces is on the one side a18

uniform ellipticity condition: there exists a constant K such that for all ε > 0 and all 2 × 2 symmetric matrix ξ ,19

[RBξ ] :: ξ and [RCξ ] :: ξ ≥ K |ξ |220

and on the other side there exists another constant C such that, for all ε > 0,21

‖ f̂ P
‖ω×Y + ‖ĝP

‖ω×YB + ‖ε−1ĝP
‖ω×YC ≤ C.22

Relaxed variational formulation: The derivation of the model satisfied by (uM , θ, u B, uC ) is easier to do on a23

variational formulation where the constraint of rigidity and the boundary conditions have been removed from the24

set of admissible fields: Find u P
3 ∈ H2(ωP ) and λP

∈ N P such that25

a P (u P
3 , v)+ d P (λP , v) = l P (v) and d P (µP , u P

3 ) = 0 for all v ∈ H2(ωP ) and µP
∈ N P (28)26

where27

a P (u P
3 , v) =

∫
ωP

M P
:: ∇∇

Tvdx, l P (v) =

∫
ωP

f Pv − gP .∇vdx28

d P (λP , v) =

∫
ωR

λP,R
:: ∇∇

Tvdx +

〈
λP,D, (v, ∂x1v, ∂x2v)

T
〉
γ P

0

29

and N P
= {λP

= (λP,R, λ
P,D
1 , λ

P,D
2 , λ

P,D
3 ) ∈ L2

S(ωR)
4
× (H3/2(γ P

0 ))
′
× (H1/2(γ P

0 )
2)′}, L2

S(ωR)
4 being the set of30

2 × 2 symmetric matrices with coefficients in L2(ωR).31
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Estimates: The following norms 1

‖u P
3 ‖ωP , ‖∇u P

3 ‖ωB , ‖ε∇u P
3 ‖ωC , ‖∇∇

Tu P
3 ‖ωB , ‖ε2

∇∇
Tu P

3 ‖ωC , ‖ε−2λP,R
‖ωR , (29) 2

‖λ
P,D
1 ‖H3/2(γ P

0 )
′ and ‖λ

P,D
2 , λ

P,D
3 ‖(H1/2(γ P

0 )
′)2 ≤ C 3

uniformly with respect to ε. We only sketch the proof of this classical result. For the sake of simplicity, we remove the 4

superscript of u P
3 , f P and gP in that proof. One starts from the variational formulation (28) where one equals v = u 5∫

ωB

[R P
∇∇

Tu] :: ∇∇
Tudx +

∫
ωC

ε−4
[R P (ε2

∇∇
Tu)] :: (ε2

∇∇
Tu)dx = l P (u), 6

one applies the uniform ellipticity condition and uses the fact that ∇∇
Tu = 0 in ωR , 7

X = K (‖∇∇
Tu‖

2
ωB

+ ‖ε2
∇∇

Tu‖
2
ωC
) ≤ ‖ f ‖ωP ‖u‖ωP + ‖(χωB + ε−1χωC )g‖ωP ‖(χωB + εχωC )∇u‖ωP , 8

and then the estimates on the external forces 9

X ≤ C1(‖u‖ωP + ‖(χωB + εχωC )∇u‖ωP ). 10

Thanks to the Poincaré-like estimate (82), 11

X ≤ C2‖(χωB + ε2χωC )∇∇
Tu‖ωP . 12

The conclusion follows. 13

Approximation of the two-scale transforms: We assume that u P
3 can be expanded as û P

3 = u0
+ εũ1

+ ε2ũ2
+ ε2 O(ε) 14

in ω × YB which is partially justified by (29). Let us apply the results of the Appendix A.4 to u P
3 on ω1 = ωB and let 15

us introduce the notations 16

uM
= u0

|ω×YB
, θ = ∂y2 u1 and u B

= u2 in ω × YB . 17

Then, 18

û P
3 = uM

+ O(ε), ∇̂u P
3 = D(uM , θ)+ O(ε) 19

and ∇̂∇Tu P
3 = D2(uM , θ)+ ∇y∇

T
y u B

+ O(ε) in ω × YB (30) 20

in the weak sense, with 21

(uM , θ) ∈ V M , u B
∈ V B, uC

∈ L2(ω; H2(YC )) and uC
= ∇uC .ny = 0 on ω × γB,F . (31) 22

Now let us assume that û P
3 = u0

+ O(ε) in ω × YC and let us apply the results of subsection Appendix A.4 applied 23

to u P
3 on ω1 = ωC ; then 24

û P
3 = uM

+ uC
+ O(ε), ε∇̂u P

3 = ∇yuC
+ O(ε), 25

ε2
∇̂∇Tu P

3 = ∇y∇
T
y uC

+ O(ε) in ω × YC (32) 26

in the weak sense, where uC
= u0

− uM and with 27

uC , ∇yuC and ∇y∇
T
y uC in L2(ω × YC ). (33) 28

The approximations (16) and (17) come from (30) and (32) combined with (35) and with (70). In the following we 29

establish the model satisfied by (uM , θ, uC , u B). Let us introduce the space of admissible fields, 30

V A
= {(uM , θ, uC , u B)/(31) and (33)}. 31

Concerning the Lagrange multipliers, from (29) we postulate that 32

ε−2λ̂P,R = λA,R
+ O(ε) and λ̂P,D = λA,D

+ O(ε) (34) 33
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with λA
= (λA,R, λ

A,D
1 , λ

A,D
2 , λ

A,D
3 ) ∈ N A

= L2
S(ω× YR)

4
× (H3/2(γ M

0 ))′ × (H1/2(γ M
0 )2)′. We voluntarily prefer1

to skip the detailed mathematical argumentation on that point.2

Test functions: Consider (vM , η, vB, vC , µA) ∈ V A
× N A, v1 independent of y1 constructed from η through3

∂y2v
1

= η,4

v = vM
+ εv1

+ ε2vB in ω × YB and v = vM
+ vC

+ O(ε) in ω × YC5

the term O(ε) being so that v ∈ H2(ωP ). Such (v, µA)may be chosen as a test functions in the variational formulation6

(28). From (73) and its reiteration7

∇∇
Tv = D2(vM , η)+ ∇y∇

T
y v

B + O(ε) in ωB, ε2
∇∇

Tv = ∇y∇
T
y v

C + O(ε).8

Approximation of the variational formulation: We choose (v, µA) as test functions, apply the formulae (69) and then9

the approximations of the two-scale transforms (30), (32) and (34) to find10

a A((uM , θ, uC , u B), (vM , η, vB, vC ))+ d A(λA, (vM , η, vC )) = l A(vM , η, vC )+ O(ε)11

and d A(µA, (uM , θ, uC )) = O(ε)12

for all (vM , η, vB, vC ) ∈ V A and µA
∈ N A where13

a A((uM , θ, uC , u B), (vM , η, vB, vC )) =

∫
ω

[∫
YB

M B
:: (D2(vM , θ)+ ∇y∇

T
y v

B)dy

+

∫
YF

MC
:: ∇y∇

T
y v

C dy

]
dx,14

l A(vM , η, vC ) =

∫
ω

[∫
YB

f 0vM dy +

∫
YC

f 0(vM
+ vC )dy

−

∫
YB

gB .D(vM , η)dy −

∫
YC

gC .∇yv
C dy

]
dx,15

d A(λA, (vM , η, vC )) =

∫
ω×YR

λA,R
:: ∇y∇

T
y v

C dydx +

〈
λA,D, (vM , ∂x1v

M , η)T
〉
γ M

0

16

and N A
= L2

S(ω × YR)
4
× (H3/2(γ M

0 ))′ × (H1/2(γ M
0 )2)′.17

In the following, we derive Problems P B , PC and PM .18

Derivation of P B : One starts by choosing η = vM
= vC

= 0 and remarking that19

M = RB D2(uM , θ)+ M B
;20

then21 ∫
ω×YB

M B
:: ∇y∇

T
y v

Bdydx =

∫
ω×YB

−[RB D2(uM , θ)] :: ∇y∇
T
y v

Bdydx .22

Making the choice vB(x, y) = ϕ(x )̃vB(y) with any regular ϕ vanishing on the boundary of ω allows us to eliminate23

the integrals over ω and yields the variational formulation (23), where we have removed the O(ε) term.24

Derivation of PC : One poses η = vM
= vB

= 0 and ∇y∇
T
y v

C
= 0 in ω × YR which leads to25 ∫

ω×YF

MC
:: ∇y∇

T
y v

C dydx =

∫
ω×YC

f 0.vC
− gC .∇yv

C dydx .26

Based on the same argument, the integrals over ω may be removed and (25) follows. The condition ∇y∇
T
y uC

= 0 in27

ω × YR comes directly from the second equation of the variational formulation.28

Derivation of PM : Let us pose vB
= vC

= 0 and use the fact that29

∇y∇
T
y u B

= LB D2(uM , θ). (35)30
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It follows that 1∫
ω

M M
:: D2(vM , η)dydx =

∫
ω×YP

f 0.vM dydx −

∫
ω×YB

gB .D(vM , η)dydx 2

and the variational formulation (22) follows. 3

5. Tip forces 4

To characterize the behavior of the cantilever, it is necessary to quantify the attractive forces FvdW of van der Waals 5

type and repulsive forces F rep between the tip and sample. We consider first the development of relations for FvdW . 6

As detailed in [21,28], attractive forces result primarily from van der Waals forces that are due to a combination of 7

electrostatic and dispersional effects present between all atoms and molecules. Either classical or quantum principles 8

can be used to derive the van der Waals potential 9

W vdW (ζ ) = −
C

‖ζ‖6 where ζ = x ′
− x (36) 10

for two atoms or molecules located respectively at the positions x and x ′. Here ‖ζ‖ = (ζ 2
1 + ζ 2

2 + ζ 2
3 )

1/2 and 11

C =
α2

0}ν
(4πε0)

2 is a constant which depends on the electronic polarizability α0 of constituent atoms, Planck’s constant }, 12

the electron orbital frequency ν, and the permittivity ε0 of vacuum. 13

To construct macroscopic relations quantifying the force between the cantilever tip and sample, we consider first 14

the general case in which the tip and sample are arbitrary bodies Ω and Ω ′ having densities ρ and ρ′. 15

To determine the force, we make the classical assumptions of Hamaker which can be summarized as (i) additivity of 16

individual atomic or molecular contributions, (ii) continuous media so that summation can be replaced by integration, 17

and (iii) constant material properties. For these assumptions, the force exerted by the particle located in x ′ on this in 18

x is given by 19

FvdW
= ρρ′

∫
Ω

∫
Ω ′

f (x ′
− x)dxdx ′ (37) 20

where f = −∇W vdW . 21

The determination of F for arbitrary geometries and potential W necessitates approximation of integrals over 22

six dimensions, which is typically prohibitive. To simplify the formulation, we follow the approach of [26,27] and 23

reformulate the relation in terms of surface integrals. We consider the vector field 24

G =
−Cζ

3‖ζ‖6 . (38) 25

It follows that 26

div G = −W vdW (39) 27

and hence the divergence theorem can be invoked to formulate the macroscopic force as 28

FvdW
= ρρ′

∫
∂Ω

∫
∂Ω ′

(G.n′)nds′ds (40) 29

where n and n′ respectively denote normals to the tip and sample. For the vector field relation (38), the force is 30

FvdW
= −

A

3π2

∫
∂Ω

∫
∂Ω ′

ζ.n′

‖ζ‖6 nds′ds (41) 31

where the Hamaker constant is 32

A = π2Cρρ′. (42) 33
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Fig. 3. Geometry of the AFM tip and sample with the assumption of (a) general surfaces, and (b) a locally flat sample.

The flat sample case: For various applications, it is reasonable to approximate the sample by a locally flat surface1

(n′ constant) while retaining the general representation for the cantilever tip; see Fig. 3(b). For example, this2

assumption is reasonable when identifying the tip shape using a known sample with minimal curvature or for regimes3

in which the separation distance is large compared with perturbations in the sample. From the approximation4 ∫
∂Ω ′

ζ.n′

‖ζ‖6 nds′
≈

∫
R2

ζ.n′

‖ζ‖6 dx ′

1dx ′

2 =

∫
R2

ζ.n′

‖ζ‖6 dζ1dζ2 =
π

2(ζ.n′)3
5

the attractive force is6

FvdW
=

A

6π

∫
∂Ω

n

(ζ.n′)3
ds. (43)7

The simplified force relation (43) facilitates implementation when identifying the tip shape or operating in regimes in8

which the separation distance is sufficiently large so that modulations in the sample surface are negligible.9

Flat sample and parameterized tip: Finally, we consider the case in which the sample surface is assumed locally flat10

and a simple geometric parameterization is assumed for the cantilever tip. Specifically, we follow the approach of11

Argento and French [26] and assume that the cantilever can be parameterized as having a spherical tip of radius R,12

and a conical section as depicted in Fig. 3 with a distance d from the sample. This geometry is motivated by scanning13

electron microscopy (SEM) images of various AFM tips and provides sufficient flexibility for a number of applications14

while limiting to commonly employed models for spherical probes.15

This assumption allows cylindrical symmetry to be invoked to yield analytic force relations, and relaxation of16

this assumption would necessitate the approximation of nonsymmetric contributions which yield higher-order force17

effects.18

As detailed in [26], the attractive force due to van der Waals interactions can in this case be expressed as19

FvdW (d) =
AR2

[1 − sin γ ][R sin γ − d sin γ − R − d]

6d2[R + d − R sin γ ]2 −
A tan γ [d sin γ + R sin γ + R cos(2γ )]

6 cos γ [d + R − R sin γ ]2 (44)20

where A is the Hamaker constant specified in (42) and γ is the cone angle shown in Fig. 3.21

The repulsive forces are due to the overlap of electron clouds. These are quantum mechanical in nature and very22

short range compared with the attractive forces. Phenomenological arguments yield microscopic potential relations of23

the form24

W rep(ζ ) =
B

‖ζ‖12 (45)25

Please cite this article in press as: M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Mathematical
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Fig. 4. Geometry of the AFM tip.

where B is a constant which depends on electronic and material properties of the sample and tip. Arguments analogous 1

to those for the attractive forces yield short-range force relations analogous to (41) and (43), or (44). 2

6. Examples 3

An example illustrating the application of the thin plate model for an AFM is presented in Section 6.1. In 4

Section 6.2, the two-scale model is applied to an AFM array. Finally, in Section 6.3, results for a simulation of 5

the AFM array are reported and discussed. 6

6.1. A single AFM 7

The two-dimensional domain ωP is a rectangle ωP = (0, `0
C ) × (0, LC ) with `0

C << LC . The plate is made up 8

of a homogeneous isotropic material, is clamped on the side x2 = 0 and is left free otherwhere. The elastic part is 9

ωE = (0, `0
C )× (0, L E ) and the rigid part is its complementary set ωR = (0, `0

C )× (L E , LC ). The coordinates of the 10

tip are x tip
= (x tip

1 , x tip
2 , x tip

3 ). The shape of the sample to be analyzed is parameterized by a function φ(x1, x2). The 11

force applied on the tip is modeled as a concentrated force 12

f (x) = F(d)δx tip(x) 13

where d = utip
−φtip with φtip

= φ(x tip
1 , x tip

2 ) and utip
= u(x tip). We will assume that F1 = F2 = 0. If the dependency 14

of u P
3 with respect to x1 is neglected, then the distance d between the tip and the sample is solution of the nonlinear 15

algebraic equation 16

(d + φtip)− k P (x tip
2 )F3(d) = 0 (46) 17

and when d is known u P
3 is computed by 18

u P
3 (x2) = k P (x2)F3(d) for x2 ∈ [0, LC ] 19

where 20

k P (x2) =
x2

2

6m P (3x tip
2 − x2) in [0, L E ] 21

=
L E

6m P (2L2
E − 3x tip

2 L E + (6x tip
2 − 3L E )x2) in (L E , LC ], 22

and 23

m P
=

8µa3`0
C (λ+ µ)

3(λ+ 2µ)
. (47) 24
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The proof is straightforward and we mention only the main steps. From the definition of ξ P , Ξ P , f P and gP ,1

ξ P
=

∫
ΩR

f3(x)dx = F3 and Ξ P
2 =

∫
ΩR

f3(x)x2 − f2(x)x3dx = F3x tip
2 − F2x tip

3 = F3x tip
22

because F2 = 0. The displacement u P
3 is solution of the boundary value problem3

d4u P
3

dx4
2

(x2) = 0 for x2 ∈ (0, L E ), u P
3 (0) =

du P
3

dx2
(0) = 0

−m P d3u P
3

dx3
2

(L E ) = ξ P and m P

(
d2u P

3

dx2
2

−
d3u P

3

dx3
2

x2

)
(L E ) = Ξ P

2

(48)4

where m P
= `0

C R P
2222. In the rigid part5

u P
3 (x2) = bP

+ B P
2 x26

with7

bP
= u P

3 (L E )−
du P

3

dx2
(L E )L E and B P

2 =
du P

3

dx2
(L E ).8

In particular,9

utip
= bP

+ B P
2 x tip

2 .10

Eq. (48) yields u P
3 (x2) = a0 + a1x2 + a2x2

2 + a3x3
2 in the elastic part with11

a0 = a1 = 0, 2m Pa2 = Ξ P
2 and −6m Pa3 = ξ P (49)12

from which the equation u P
3 (x2) = k P (x2)F3(d) follows. The equation for d follows by taking x2 = x tip

2 and using13

the relation u P
3 (x

tip
2 ) = d + φtip.14

6.2. An AFM array15

The whole system is still comprised of a homogeneous isotropic material. The subdomains YB and YC are two16

rectangles described respectively in the coordinates (OB, yB
1 , yB

2 ) and (OC , yC
1 , yC

2 ) by17

YB = (0, 1)× (0, `B) and YC = (0, `0
C )× (0, LC )18

where OC = (−
`0

C
2 , `B −

1
2 ), OB = (− 1

2 ,−
1
2 ), yB

= y − OB and yC
= y − OC ; see Fig. 5 for the description of the19

cell and Fig. 6 for the changes of coordinates. The flexible part YF of YC is (0, `0
C )× (0, L F ) in (OC , yC ).20

We assume that γ M
1 = ∅ so γ M

0 = {0, 1} × (0, 1). The tip coordinates are denoted by ytip in (O, y1, y2), by yCtip
21

in (O, yC
1 , yC

2 ) and by x tip
i = (x tip

i1 , x tip
i2 , x tip

i3 ) in ΩP .22

The force applied to the cantilever is assumed to be concentrated on each tip, so that23

f3(x) =

∑
i

F i
3δx tip

i
(x)24

with F i
3 = F3(u3(x

tip
i )− φ(x tip

1i , x tip
2i )). We still assume that f1 = f2 = 0. Then for d(x) = uM (x)+ uC (x, yCtip)−25

φ(x), the two-scale model is stated as follows. The couple (d, uM ) is a solution of26

Rbeam∂4
x1x1x1x1

uM (x) = f beam(x) for all x ∈ ω (50)27

uM (0, x2) = uM (L1, x2) = ∂x1uM (0, x2) = ∂x1uM (L1, x2) = 0 for all x2 ∈ (0, L2)28

and29

(d + φ − uM )(x)− kC (yCtip
2 ) f beam(x) = 0 for all x ∈ ω. (51)30

Please cite this article in press as: M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Mathematical
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Fig. 5. Reference cell.

Fig. 6. Local coordinates in YB and YC .

Once d is known, uC is computed by 1

uC (x, y2) = kC (yC
2 ) f beam(x) for all (x, yC

2 ) ∈ ω × (0, LC ) 2

kC (yC
2 ) =

yC2
2

6mC (3yCtip
2 − yC

2 ) in [0, L F ]

=
L F

6mC (2L2
F − 3yCtip

2 L F + (6yCtip
2 − 3L F )y

C
2 ) in (L F , LC ], 3

where the rigidity per unit length is 4

Rbeam
= εRM

11 =
4εµa3

B`B

3(λ+ 2µ)

(
2λ+ 2µ−

λ2

2(λ+ µ)

)
5

and 6

mC
=

8ε−2a3
C`

0
Cµ(λ+ µ)

3(λ+ 2µ)
. 7

The force per unit length f beam
= ε−1 F i

3 in the i th cell. When d and F3 are continuous one may use the continuous 8

force distribution 9

f beam(x) ≈
1
ε

F3(d(x)). 10

Moreover, LB(∇∇
TuM ) = −

2λ
4(λ+µ)

(
0 0
0 1

)
and θ = 0. 11
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Let us sketch the derivation. The first step consists in choosing f 0. It is necessarily concentrated in y = ytip, so1

f 0(x, y) ≈ ε−2 F3(d(x))δytip(y) in the i th cell,2

the choice of its coefficients being justified by the fact that
∫

YR
f 0(x, y)dy = F i

3 + O(ε). Indeed, f 0
= f̂ P

+ O(ε),3

f P
=
∫ a
−h f3dx3 and f3 =

∑
i F i

3δx tip
i

; then4 ∫
YP

f 0dy = ε−2
∫

Y εi ∩ωP

f P
+ O(ε)dx5

= ε−2
∫

Y εi ∩ωP

∫ a

−h
f3 + O(ε)dx3dx = ε−2 F i

3 + O(ε) in the i th cell6

which may be approximated by ε−2 F3(d(x)).7

With that choice of f 0, one may derive the solutions of the three Problems P B , PM and PC .8

Problem P B . The solution wB of P B is9

wB(yB) = −
λν

4(λ+ µ)
(yB

1 )
2.10

This is verified by showing that such wB satisfies the variational formulation. Thus11

M B
=

8µK

3(λ+ 2µ)

(
λ 0
0 2(λ+ 2µ)

)
with K = −

λν

4(λ+ µ)
12

and13 ∫
YB

M B
∇y∇

T
y vdy =

16µ(λ+ µ)K

3(λ+ 2µ)

∫
YB

∂2
y1 y1

vdy14

because
∫

YB
∂2

y2 y2
vdy = 0 due to the periodicity of ∂y1v on γper. By another way,15

F B
=

4µ
3

(
ν

λ+ 2µ

(
2(λ+ µ) 0

0 λ

)
+

(
0 α

α 0

))
;16

then17 ∫
YB

F B
∇y∇

T
y vdy =

4µλν
3(λ+ 2µ)

∫
YB

∂2
y2 y2

vdy18

because
∫

YB
∂2

y1 y1
vdy =

∫
YB
∂2

y1 y2
vdy = 0 due to the periodicity of v and ∂y1v. Finally the variational formulation19 ∫

YB

M B
∇y∇

T
y vdy = −

∫
YB

F B
∇y∇

T
y vdy20

is fulfilled.21

Problem PM . It is straightforward to verify that22

LB
ξζγ δ = −

2λ
4(λ+ µ)

δξ2δζ2δγ 1δρ123

R̃M
αβγρ =

4µ`Ba3
B

3

(
λ

λ+ 2µ
δαβδγρ + δαγ δβρ −

λ

2(λ+ µ)

(
λ

λ+ 2µ
δαβδγ 1δ1ρ + δα2δ2βδγ 1δ1ρ

))
.24

It then follows that25

RM
=

R̃M
1111 0

0
16`Bµ

3

 with R̃M
1111 =

4`Bµa3
B

3(λ+ 2µ)

(
2λ+ 2µ−

λ2

2(λ+ µ)

)
.26
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The macroscopic forces are f M
1 (x) = F3(d(x)) and f M

2 = 0, so uM is a solution of the boundary value problem (50) 1

and θ is a solution of 2

∂2
x1x1

θ(x) = 0 for x ∈ ω, θ(0, x2) = θ(1, x2) = 0 for all x1 ∈ (0, 1); 3

thus θ = 0. 4

Problem PC . The calculations are similar to those for the simple plate model in Section 6.1. Neglecting the variations 5

of uC with respect to y1 it turns out that uC depends only on x and y2 and is a solution of the boundary value problem 6

∂4uC

∂y4
2

= 0 for yC
2 ∈ (0, L F ), uC

=
∂uC

∂y2
= 0 for yC

2 = 0 (52) 7

−`C RC
2222

∂3uC

∂y3
2

= ξC and `C RC
2222

(
∂2uC

∂y2
2

−
∂3uC

∂y3
2

yC
2

)
= Ξ C

2 for yC
2 = L F 8

and 9

ξC (x) = ε−2 F3(d(x)), Ξ C
2 (x) = ε−2 F3(d(x))y

tip
2 . 10

The expression of uC follows by using the fact that RC
= ε−4 R P . Finally, by using the relation uC (., y2) = d−uM

+φ 11

for yC
2 = yCtip

2 , Eq. (51) follows. 12

6.3. Numerical simulation of the AFM array 13

For numerical computation the algebraic equation (51) is replaced by 14

(d + φ − uM )(R + d − R sin(γ ))2d2
− kC (yCtip

2 )G(d) = 0 (53) 15

where G(d) = F3(d)(R + d − R sin(γ ))2d2. F3(d) = FvdW (d) + F rep(d) where the van der Waals force FvdW is 16

defined in (44) from the potential (36) and the repulsive force F rep is built from (45) in the same way. In order to 17

avoid numerical errors due to the presence of large and small values in the system, we use the normalized functions 18

and variables 19

x∗

1 = x/L1, x∗

2 = x2/L2, uM∗(x∗) = uM (x)/φscal, d∗(x∗) = d(x)/φscal, 20

φ∗(x∗) = φ(x)/φscal, F∗(d∗) = L4
1 F3(d

∗φscal)/(R
beamφscalε), 21

G∗(d∗) = G(d∗φscal)/φ
3
scal, R∗

= R/φscal, k∗
= kC (yCtip

2 )/φ2
scal 22

so that (50) and (53) are replaced by 23

∂4
x∗

1
uM∗

= F∗(d∗) and E(d∗, uM∗) = 0 in(0, 1)2 24

uM∗(x∗) = ∂x1uM∗(x∗) = 0 for all x∗
∈ {0, 1} × (0, 1) 25

with E(d∗, uM∗) = (d∗
+φ∗

−uM∗)(R∗
+d∗

− R∗ sin(γ ))2(d∗)2 −k∗G∗(d∗). The displacement uM∗ is decomposed 26

on the basis of eigenfunctions ψm(x∗

1 ): 27

uM∗(x∗) =

Nu∑
n=1

Un(x
∗

2 )ψn(x
∗

1 ) 28

where 29

∂4
x∗

1
ψn(x

∗

1 ) = λnψn(x
∗

1 ) for all x∗

1 ∈ (0, 1) and ψn(x
∗

1 ) = ∂x1ψn(x
∗

1 ) = 0 for x∗

1 ∈ {0, 1}; 30

then 31

Un(x
∗

1 ) =

∫ 1

0
F∗(d∗(x∗))ψn(x

∗

1 )dx∗

1/λn . (54) 32
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Fig. 7. Distributions of uM∗, uM∗
+ uC∗ and of φ∗ as functions of x∗

1 for 10, 16 cantilevers.

The functions φ∗ and d∗ are decomposed on the normalized orthogonal Chebychev polynomials Pn on (0, 1):1

φ∗(x∗

1 ) =

Nφ∑
n=1

Φn(x
∗

2 )Pn−1(x
∗

1 ) and d∗(x∗

1 ) =

Nd∑
n=1

Dn(x
∗

2 )Pn−1(x
∗

1 ).2

Thus the second equation is replaced by3

E(D,Φ,U) = ′4

where5

E(D,Φ,U) = E

 Nd∑
\=∞

D\(§∗∈)P\−∞(§∗∞),
Nφ∑
\=∞

Φ\(§∗∈)P\−∞(§∗∞),
Nu∑
\=∞

U\(§∗∈)ψ\(§∗∞)

 .6

The discretized system is solved by replacing Un by its expression (54) and then by searching the minimum of7 ∫ 1
0 E2(D,Φ,U )dx∗

1 with respect to D. The minimum search is conducted by combining a minimizing method relative8

to D and a length line continuation with respect to the number of cells. The algorithm is initialized with a small number9

of cells where uM∗ is close to zero. Then the number of cells is increased incrementally.10

We have conducted computations with a square cell having a length of ε = 50 µm. The other parameters are11

LC = 0.5, `0
C = 1/16, aC = ε40 µm, yCtip

2 = 7/16, L F = 3/8, `B = 1/4, aB = ε/10 µm, A = 1.25e−19 J,12

γ = π/6, R = 10−7 m, λ = 6.1e11, µ = 5.2e11, φscal = 10−9. The number of cantilevers or equivalently the length13

of the array is a parameter chosen in each experiment. In the following we refer to three choices of φ∗ corresponding14

to three values of Nφ :15

Nφ = 1 : φ∗(x∗

1 ) =
φ0∗

+ φ1∗

2
,16

Nφ = 2 : φ∗(x∗

1 ) = φ0∗
+ (φ1∗

− φ0∗)x∗

1 ,17

Nφ = 3 : φ∗(x∗

1 ) = φ0∗
+ 4φ1∗x∗

1 (1 − x∗

1 )18

where φ0∗
= −0.3 and φ1∗

= −0.4.19

Fig. 7 represents the functions uM∗, uM∗
+ uC∗ at the tip locations and of φ∗ of x∗

1 ∈ (0, 1) in the case of a flat20

sample, Nφ = 1, for two arrays having 10 and 16 cantilevers in the direction x1. It is not surprising to observe that21

when the base length increases it deforms in a non-negligible way in comparison with the total displacement of the22

tip.23

Fig. 8 illustrates how the maximum value over x∗

1 of the ratio uM∗

uM∗+uC∗
taken at the tips varies as a function of24

the number of cells for Nφ = 1. Evidently this ratio tends to zero for a small number of cells but it also increases25

dramatically with the number of cells, which means that in this case the tip displacement is more governed by the base26

displacement than by the cantilever deflection.27
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Fig. 8. maxx∗
uM∗

uM∗+uC∗
with respect to the number of cells.

Table 1
Err for 10 cells and 14 cells depending on Nφ and Nd

Nφ \ Nd 1 3 5 7 9 Nφ \ Nd 1 3 5 7 9

1 2.2 2.8 4.3 5.7 7.4 1 1.5 2.1 3.6 4.9 5.8
2 1.0 2.8 3.7 3.8 3.9 2 1.0 2.1 3.6 4.6 4.7
3 0.7 2.7 3.4 4.0 4.7 3 0.6 2.5 3.4 4.0 4.1

The quality of the approximation of d∗ by using the Chebychev polynomials is also of interest. In Table 1, we 1

report the order of magnitude of the error on d∗
2

Err = −log10 err where err2
=

∫ 1
0 (d

∗

Nd
(x∗

1 )− d∗(x∗

1 ))
2dx∗

1∫ 1
0 (d

∗(x∗

1 ))
2dx∗

1

3

as a function of the number Nd of polynomials used. 4

7. Conclusion 5

We have derived two-scale models of AFM arrays which take into account the deformations of the base coupled 6

with those of the cantilevers. The first model is a general one and can be discretized with a Finite Element Method for 7

both the macroscopic domain and the reference cell. The second model is a particular case where hand calculations 8

have been pushed at their limit, so it has the form of a Euler–Bernoulli beam equation, associated to the base, coupled 9

with a nonlinear algebraic equation for the cantilevers. They do not require a heavy Finite Elements implementation 10

and may provide an efficient model for a designer. The derivation of the general model is based on an asymptotic 11

approach which guarantees a good confidence in its results. Let us review the features of the general model. The 12

cantilevers are modeled with a Love–Kirchhoff thin plate model which allows one to describe general plate flexions 13

encountered for example in nanomanipulation, their tip is rigid, the atomic forces are really applied to the extremity 14

of the tip and the base is assumed to be much stiffer than the cantilevers, which simplifies the model significantly. The 15

results show that, even for a small number of cantilevers, the mechanical displacement of the base cannot be neglected 16

in a design process. Our perspectives consist in completing this work in several aspects including the dynamics, 17

realistic shapes of the sample and control of the whole system. 18
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Appendix A4

In this appendix, we report some mathematical definitions and properties. The concepts of weak and strong5

approximation are defined in Appendix A.1. Then in Appendix A.2 the two-scale transform of a function is defined6

and its elementary properties are stated. Then, in Appendix A.3 some approximation of the adjoint of the two-scale7

transform are derived. Some weak approximations of the two-scale transform of the first-order and the second-order8

derivatives are derived in Appendix A.4. Finally, a fundamental inequality used for the derivation of the two-scale9

model is stated and proved in Appendix A.5.10

A.1. Weak and strong approximation11

Consider an open measurable set A ⊂ Rn , wε ∈ L2(A), a function depending on the parameter ε and a function12

w0
∈ L2(A) independent of ε. We say that wε = w0

+ O(ε) weakly in L2(A) if
∫

A(w
ε

− v0)vdx = O(ε) for all13

v ∈ L2(A) and we say that the same equality holds strongly in L2(A) if
∫

A(w
ε
− w0)2dx = O(ε).14

For example the oscillating function sin( x
ε
) can be approximated by zero in the weak sense but cannot be15

approximated by a function independent of ε in the strong sense.16

A.2. Properties of the two-scale transform17

We state here some elementary properties of the two-scale transform. The proofs are elementary and are not18

detailed here. Some may be found in Lenczner and Senouci-Bereski [11]. They are stated in the general case where19

Y = (− 1
2 ,

1
2 )

d and ω = Π d
j=1(0, L j )with d any positive integer and L i some non-negative numbers so that ω contains20

an entire number of cells Yi of size εd . The cells Yi are indexed by the multi-indices i = (i1, . . . , id).21

Two-scale transform of functions defined in ω: The definition of the two-scale transforms of a function v defined in ω22

remains formally the same as in (15):23

v̂(x, y) =

∑
i

χY εi
(x)v(xεi + εy)24

and has the simple properties,25

v̂ + w = v̂ + ŵ, v̂w = v̂ŵ, ∇̂v =
1
ε
∇y v̂ and

∫
ω

v(x)dx =

∫
ω×Y

v̂(x, y)dydx .26

It follows that v,w ∈ L2(ω)27

‖v‖ω = ‖̂v‖ω×Y and
∫
ω

vwdx =

∫
ω×Y

v̂ŵdydx . (55)28

The two-scale transform defined from L2(ω) to L2(ω × Y ) is a linear operator that we denote by T . Its adjoint T ∗ is29

defined by30 ∫
ω

(T ∗v)(x)w(x)dx =

∫
ω×Y

v(x, y)(Tw)(x, y)dxdy (56)31

for all w ∈ L2(ω) and v ∈ L2(ω × Y ). A direct computation shows that T ∗ is defined through32

T ∗v(xi + εy) =

∫
Y εi

v(z, y)dz for all y ∈ Y and all cell centers xi33
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or through its global expression 1

T ∗v(x) =

∑
i

ε−d
∫

Y εi

v

(
z,

x − xi

ε

)
dzχY εi

(x). (57) 2

Moreover, 3

T ∗v̂ = v. (58) 4

Indeed, for allw ∈ L2(ω),
∫
ω
(T ∗v̂−v)wdx =

∫
ω×Y v̂ŵdydx−

∫
ω
vwdx = 0 from (55). When v̂may be approximated 5

through 6

v̂ = v0
+ O(ε), (59) 7

the inversion formula provides an approximation of v: 8

v = T ∗v0
+ O(ε). (60) 9

Two-scale transform of functions defined in ω1 ⊂ ω: Consider a εY -periodic set ω1 ⊂ ω with cells Y ε1i and the 10

associated unit cell Y1 ⊂ Y . From the basic equality 11

χ̂ω1 = χω×Y1 , 12

it follows that 13∫
ω1

v(x)dx =

∫
ω×Y1

v̂(x, y)dydx 14

where v̂ represents the two-scale transform of the function v extended by zero to ω. Then for v ∈ L2(ω) 15

‖v‖ω1 = ‖̂v‖ω×Y1 . 16

For u ∈ L2(ω1) and v ∈ L2(ω × Y1), 17∫
ω1

uT ∗vdx =

∫
ω×Y1

ûvdydx (61) 18

where v has been extended by zero to ω × Y prior to applying T ∗. Finally, the approximation (60) still holds. 19

Two-scale transform on the boundary: The boundary of ω is denoted by γ and γ1 represents the intersection between 20

the closure of ω1 and γ . In the same way, γper represents the boundary of Y and γper the intersection between γ Y and 21

the closure of Y1. The outward unit normal vectors to the boundaries of ω and Y are denoted by nx and ny . Then 22∫
γ1

vds(x) =

∫
γ ∗γper

v̂ds(x)ds(y) 23

where 24

γ ∗ γper = {(x, y) ∈ γ × γper/nx (x) = ny(y)} 25

and where the definition of v̂ has been extended continuously to the boundary. Moreover, if v is continuously 26

differentiable then 27∫
γ1

uT ∗vds(x) =

∫
γ ∗γper

ûvds(y)ds(x)+ O(ε). (62) 28

Extension to some generalized functions: The two-scale transform is a linear operator that is well defined on functions. 29

Its definition can also be extended to some generalized functions or distributions: v being such a generalized function, 30

T v is defined formally by the duality 31∫
ω

〈T v,w〉y dx =
〈
v, T ∗w

〉
x 32
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for all w belonging to a class of regular functions defined on ω × Y . From this definition the two-scale transform of1

v(x) = g(x)
∑

i

δxi +εy0(x)2

T v is found to be3

T v(x, y) = ε−d T g(x, y)δy0(y) (63)4

where y0
∈ Y , δξ is the Dirac distribution in ξ and g is any regular function. Indeed,5

〈
v, T ∗w

〉
x =

〈
g(x)

∑
i

δxi +εy0(x),
∑

j

ε−d
∫

Y εj

w
(

z,
x

ε

)
dzχY εj

(x)

〉
x

6

=

∑
i

g(xi + εy0)ε−d
∫

Y εi

w(z, y0)dz = ε−d
∑

i

∫
Y εi

T g(z, y0)w(z, y0)dz7

= ε−d
∫
ω

T g(z, y0)w(z, y0)dz = ε−d
∫
ω

〈
T g(z, y)δy0(y), w(z, y0)

〉
y

dz.8

This means that T v(z, y) = ε−d T g(z, y)δy0(y).9

A.3. Approximation of T ∗
10

From its definition (57), T ∗ is not a regular function. For various reasons, we need a regular approximation of T ∗v11

that will be denoted by v. The expression of v depends on the regularity of v with respect to its first variable. Prior to12

defining v, it is required to extend v(x, y) to y ∈ Rd by Y -periodicity by posing v(x, y + z) = v(x, y) for any z ∈ Zd
13

and y ∈ Y .14

Case where v is regular: If v is k + 1 times continuously differentiable with respect to its first variable then T ∗v can15

be approximated up to the order k with an expansion in ε,16

T ∗v =

k∑
j=0

f jε
j
+ εk O(ε) (64)17

whose first coefficients are18

f0 = v, f1 = −X.∇xv and f2 =
1
2

XT(∇x∇
T
x v)X +

1
12

∆xv with X = T ∗(y) (65)19

and20

v(x) = v

(
x,

x

ε
−

1
2

)
. (66)21

The calculation of these coefficients is straightforward. Indeed, one starts by applying the Taylor formula to v at (x, y)22

with respect to its first variable: v(z, y) = v(x, y)+ ∇xv(x, y)(z − x)+ 1
2 (z − x)T∇x∇

T
x v(x, y)(z − x)+ ε2 O(ε) for23

x, z ∈ Y εi . Then one substitutes it in the expression of T ∗v. The calculations of the integrals are carried out by using24

the decomposition z − x = (z − xεi )+ (xεi − x) and the identities
∫

Y εi
(z − xεi )dz = 0 and

∑
i χY εi

(x) = 1.25

Conversely one deduces an approximation of v:26

v = T ∗

(
v + ε(y.∇x )v +

ε2

2
(y.∇x )

2v −
ε2

24
∆xv

)
+ ε2 O(ε), (67)27

which is derived by applying the second-order approximation (64) and replacing ∇x∇
T
x v, ∆xv with their zero-order28

approximations and ∇x∇
T
y v with its first-order approximation.29
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The expressions of the derivatives of v with respect to those of v are of interest for a number of calculation and are 1

easy to compute: 2

∇v = ∇xv +
1
ε
∇yv. (68) 3

From (61) and (62) and the zero-order approximation of T ∗v by v one gets directly the approximations 4∫
ω1

uvdx =

∫
ω×Y1

ûvdxdy + O(ε) and
∫
γ1

uvds(x) =

∫
γ ∗γper

ûvds(y)ds(x)+ O(ε). (69) 5

The approximation (60) has the drawback of suffering from a lack of regularity. In practice, it is preferable to replace 6

it by v: 7

v = v0
+ O(ε) (70) 8

provided that (59) holds true. 9

Case where v is partially regular: For some reasons explained in the forthcoming subsection Appendix A.4, we 10

have to deal with cases where v is regular in some directions only. So we split any vector x ∈ Rd into two parts, 11

x = xC
+ x NC , related respectively to the directions of differentiability indexed by C and the others indexed by NC . 12

The choice of notations C and NC is motivated in Appendix A.4. So we use the decompositions ∇ = ∇
C

+ ∇
NC , 13

y = yC
+ yNC and n = nC

+ nNC . The dimensions of the linear spaces generated by xC and x NC are respectively 14

dC and d NC so that dC
+ d NC

= d . According to these notations, a cell Y εi is split into the product Y εCi × Y εNC
i . Let 15

us introduce 16

v(x) = ε−d NC
∫

Y εNC
i

v

(
xC

+ zNC ,
x

ε
−

1
2

)
dzNC . (71) 17

If v is k + 1 times differentiable in the directions xC then the approximation (64) still holds with 18

f0 = v, f1 = −X.∇C
x v and f2 =

1
2

XT(∇C
x ∇CT

x v)X +
1

12
1C

x v with X = T ∗(yC ) (72) 19

instead of (65) but with v defined by (71) instead of (66), 1C
x meaning the Laplacian with respect to the direction xC

20

only. Conversely v is approximated by 21

v = T ∗

(
v + ε(yC .∇C

x )v +
ε2

2
(yC .∇C

x )
2v −

ε2

24
1C

x v

)
+ ε2 O(ε). 22

The expression (68) of the derivatives of v is replaced by 23

∇
Cv = ∇C

x v +
1
ε
∇NC

y v and ∇
NCv =

1
ε
∇NC

y v 24

or in short by 25

∇v = ∇C
x v +

1
ε
∇yv. (73) 26

Finally, the approximations (69) and (70) still hold. 27

A.4. Approximations of the two-scale transform of the derivatives 28

Consider an εY -periodic set ω1 ⊂ ω which is connected in the dC directions xC . The superscript C refers to the 29

directions of connectivity whereas NC will refer to the direction with no connectivity. The part of the boundary ∂ω 30

where the unit outward normal vector nC
x 6= 0 is divided into γ M

0 , where boundary conditions are imposed and γ M
1 . It 31

is the part of the boundary where the connection between adjacent cells occurs. 32

First-order derivatives: Let u be a function defined on ω1, depending on the parameter ε, vanishing on γ M
0 ∩ γ1 and 33

such that its norms ‖u‖ω1 and ‖∇u‖ω1 are O(1) with respect to ε. From the norm conservation through the two-scale 34
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transform, we already know that ‖û‖ω×Y1 and ‖∇̂u‖ω×Y1 are also O(1). If, in any manner, it is known that û admits an1

expansion with respect to ε on the form û = u0
+ εũ1

+ εO(ε), at least in the weak sense, with u0 and ũ1 independent2

of ε, then u0
= 0 on γ M

0 , ∇yu0
= 0 on ω × Y1,3

∇̂u = ∇
C
x u0

+ ∇yu1
+ O(ε) on ω × Y1 (74)4

in the weak sense, u1
= ũ1

− yC .∇C
x u0, u1 is Y -periodic on γper, u0

∈ L2(ω), ∇
C
x u0(x) ∈ L2(ω)d , u1

∈ L2(ω× Y1)5

and ∇yu1
∈ L2(ω × Y1)

d .6

Second-order derivatives: In addition, we assume that ‖∇∇
Tu‖ω1 is O(1), that ∇u = 0 on γ M

0 ∩ γ1 and that7

û = u0
+ εũ1

+ ε2ũ2
+ ε2 O(ε), at least in the weak sense. It then follows that ‖∇̂∇Tu‖ω×Y1 is O(1), ∇x u0

= 0 on8

γ M
0 , ∇y∇

T
y u1

= 0, ∇
C
y u1

= 0,9

∇̂u = ∇
C
x u0

+ θNC
+ O(ε) (75)10

and ∇̂∇Tu = ∇
C
x (∇

C
x )

Tu0
+ ∇

C
x (θ

NC )T + (∇C
x (θ

NC )T)T + ∇y∇
T
y u2

+ O(ε)11

on ω×Y1 in the weak sense, u2
= ũ2

− yC .∇C
x ũ1

+(yC .∇C
x )

2u0, u2 and ∇yu2 are Y -periodic on γper, θNC
= ∇

NC
y u1,12

which is independent of y, ∇
C
x (∇

C
x )

Tu0
∈ L2(ω)d×d and ∇

C
x ∇yu1, ∇y∇

T
y u2

∈ L2(ω × Y1)
d×d .13

Strong variations, first-order derivatives: In the case where the variations of u are sufficiently large so that ‖∇u‖ω1 is14

not of order O(1) but ‖ε∇u‖ω1 is O(1) and û = u0
+ O(ε), at least in the weak sense, then ∇yu0

∈ L2(ω × Y1) and15

ε∇̂u(x, y) = ∇yu0
+ O(ε) (76)16

in the weak sense.17

Strong variations, second-order derivatives: If in addition ‖ε2
∇∇

Tu‖ω1 is O(1) then ∇y∇
T
y u0

∈ L2(ω × Y1) and18

ε2
∇̂∇Tu(x, y) = ∇y∇

T
y u0

+ O(ε). (77)19

Here we sketch the proof of these approximations by indicating the calculation steps without going into precise20

mathematical justifications.21

Proof for the first-order derivative: The proof is decomposed into four steps.22

(i) If ‖∇u‖ω1 is O(1) then ∇yu0
= 0. This comes from the properties of the two-scale transform recalled above:23

ε‖∇u‖ω1 = ε‖∇̂u‖ω×Y1 = ‖∇y û‖ω×Y1 = O(ε).24

Next, we decompose ∇̂u = ∇̂C u + ∇̂NC u and compute each part separately.25

(ii) The first term turns out to be approximated by26

∇̂C u = ∇
C
x u0

+ ∇
C
y u1

+ O(ε) on ω × Y1.27

Consider a function v(x, y) two times continuously differentiable with respect to x in ω × Y1, vanishing for28

y ∈ ∂Y1 − γper and for x ∈ γ M
1 and extended by zero for y ∈ Y − Y1. We assume also that the function v defined29

from v by (71) is differentiable with respect to y. Then, Eω1 denoting the operator of extension by zero from ω1 to ω,30

X =

∫
ω×Y

T Eω1∇
C u.vdydx =

∫
ω1

∇
C u.T ∗vdx =

∫
ω1

∇
C u.vdx + O(ε)31

due to the zero-order approximation of T ∗v by v and the fact that ‖∇u‖ω1 is bounded. Applying the Green formula32

and taking into account that the product uv vanishes on the boundary of ω it follows that33

X = −

∫
ω1

u(divC
x v + ε−1divC

y v)dx + O(ε).34

Applying the approximation (64) at the zero order to divC
x v and at the first order to divC

y v yields35

X = −

∫
ω1

uT ∗(divC
x v + ε−1divC

y v + yC .∇C
x divC

y v)dx + O(ε)36
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or equivalently 1

X = −

∫
ω×Y1

û(divC
x v + ε−1divC

y v + yC .∇C
x divC

y v)dxdy + O(ε). 2

Since û = u0
+ εũ1

+ εO(ε) and ∇
C
y u0

= 0, applying the Green formula in the reverse sense yields 3∫
ω×Y

∇̂C u.vdydx =

∫
ω×Y1

(∇C
x u0

+ ∇
C
y u1).vdydx 4

−

∫
ω×γper

u1v.nC
y ds(y)dx −

∫
γ M

0 ×Y1

u0v.nC
x dyds(x)+ O(ε) (78) 5

with u1
= ũ1

− yC .∇C
x u0. From the conditions imposed on v, it follows that all the boundary terms except those on 6

ω × γper vanish. Here we have used the fact that
∫

Y1
u0 yNC .∇x divC

y vdy = 0. Reducing the choice of functions to 7

those satisfying v = 0 on ω × γper and on γ M
0 × Y1 gives 8∫

ω×Y
∇̂C u.vdydx =

∫
ω×Y1

(∇C
x u0

+ ∇
C
y u1).vdydx + O(ε) 9

which holds only for the above-mentioned v. However, from a density argument this is valid also for all v ∈ 10

L2(ω × Y1). So we conclude that the equality ∇̂C u = ∇
C
x u0

+ ∇
C
y u1

+ O(ε) holds in the weak sense. 11

(iii) As a by-product of (78) it follows that u1 is Y -periodic on γper and u0
= 0 on γ M

0 . Restarting from (78) with 12

v = 0 on γ M
0 × Y1 it follows that 13∫

ω×γper

u1v.nC
y ds(y)dx = O(ε) 14

which says that u1 is Y -periodic on γper. Finally for any v there remains 15∫
γ M

0 ×Y1

u0v.nC
x ds(y)dx = O(ε) 16

which says that u0
= 0 on γ M

0 . 17

(iv) The expression of the complementary ∇̂NC u is 18

∇̂NC u = ∇
NC
y u1

+ O(ε). 19

Indeed ∇̂NC u = ε−1
∇

NC
y û = ε−1

∇
NC
y (u0

+ εũ1)+ O(ε) = ∇
NC
y u1

+ O(ε). 20

This completes the derivation of (74). 21

Sketch of the proof for the second-order derivative: From ‖∇∇
Tu‖ω1 = O(1) it follows that ∇y∇

T
y u1 vanishes; then 22

u1 is affine with respect to y and θNC
= ∇

NC
y u1 is independent of y. Furthermore, u1 being periodic on γper implies 23

that it is independent of yC or in other words that ∇
C
y u1

= 0. The proof of (75) follows the same arguments that for 24

the proof of (74) except that v is a symmetric d × d matrix. The matrix of the second-order derivative splits in four 25

parts: ∇∇
Tu = ∇

C (∇C )Tu + ∇
C (∇NC )Tu + ∇

NC (∇C )Tu + ∇
NC (∇NC )Tu. 26

(i) The approximation of the first term 27

̂∇C (∇C )Tu = ∇
C
x (∇

C
x )

Tu0
+ ∇

C
y (∇

C
y )

Tu2
+ O(ε) on ω × Y1 (79) 28

and of the boundary conditions on γ M
0 and on γper are derived through the same calculation. The second-order 29

approximation (64) of T ∗v leads, after few lines of simple calculation, to 30∫
ω×Y

̂∇C (∇C )Tu :: vdydx =

∫
ω×Y1

(∇C
x (∇

C
x )

Tu0
+ ∇

C
y (∇

C
y )

Tu2) :: vdydx 31

+

∫
ω×γper

[u1(divC
x v)+ u2(divC

y v)− (∇C
y u2)Tv].nC

y ds(y)dx + O(ε). 32
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The formula (79) as well as the boundary conditions follow.1

(ii) The second term ̂∇C∇NC u is approximated by2

̂∇C (∇NC )Tu = ∇
C
x (θ

NC )T + ∇
NC
y (∇C

y )
Tu2

+ O(ε). (80)3

Here ∇
NC is applied to u and ∇

C is transposed on the test function. Following the calculation and using the fact that4

∇
NC
y (yC .∇C

x u0) = 0 the formula5 ∫
ω×Y

̂∇C (∇NC )Tu :: vdydx =

∫
ω×Y1

(∇C
x (θ

NC )T + ∇
NC
y (∇C

y )
Tu2) :: vdydx + O(ε)6

arises when v = 0 on ω × γper and on ∂ω × Y1. This immediately provides (80).7

(iii) The third term ̂∇NC (∇C )Tu is equal to the second term transposed so its approximation is equal to the8

transposed approximation of the second term.9

(iv) The derivation of the formula for the fourth term10

̂∇NC (∇NC )Tu = ∇
NC
y (∇NC

y )Tu2
+ O(ε) on ω × Y1 (81)11

is straightforward.12

Proof for the strong variations case: For proving (76) and (77), let us recall that ε∇̂u = ∇y û and ε2
∇̂∇Tu = ∇y∇

T
y û,13

so using the expansion of û leads directly to the results.14

A.5. An inequality15

Lemma 1. The inequality16

‖v‖ωP ≤ C‖χωB ∇v + χωF ε∇v‖ωP (82)17

is satisfied for all v ∈ H1(ωP ) such that v = 0 on γ ε0 it follows that18

Proof. (i) First we establish that there exists a constant C1 > 0 such that for all v ∈ H1(Y )‖v‖2
YC

≤ C1(‖v‖
2
YB

+19

‖∇v‖2
Y ). This is proven similarly to the classical Poincaré inequalities.20

(ii) Then we establish that there exists a constant C2 > 0 such that for all v ∈ H1
γ ε0
(ωP ), ‖v‖2

ωP
≤21

C3‖χωB (∂x1v, ε∂x2v) + ε∇v‖2
ωP

uniformly with respect to ε > 0. Let us start from the previous inequality and,22

for each i , let us apply the change of variable that maps Y towards Y εi . This leads to a family of inequality that we23

sum over i . It follows that for all v ∈ H1(ωP ):24

‖v‖2
ωC

≤ C1(‖v‖
2
ωC

+ ‖ε∇v‖2
ωP
). (83)25

By another way, let us introduce a scaling of ωB by a factor of n = 1/ε in the direction x2 only. This leads to a26

family ω̂ of n strips with length equal to 1 in the x1 direction and of the order of one in the second direction. The27

classical Poincaré inequality may be applied to each of them, which in turn by summation over the n strips yields28

‖v‖2
ω̂ ≤ C2‖∇v‖

2
ω̂ provided that v ∈ H1

γ̂ ε0
(ω̂ε). Here γ̂ ε0 is obtained through the dilatation of γ ε0 by a factor 1/ε. By29

reversing the scaling, it follows that for all v ∈ H1
γ ε0
(ω),30

‖v‖2
ωC

≤ C2‖(∂x1v, ε∂x2v)‖
2
ωC
. (84)31

Combining (83) and (84) yields (ii).32

(iii) The desired result is a direct consequence of (ii). �33
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