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We derive the homogenized model of periodic electrical networks which includes resis-

tive devices, voltage-to-voltage amplifiers, sources of tension and sources of current. On
the one hand, in considering the homogenized problem, general conditions are stated
insuring the existence and uniqueness of the solution. They are formulated in function
of the network topology. On the other hand, the two-scale transformation introduced
by Arbogast, Douglas and Hornung is adapted to the context of electrical networks.
New two-scale convergence results, inspired by the principle of Allaire’s two-scale con-
vergence, are shown in this context. In particular, the two-scale convergence for the
tangential derivative on a network is established. Following these results, two models of
homogenized networks are derived. The first one belongs to a general framework whereas
the second one does not.

1. Introduction

This paper was written in view of the applications of the modelling of Smart Mate-

rials Systems. Let us recall that Smart Materials Systems are mechanical structures

including actuators, sensors and an electronic system. We focus our attention on

the case where they are many transducers and electronical devices and where they

are distributed in the structure. These kinds of systems are useful in acoustics and

fluid mechanics, because the sound and the perturbation in a fluid are distributed

phenomena. Therefore the control needs to be distributed.

On the one hand, we have already derived models for elastic plates and shells

including a great number of periodically distributed piezoelectric transducers and

distributed electronics in specific configurations; see Canon and Lenczner10,11 and

Senouci-Bereksi and Lenczner.23

On the other hand, a general model for periodically distributed electronic net-

work including resistors, current sources and voltage sources was announced in

Ref. 14. It was based on a variational formulation of the electronical equations and
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on a new concept of two-scale convergence. This concept is inspired by a combi-

nation of ideas by Allaire4 and Arbogast, Douglas and Hornung.5 In this paper

we state a general model of periodically distributed electrical network including

resistors, voltage sources, current sources and voltage-to-voltage amplifiers.

This paper is divided into three parts: in the first part, the variational for-

mulation of the electrical network equation is stated. The sufficient conditions for

the existence and uniqueness of its solution are stated. In the second part, the

statement of the definition of the two-scale convergence is adapted for electrical

networks. The two-scale limit of the tangential derivative along a one-dimensional

network is derived.

Finally, in the last part, the two-scale model for electrical networks is derived.

Part 1. We will start with the classical equations of electrical network. They are

stated for example in Vlach and Singhal.24 Then, the variational formulation equiv-

alent to these equations is stated. The variational formulation has the form:

a(u, v) + b1(v, p) = 〈f, p〉 ,

b2(u, q) = 〈g, q〉 ,

where b1 and b2 are different. The bilinear forms a(., .), b1(., .) and b2(., .) are built

with some partial differential operators. The use of such variational formulation for

this problem seems to be new. Necessary and sufficient conditions for the existence

and uniqueness of the solution for such a problem have been derived in Ref. 8.

Sufficient conditions for the existence and uniqueness of the solution are given.

There are graph interpretations of the conditions stated in Ref. 8. There are mainly

related to the location of the various devices in the network: voltage or current

sources, resistors, amplifier inputs and outputs, and earth. They use some very

simple graph theory principles. The statement of the existence and uniqueness, and

the equivalence between the variational formulation and the classical formulation,

are stated in Theorem 1.

This approach in the electrical circuit analysis seems to be new. The results of

existence and uniqueness are normally based on graph and algebra theories, see for

example Recksi.19

In our opinion, there are two points of interest in our work. First, it gives us

the possibility of having a global analysis for mechanical and electrical systems.

Second, it provides the estimated solutions, necessary for the application of usual

asymptotic methods. In particular, these estimates are required for the derivation

of homogenized model.

The methodology which is developed here may be extended to electrical net-

works which includes other devices such as current to current amplifiers, voltage

to current amplifiers, current to voltage amplifiers, diodes, operational amplifiers,

negative resistors, capacitors and inductors. It also allows us to consider the cou-

pling between electrical and mechanical systems in a unified framework based on

graph theory as well as functional analysis.
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Part 2. The two-scale transformation and the two-scale convergence that we use in

this paper, were already introduced in Ref. 5. We reuse them in the one-dimensional

manifold context. We establish, in two different cases, the two-scale limits of the

tangential derivative of a field defined on the periodic network. These two cases

refer to two kinds of field estimates which occur in our electrical network analysis.

The results of two-scale convergence are stated in Theorem 2.

The results stated in Theorem 2 and their proofs are new. In particular, they

were not proved in Ref. 4 or 5.

The two-scale convergence defined in Ref. 4 does not apply to networks. In

Ref. 5, only the definitions of a two-scale transformation and a two-scale convergence

were stated. The two-scale convergence for the gradient were not at all established.

We also introduce original proofs for the two-scale convergence of the tangential

derivative. These kinds of proofs may be applied to functions defined on general

periodic (n− p)-dimensional manifolds immerted in Rn.

Let us recall the definition introduced in Ref. 4, that being the two-scale con-

vergence of functions defined in a domain Ω ⊂ Rn (n ∈ N∗) and relative to a cell

Y = ]−1/2,+1/2[n. A sequence (uε)ε>0 in L2(Ω), is said to be two-scale convergent

towards a limit u(z,y) ∈ L2(Ω× Y ) if for any function ϕ(z,y) ∈ D(Ω; C∞] (Y )) we

have

lim
ε→0

∫
Ω

uε(x)ϕ

(
x,

x

ε

)
dx =

∫
Ω×Y

u(z,y)ϕ(z,y) dy dz .

Let us remark that this is a weak convergence. In addition, it requires the function

uε to be defined on the whole domain Ω. Thus, this is not applicable for general

electrical networks.

The principle of the two-scale convergence introduced in Ref. 5 is based on a

variable change transforming Ω to Ω× Y . According to our method, the two-scale

convergence is an ordinary one, concerning functions defined on Ω× Y instead of

Ω. This point of view presents two main advantages.

First of all, this two-scale convergence concept is more general in the sense that

it is not restricted to Lp weak convergence. It can be easily extended to any kind

of convergence concerning functions.

The second advantage being when we need the convergence of functions defined

on a periodic manifold. This method may be easily adapted. In this case, Y is

replaced by the reference cell which is a manifold. This method does not require

any extension of the solution.

Let us also mention that in Ref. 17, the extension of the two-scale convergence4

to a periodic (n − 1)-dimensional manifold was carried out. It was based on an

extension of the solution.

Part 3. The homogenization of the electrical network equations is based on the

results stated in Theorems 1 and 2. Our goal is not to provide a general approach

of electrical network homogenization. Many different models may be derived de-

pending on the behavior of different coefficients with respect to the length ε of
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the period. We make some assumptions about solution estimates. This choice is

led by its interest in applications and by its relative simplicity. In particular, we

assume that the amplifier’s coefficients are of zero order with respect to ε. The gen-

eral model related to this framework is stated in Theorem 3. Finally, a particular

example with coefficients at the order ε−1 is treated in Theorem 4.

Let us note that a homogenized model of two-dimensional electrical networks

made of resistors have already been derived in Ref. 25. The method developed by

Vogelius was based on an extension of the solution to an open set, which includes the

electrical network. The proofs were based on some finite element techniques. The

technical difference between our approach and that of Ref. 25 is that, no extension

of the solution is required, and the proofs are valid for a network imbedded in an

n-dimensional Euclidean space where n ≥ 1. In addition, voltage sources, current

sources and voltage-to-voltage amplifiers are taken into account in our approach.

This was not the case in Ref. 25.

The two-scale convergence described in this paper may be applicable for the

homogenization of trusses equations. Different approaches have already been pro-

posed for the modelling of periodical trusses or nets, see Abrate,1–3 Renton,20,21

Cioranescu and Saint Jean Paulin,12,13 Caillerie and Moreau,9 Bakhalov and

Panasenko,6 Panasenko18 and Maz’ya and Slutsky.15 The approach of Refs. 12 and

13 is based on an asymptotic analysis where both the beam thickness and the truss

period lengths vanish. D. Caillerie and Al. introduced the discrete homogenization

method for the same problem. In this approach, the unknown are displacement of

vertices and tensions of the edges. The model derivation is based on an asymptotic

expansion of the solution.

The paper is divided into eight sections. In Sec. 2, we will consider an electrical

network including resistors, tension sources, current sources and voltage-to-voltage

amplifiers. We will provide a set of conditions on the network topology under which

the problem is well-posed. In Sec. 3, two-scale convergence results concerning func-

tions defined on electrical networks will be explained. In Sec. 4, a general framework

for the homogenization of electric network based on the results of Secs. 2 and 3 will

be detailed. Then, a particular example of electric network not belonging to the gen-

eral framework will be described, and its homogenized model stated. In Secs. 5–8

the proof of Theorems 1–4 will be explained.

2. Variational Formulation of Electrical Networks

In this section, we state the general variational formulation which is satisfied by the

electrical potential in the electrical network. The network includes resistors, current

sources, voltage sources and voltage-to-voltage amplifiers. The conditions posed on

the network for the existence and the uniqueness of the solution are stated. They

are based on the conditions stated in Ref. 8 and are interpreted in terms of the

conditions posed on the electrical network. The case of purely resistive networks

was already explained in Ref. 14.
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2.1. Notations

We use the definitions and the properties relative to electrical networks presented

in Ref. 24, see Fig. 1. An electrical network is composed of vertices (or nodes) and

edges (or branches). Vertices are linked by edges. The set of edges is denoted by Θ.

Mathematically, Θ is a network in Rn where n ∈ N∗. We denote by σ0 the subset

of vertices linked to the earth (i.e. where the electrical potential is equal to zero).

The network Θ is divided into five disjoint parts: Θ0, Θ1, Θ2, Θ3 and Θ4. They

are occupied respectively by the voltage sources, the current sources, the resistors,

the input and the output of the amplifiers. The edges included in these sets are

denoted respectively by el0, el1, el2, el3 and el4. Here, l is an index varying from one

to the number of edges belonging to the respective sets.

The network Θ is assumed to be parametrized. This parametrization defines a

positive sense for each edge. s+
e and s−e represent the vertices belonging to an edge

e ⊂ Θ such that s+
e → s−e in the positive sense. The set of edges arriving at a

positive (respectively negative) sense at a vertex s is denoted by Θ+
s (respectively

Θ−s ). The length of an edge e is denoted by |e|. The function L is distributed on Θ.

It is constant on each edge, and L(x) = |e| for all x ∈ e. The tangent vector to Θ

at point x is denoted by τ(x).

2.2. Statement of equations

In this section, the equations of electrical networks in their classical form are re-

called. We also introduce the necessary notations in order to write their variational

formulation.

Let us define the sets P0(Θ) or (P0(Θk))k=0,...,4 (respectively P1(Θ)) of functions

constant on each edge e ⊂ Θ or (e ⊂ Θk)k=0,...,4 (respectively affine on each edge

e ⊂ Θ and continuous on Θ). The current i and the voltage u are some distributed

fields belonging to P0(Θ). The electrical potential is also a distributed field, it

belongs to P1(Θ). The tangential derivative of a function ψ defined on Θ is denoted

by ∇τψ.

An example of the network described below is represented in Fig. 1.

Fig. 1. An example of electrical network.
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The voltage Kirchhoff law is stated on each edge e ⊂ Θ as follows, u|e = ϕ(s+
e )−

ϕ(s−e ), or equivalently

−L∇τϕ = u on Θ . (1)

The current Kirchhoff law is stated for each vertex s as
∑
e⊂Θ+

s
i|e−

∑
e⊂Θ−s

i|e = 0.

It can be equivalently written under a weak formulation:∫
Θ

L i(x)∇τψ(x) dl(x) = 0 for all ψ ∈ P1(Θ) such that ψ = 0 on σ0 . (2)

The values of voltage, current and electrical potential are imposed respectively on

Θ0, Θ1 and σ0 to be equal to the voltage source ud ∈ P0(Θ0), the current source

id ∈ P0(Θ1) and 0 on σ0:

u = ud on Θ0, i = id on Θ1 and ϕ = 0 on σ0 .

Let us remark that the sign of ud and of id on an edge e depends on the orientation

of e.

An impedance 1/g ∈ P0(Θ2) is associated to Θ2, which means that u and i are

linked by the constitutive linear equation on Θ2:

i = gu on Θ2 . (3)

We assume that g ≥ gmin > 0.

We can recall that a voltage-to-voltage amplifier is a device which imposes two

equations between currents and voltages of two edges. The set Θ3 and Θ4 are

respectively the sets of amplifier’s inputs and outputs. Each input edge el3 ∈ Θ3 is

associated to a unique output edge el4 ∈ Θ4 where l varies from one to the number

of amplifiers used.

The constitutive relations of the voltage-to-voltage amplifier are for each l:

u|el4 − klu|el3 = 0 and i|el3 = 0 , (4)

where kl ∈ R∗ is the amplification coefficient. The edges el3 and el4 are respectively

called the input and the output of the amplifier. Since Eq. (4) applies for each

amplifier, we consider that k ∈ P0(Θ3) and we write the amplifier constitutive

equations as follows:

u|Θ4
− klu|Θ3

= 0 and i|Θ3
= 0 . (5)

2.3. The variational formulation

In this section, the variational formulation equivalent to the above equations, is

introduced. Some sufficient conditions for the existence and uniqueness of the so-

lution of the equations are also formulated. Finally, the existence and uniqueness

theorem associated with the above problem is stated. This theorem is proved in

Sec. 5.

The conditions stated in this section for the existence and uniqueness of the

solution are graph theory interpretations of the conditions stated in Ref. 8. The
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conditions stated in Ref. 8 are mainly four inf-sup conditions and the continuity

on the right-hand side of the variational formulation. Graph theory interpretation,

means to interpret in terms of the location of the various devices such as resistors,

amplifier inputs and outputs, current and voltage source and earth.

The result stated in this section is a basis for the derivation of the two-scale

model stated in Secs. 4 and 5.

For ud ∈ P0(Θ0), let us define the admissible functions set for the variational

problem:

Ψad(ud) = {(ψ, j) ∈ P1(Θ)× P0(Θ4), ψ = 0 on σ0 and − |e|∇τψ = ud on Θ0} ,

and the following variational formulation. Consider (ϕ, i) ∈ Ψad(ud) solution of:∫
Θ2

Lg∇τϕ∇τψ dl(x) +

∫
Θ4

i∇τψ dl(x) = −
∫

Θ1

id∇τψ dl(x)

∫
Θ3

Lk∇τϕj dl(x)−
∫

Θ4

L∇τϕj dl(x) = 0

for all (ψ, j) ∈ Ψad(0) . (6)

Let us remark that j ∈ P0(Θ4) is used on Θ3. We adopt the rule that j takes the

same value on the input el3 and on the output el4 of an amplifier.

This variational formulation has the form: (ϕ, i) ∈ Ψad(ud)

a(ϕ,ψ) + b1(i, ψ) = l(ψ) ,

b2(j, ϕ) = 0 ,

for all (ψ, j) ∈ Ψad(0). Here b1(., .) and b2(., .) are different.

Definition. (i) A path is a sequence of edges where the end of an edge is connected

to the beginning of the following one.

(ii) A circuit is a path where the beginning of the first edge is connected to the

end of the last one. For this definition, all vertices belonging to σ0 (the earth) are

considered as one. The circuits are denoted by the letter β.

In order to check the conditions in Ref. 8, we will introduce the following linear

system. For v ∈ P0(Θ3) such that∫
β∩Θ3

v dl(x) = 0 for each circuit β of Θ0 ∪Θ3 ∪Θ4 , (7)

we need to construct a solution u ∈ P0(Θ−Θ1), relative to v, of the linear system:

u|Ξ = 0 ,

u|el4 − ku|el3 = v|el3 for every l , (8)∫
β

u dl(x) = 0 for each circuit β of Θ−Θ1 ,

where Ξ is a subset of Θ−Θ1.
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Consider the class of subsets X ⊂ Θ−Θ1 such that equations in (8) are inde-

pendent when Ξ = (Θ−Θ1)−X.

Definition. We say that X is minimal for the independency of equations in (8)

if for any X∗ ⊂ X (with X∗ 6= X), equations in (8) are not independent when

Ξ = (Θ−Θ1)−X∗.

Remarks. (i) For a given set of Eqs. (8), the minimal set X is not unique.

(ii) Every minimal set have the same cardinal (see Recksi19).

(iii) There exist algorithms for building up such minimal set X. See Recksi.19

Assumptions.

(H1) There exist Θ2 ⊂ Θ2 and Θ̃2 = Θ2−Θ2 such that the following two conditions

are fulfilled:

(i) There exists a minimal set X = Θ̃2 ∪Θ3 ∪Θ4 for the independency of equations

in (8) such that Ξ = (Θ−Θ1)−X = Θ0 ∪Θ2.

(ii) For every v ∈ P0(Θ3) verifying the compatibility condition (7), the linear system

(8) has at most one solution u ∈ P0(Θ−Θ1).

Remark. It will be proved later that (H1)(i) is equivalent to the existence of the

solution of (8). Therefore, (i) and (ii) imply that (8) has one and only one solution.

That is, the system (8) has as many equations as the unknowns.

Let us consider such a minimal set X. For e ∈ X, X∗ = (X−e) is not a minimal

set, i.e. Eqs. (8) are not independent when Ξ = (Θ−Θ1)−X∗. After deleting some

equations in (8) (except the equation u|e = 0), the remaining equations can be

independent.

Definition. (i) One says that a subset E of dependent equations of (8) with Ξ =

(Θ − Θ1) − X∗, is minimal with respect to e, when, after deleting any equation,

the remaining equations are independent and when the number of equations in E

is equal to the number of edges involved in E plus one.

(ii) The set of edges involved in a minimal set of dependent equations is called the

minimal set of edges linked with e and is denoted by Z(e).

Remarks. (i) In the above definition (i), the subset necessary contains the equation

u|e = 0, otherwise equations would be independent.

(ii) The definition of minimal subset of dependent equations leads to the existence

of solution of system E. When the number of equations in E is equal to the number

of edges involved in E plus one, the solution is unique.

(iii) The definition of Z(e) implies that u|e is a unique linear combination of

(u|e′)e′∈Z(e)−{e}. Therefore, |u|e ≤ C|u|Z(e)−{e}.

(H2) Let us consider α0 ∈ R. One can choose a function α ∈ P0(Θ), constant on

each circuit β, such that for each e ∈ Θ̃2, there exists a minimal set Z(e) of edges,

linked with e, such that α|Z(e)∩Θ3
= α0 and α|Z(e)∩Θ̃2

= 1.
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There is an example of the partition of Θ2 = Θ̃2 ∪ Θ2 in Fig. 2. Relative

to this example, Z(e3) = {e0, e4, e3, e
3
2}, Z(e4) = {e0, e4, e3, e

3
2} and Z(ẽ2) =

{e0, e4, e3, e
3
2, e

1
2, e

2
2}.

Fig. 2. The partition Θ2 = Θ̃2 ∪Θ2.

The aim of the third assumption is to interpret the following condition: there

exists a positive constant C such that for any (ψ, 0) ∈ Ψad(0) satisfying B1(ψ) = 0

we have |∇τψ|Θ3 ≤ C|∇τψ|Θ2
,

(H3) Every edge e ∈ Θ3 belongs to a circuit β ⊂ {e} ∪Θ0 ∪Θ2 ∪Θ4.

The following assumption (H4) means that there exists a positive constant C

such that for every (ψ, 0) ∈ Ψad(0) we have |∇τψ|Θ1 ≤ C|∇τψ|Θ−Θ1 . It implies the

continuity of the linear form l(ψ) =
∫

Θ1
id∇τψ dl(x) with respect to the semi-norm

|∇τψ|Θ−Θ1 .

(H4) Every edge e ∈ Θ1 belongs to a circuit β ⊂ {e} ∪ (Θ−Θ1).

The assumption (H5) means that there exists a positive constant C such that

for every (ψ, 0) ∈ Ψad(0) we have |ψ|Θ−Θ1 ≤ C|∇τψ|Θ. It leads to a kind of

Poincaré inequality. Combined with the assumption (H4), it insures that the semi-

norm |∇τψ|Θ is a norm on Ψad(0).

(H5) In each connected component of Θ−Θ1, there is a vertex belonging to σ0.

The assumption (H6) is a compatibility condition between the various voltage

sources (the amplifier’s outputs are generally called active voltage source).

(H6) There is no circuit solely made up of edges belonging to Θ4 ∪Θ0.

The assumption (H7) is equivalent to the following assertion. For every j ∈
P0(Θ4) there exists a function (ψ, 0) ∈ Ψad(0) such that ∇τψ = j on Θ4.

Consider the circuits β included in Θ satisfying β∩Θ4 6= ∅. There exists a subset

Θ∗ ⊂ Θ of edges such that the network Θ−Θ∗ does not contain such a circuit β.

The set Θ∗ is said to be minimal if for any Θ∗1 ⊂ Θ∗ (Θ∗1 6= Θ∗), Θ−Θ∗1 contains

at least one circuit β satisfying β ∩Θ4 6= ∅ (see Recski19).

(H7) There exists such a minimal set Θ∗ verifying Θ∗ ∩ (Θ0 ∪Θ4) = ∅.
Now we are ready to state the theorem of existence and uniqueness.
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Theorem 1. If the assumptions (H1–H7) are fulfilled, then the variational formu-

lation (6) has a unique solution.

3. Two-Scale Convergence on One-Dimensional Periodic Manifold

In the previous section, we have derived the variational formulation for an electrical

circuit. In view of the modelling of composite structures which includes periodically

distributed electrical circuits, we will assume that the length of the period is small.

The homogenization process consists of passing to the limit in the equations when

this length vanishes. The set of equations derived from this asymptotic method is

called the homogenized problem.

In this section, we describe a mathematical tool: the two-scale convergence based

on the two-scale transformation introduced in Ref. 5. This tool is well-suited for

the derivation of the homogenized model for electrical circuits.

3.1. Definition of two-scale convergence

Now Θε is indexed by ε because it is a periodic network. Its period length in each

direction is assumed to be equal to ε. It is assumed that ε ∈ N−1 = {1/N,N ∈ N∗
such that N > 2}, and that Θε ⊂ Ω = [0, 1]n (see Fig. 3). For N = 1/ε, the

square Ω and the circuit Θε are divided into Nn cells indexed by i ∈ Iε = {i =

(i1, . . . , in) ∈ {0, . . . , N − 1}n} denoted by Y εi and T εi . The center of Y εi is denoted

by xεi . A translation and an expansion by 1/ε of Y εi and T εi give Y = ]− 1/2, 1/2[n

and T ⊂ Y (see Fig. 3 for an example). Remark that every x ∈ T εi may be expressed

as: x = xεi + εy where y ∈ T .

Fig. 3. The periodic network.

The Lebesgue measures on Ω×T and on Θε are denoted by dl(y) dz and dl(x).

Definition. (Arbogast, Douglas and Hornung) For a function v ∈ L1(Θε), the two-

scale transformation v̂ε of v is defined on Ω× T by v̂ε(z,y) = v(x) where x,y and
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z are linked by the following relation: for any i ∈ Iε and any y ∈ T , x = xεi + εy

where z is any point belonging to Y εi .

Remark. The map which transforms Θε into Ω×T defined by x 7→ (z,y) is called

the two-scale transformation.

The basic property of the two-scale transformation is:

Proposition 3.1. If v ∈ L1(Θε), then v̂ε ∈ L1(Ω × T ) and ε1−n‖v̂ε‖L1(Ω×T ) =

‖vε‖L1(Θε).

For p ∈ ]0,∞], let us introduce the definition of the two-scale convergence in Lp.

Corollary 3.2. For every p ∈ ]0,∞ ], if vε ∈ Lp(Θε), then v̂ε ∈ Lp(Ω × T ) and

‖vε‖pLp(Θε) = ε1−n‖v̂ε‖pLp(Ω×T ).

Definition. If (vε)ε∈N−1 is a sequence of functions defined on Θε such that its

two-scale transformation (v̂ε)ε∈N−1 converges for the Lp(Ω × T ) topology, when ε

vanishes, towards some function v ∈ Lp(Ω×T ), then the sequence (vε)ε∈N−1 is said

to be two-scale Lp convergent towards v. This convergence is strong if v̂ε converges

strongly and weak if v̂ε converges weakly.

3.2. Two-scale convergence of a derivative

In this section, we give the expression of the limit of the tangential derivative of a

function defined on Θε. It is useful because it allows one to pass to the limit in the

variational formulation of the electrical network.

In each point x ∈ Θε or y ∈ T , the tangential derivatives of a function ψ on Θε

and T are denoted by the same notation ∇τψ.

Let us define some functional spaces:

H1(Θε) = {ψ ∈ L2(Θε),∇τψ ∈ L2(Θε)} ,

L2(Ω;H1
] (T )) = {ψ ∈ L2(Ω× T ),∇τψ ∈ L2(Ω× T ), ψ is Y -periodic} .

The subset T ′ ⊂ T is composed of all paths t′ going through Y from one side to

the opposite one and being periodic. The complementary set of T ′ in T is denoted

by T ′′ = T − T ′. The subsets Θε′, Θε′′ of Θε are such that Ω × T ′ and Ω × T ′′
are the ranges of Θε′ and Θε′′ by the two-scale transformation. We denote by i the

index of the normal direction of the faces Y where T ′ meets ∂Y . The ith component

of the external normal nΩ to ∂Ω is denoted by nΩi. The path T ′′ is such that its

extremities do not belong to ∂Y . For an example of such paths, see Figs. 3 and 4.

Fig. 4. The reference cell.
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Let us define:

H1
τ (Ω, T ′) = {ψ ∈ L2(Ω× T ′) such that on each path t′ ⊂ T ′ ,

∇zψ|t′ · τ0
|t′ ∈ L2(Ω× t′) and ψ is independent of y on t′}

where t′ crosses Y from one side to the opposite side and is periodic, and τ0
|t′ =∫

t′ τ(y) dl(y).

Theorem 2. (i) Consider a sequence (ϕε)ε∈N−1 defined on Θε′ such that

εn−1||ϕε||2H1(Θε′) ≤ C ,
then there exists an extracted subsequence (ϕε)ε such that:

ϕε ⇀ ϕ0

and on each path t′ ⊂ T ′ which crosses Y and is periodic

∇ετϕ|t′ ⇀ ∇zϕ
0
|t′ · τ0

|t′ +∇τϕ1
|t′ ,

where the convergences are two-scale weak in L2(Ω×T ′). Here ϕ0 ∈ H1
τ (Ω, T ′) and

ϕ1 ∈ L2(Ω;H1
] (t′)).

(ii) Consider a function ϕd ∈ L2(∂Ω). Moreover if

ϕε = ϕd on ∂Θε′ ∩ ∂Ω ,

then

ϕ0(z,y)nΩi = ϕd(z)nΩi for (z,y) ∈ ∂Ω× T ′ .
(iii) Consider a sequence (ηε)ε∈N−1 defined on Θε′′ such that

(εn−1||ε∇τηε||2L2(Θε′′) + εn−1||ηε||2L2(Θε′′))ε∈N−1 ≤ C .
There exists an extracted subsequence (ηε)ε such that

(ηε)ε ⇀ η0 and (ε∇τηε)ε ⇀ ∇τη0 ,

where the convergences are two-scale weak in Ω × T ′′. Here η0 ∈ L2(Ω;H1(T ′′)).

(iv) Moreover, if

T ′ ∩ T ′′ 6= ∅, and ϕε = ηε on Θε′ ∩Θε′′ ,

then

ϕ0 = η0 on Ω× (T ′ ∩ T ′′) .

4. Homogenization of Electrical Network Equations

We now consider that the electrical network is periodic and that its period is small.

Different classes of assumptions leading to different classes of models may be dis-

cussed. It is out of our scope to derive all the possible models. We consider first

a class of assumptions formulated in a general framework. We derive the general

homogenized model related to this general class. Secondly, we consider a partic-

ular case which does not belong to the preceding general class, and we derive its

homogenized model. Both models are based on results stated in previous sections.
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4.1. A general model

In this section, we will consider some electrical circuits fulfilling the assumptions

required for the existence and uniqueness of the solution stated in Sec. 2. We will

formulate additional assumptions in order to insure that the solution is bounded

in the sense of Theorem 2. Thus, using Theorem 2, we will pass to the limit in the

variational formulation and will derive the homogenized model.

Let us assume that the network Θ and the subnetworks (Θk)k=0,...,4 are εY -

periodic. They are denoted by Θε and (Θε
k)k=0,...,4. All the notations stated in Sec. 2

are now attached with an index ε. We also use the notations of Sec. 3 relative to

two-scale convergence. Voltage sources, current sources, resistors, amplifier’s inputs

and outputs in T are denoted by (Tk)k=0,...,4.

The set σε0 of nodes linked to the earth is also assumed to be periodic. In

addition, there may exist a set γε0 of nodes located on Θε ∩ ∂Ω where the electrical

potential is also equal to zero. The two-scale transformation of σε0 is denoted by

Ω×S0. The two-scale transformation of γε0 is defined on each face (Γk+∪Γk−)k=1,...,n

of the boundary ∂Ω and is denoted by (Γk+ × Sk+
0 ∪Γk− ×Sk−0 )k=1,...,n. Here Γk+

(respectively Γk−) are the faces belonging to ∂Ω which are normal to the kth

vector of the basis, and such that their external normals are oriented in positive

(respectively negative) direction.

The assumptions for the existence, uniqueness and convergence of the solution

are based on the same notations as those introduced in Sec. 2.3.

Definition. The definition of the circuit which is used for paths belonging to T

coincide with the definition given in Sec. 2 taking into account the following excep-

tion. Two vertices located periodically on the boundary ∂Y are considered as one.

Such circuits are denoted by β].

First, let us introduce some restrictions on the configuration of the periodic

network.

In this paper, a path which goes through a cell, is assumed to go from one side

to the other. Other situations are out of the scope of this paper. Any edge belongs

to ∂Y .

The set Θε (respectively (Θε
k)k=0,...,4) is divided into two sets Θε′ and Θε′′

(respectively (Θε′
k )k=0,...,4 and (Θε′′

k )k=0,...,4). These two kinds of subsets are formed

of paths t′ and t′′ defined in Sec. 3.

Remark. Other two-scale models (simpler ones) may be derived without such

assumption made on the partition of Θε in Θε′ and Θε′′. However, the above choice

is motivated by the applications that we have in mind.

The following estimates have to be verified case by case. For their verification, we

use the method described in Sec. 2 based on graph theory. We consider a partition of

Θε
2 = Θ

ε

2∪Θ̃ε
2 based on the assumptions (H1–H3). For vε ∈ P0(Θε

3) and fε ∈ P0(Θ
ε

2)

such that ∫
βε∩Θε3

vε dl(x) = 0 for each circuit βε of Θε
0 ∪Θε

3 ∪Θε
4
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and ∫
βε∩Θ

ε
2

fε dl(x) = 0 for each circuit βε of Θε
0 ∪Θ

ε

2 ,

we need to construct a solution wε ∈ P0(Θε − Θε
1), relative to vε and fε, of the

linear system:

Lε∇τwε|Θε2 = fε|Θε2
,

Lε∇τwε|Θε0 = 0 ,

(9)

Lε∇τwε|eε4l − kL
ε∇τwε|eεl3 = vε|eε3l

for every l ,∫
βε
Lε∇τwε dl(x) = 0 for each circuit βε of Θε −Θε

1 .

(H1bis) Consider wε the solution of (9). There exists a positive constant C such

that

|wε|2
Θ̃ε′2 ∪Θε′3 ∪Θε′4

+ |εwε|2
Θ̃ε′′2 ∪Θε′′3 ∪Θε′′4

≤ C
(
|fε|2

Θ
ε′
2

+ |εfε|2
Θ
ε′′
2

+ |vε|2Θε′3 + |εvε|2Θε′′3

)
.

(H3bis) There exists a positive constant C such that for every (ψ, 0) ∈ Ψε
ad(0) we

have

|∇τψ|2Θε′3 + |ε∇τψ|2Θε′′3
≤ C

(
|∇τψ|2Θε′2 ∪Θε′4

+ |ε∇τψ|2Θε′′2 ∪Θε′′4

)
.

(H4bis) There exists a positive constant C such that for every (ψ, 0) ∈ Ψε
ad(0) we

have

|∇τψ|2Θε′1 + |ε∇τψ|2Θε′′1
≤ C

(
|∇τψ|2Θε′−Θε′1

+ |ε∇τψ|2Θε′′−Θε′′1

)
.

(H5bis) There exists a positive constant C such that for every (ψ, 0) ∈ Ψε
ad(0) we

have

|ψ|2Θε′−Θε′1
≤ C

(
|∇τψ|2Θε′ + |ε∇τψ|2Θε′′

)
.

(H6bis) There is no circuit β] included in T4 ∪ T0.

The following assumption is related to the two-scale convergence of the data.

(H8) The data kε, gε, iεd and uεd satisfy the following estimates and two-scale con-

vergence.

For current sources,

εn−1|ε−1iεd|2Θε′1 + εn−1|ε−2iεd|2Θε′′1
+ εn−1|uεd|2Θε′0 + εn−1|εuεd|2Θε′′0

≤ C ,

ε−1̂iεd → id in L2(Ω× T ′1), ε−2̂iεd → id in L2(Ω× T ′′1 ) weak .

For voltage sources,

ûεd → ud in L2(Ω× T ′0), εûεd → ud in L2(Ω× T ′′0 ) .
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For immitances,

gε = ε2gε′′ on Θε′′
2 , ĝε → g in L∞(Ω× T ′′2 ) weak∗ ,

ĝε → g in L∞(Ω× T ′2) weak ∗ .

For the amplifier coefficients:

k̂ε → k in L∞(Ω× T3) weak ∗ .

And for the length of the edges:

ε−1L̂ε → L in L∞(Ω× T ) weak ∗ .

For ud ∈ L2(Ω;P0(T0)), let us introduce the admissible functions set Ψad](ud) of

functions (ψ0, ψ1, j) verifying:

ψ0 ∈ L2(Ω;P1(T ′′)) ∩H1
τ (Ω, T ′), ψ1 ∈ L2(Ω;P1

] (T
′))/R

and

j ∈ L2(Ω;P0(T4)) .

In addition, (ψ0, ψ1) satisfy the voltage imposed conditions,

LD(ψ0, ψ1) = ud on Ω× T0 ,

and the earth condition,

ψ0 = 0 on {(Ω× S0) ∪ (∪nk=1Γk+ × Sk+
0 ∪ Γk− × Sk−0 )} .

Here the notation

D(ψ0, ψ1) = ∇τψ0 on Ω× T ′′ and = ∇zψ
0(z,y) · τ0 +∇τψ1(z,y) on Ω× T ′

is used.

Now we are ready for the statement of the main result. This is the formulation

of the general homogenized model related to the periodic electrical network. Let us

define the three bilinear forms,

a0((ϕ0, ϕ1), (ψ0, ψ1)) =

∫
Ω×T2

gLD(ϕ0, ϕ1)D(ψ0, ψ1) dl(y) dz ,

b01(i, (ψ0, ψ1)) =

∫
Ω×T4

iD(ψ0, ψ1) dl(y) dz,

b02(j, (ϕ0, ϕ1)) =

∫
Ω×T3

LkD(ϕ0, ϕ1)j dl(y) dz−
∫

Ω×T4

LD(ϕ0, ϕ1)j dl(y) dz ,

and the linear form,

l0((ψ0, ψ1)) = −
∫

Ω×T1

idD(ψ0, ψ1) dl(y) dz .

Consider (ϕε, iε)ε∈N−1 solution of (6) where Θ and Θk are replaced by Θε and

Θε
k.
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Theorem 3. Under the assumptions (H1–H8) and (H2bis–H6bis), the following L2

two-scale convergences hold

ϕε ⇀ ϕ0, ∇ετϕε ⇀ ∇zϕ
0 +∇τϕ1 and ε−1iε ⇀ i on Ω× T ′ .

and

ε∇ετϕε ⇀ ∇τϕ0 and ε−2iε ⇀ i on Ω× T ′′ ,

where (ϕ0, ϕ1, i) ∈ Ψad](ud) is the unique solution of

a0((ϕ0, ϕ1), (ψ0, ψ1)) + b01(i, (ψ0, ψ1)) = l0((ψ0, ψ1)) ,

(10)

b02(j, (ϕ0, ϕ1)) = 0 ,

for all (ψ0, ψ1, j) ∈ Ψad](0).

4.2. A particular model of homogenized circuit

In this section we exhibit a particular example which does not belong to the general

framework that we have considered in the previous section. Here, the coefficients of

the amplifiers are not bounded.

Consider the periodic network in Fig. 5. This network is two-dimensional,

i.e. n = 2, but is periodic only in the direction z1. In order to apply our the-

ory to this case, we consider an ε-periodic repetition of this network in the second

direction z2. This leads to a two-dimensional model, which will be independent

of z2.

Let us assume that, for each e ⊂ T , |e| = 1. Here T ′ = {e1
2, e

1
3, e

2
3} and T ′′ =

{e1, e
2
2, e

1
4, e

2
4}. Consider the sequence of solutions (ϕε, iε)ε∈N−1 of (6) related to this

electrical network.

Fig. 5. An example of periodic network.
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Theorem 4. The conclusions stated in Theorem 3 are still true, and the transfer

function between Ω× e1
2 and Ω× e2

2 is:

∇τϕ0
|Ω×e22

= k1k2∂
2
z1z1

ϕ0
|Ω×e12

.

5. Proof of Theorem 1

The proof is divided into two steps. First, we prove that the variational formulation

admits a unique solution if and only if the assumptions (H1–H7) are satisfied. Then,

we prove the equivalence between the variational formulation and Eqs. (1)–(4).

5.1. Step 1

Since (H6) is satisfied, there does not exist any circuit included in Θ0. Therefore,

for all ud ∈ P0(Θ0), Ψad(ud) 6= ∅. Consider ϕ̃ ∈ Ψad(ud) and the problem verified

by ϕ = ϕ− ϕ̃ ∈ Ψad(0):

a(ϕ,ψ) + b1(i, ψ) = l(ψ)− a(ϕ̃, ψ) ,

b2(j, ϕ) = −b2(j, ϕ̃)

for every (ψ, j) ∈ Ψad(0) .

The problems of existence and uniqueness of ϕ or ϕ are equivalent. Thus, in the

following, we consider only the case where ud = 0.

The variational formulation admits a unique solution if and only if the following

properties are satisfied there:

(i) Consider the norm ||ψ||2 =
∫

Θ
|∇τψ|2 + |ψ|2 dl(x) on the (ψ, .) ∈ Ψad(0). For all

k ∈ P0(Θ3), there exists a positive constant α such that ∀ (ψ, 0) ∈ Ψad(0) verifying

∇τψ = 0 on Θ4, there exists (ϕ, 0) ∈ Ψad(0) different from zero such that for every

couple (el3, e
l
4) ∈ Θ3 ×Θ4, ϕ satisfies L∇τϕ|el4 = kL∇τϕ|el3 and∫

Θ2

gL∇τϕ∇τψ dl(x) ≥ α||ϕ|| · ||ψ|| . (11)

(ii) For all k ∈ P0(Θ3), there exists a positive constant β such that ∀ (ϕ, 0) ∈ Ψad(0)

verifying L∇τϕ|el4 = kL∇τϕ|el3 on each couple (el3, e
l
4) ∈ Θ3 × Θ4, there exists

(ψ, 0) ∈ Ψad(0) different from zero verifying ∇τψ = 0 on Θ4 and∫
Θ2

gL∇τϕ∇τψ dl(x) ≥ β||ϕ|| · ||ψ|| . (12)

(iii) There exists a strictly positive constant γ1 such that for every j ∈ P0(Θ4),

there exists (ϕ, 0) ∈ Ψad(0) such that∫
Θ4

jL∇τϕdl(x) ≥ γ1||ϕ|| · |j|L2(Θ4) . (13)
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(iv) There exists a strictly positive constant γ2 such that for every j ∈ P0(Θ4),

there exists (ϕ, 0) ∈ Ψad(0) such that∫
Θ4

jL∇τϕdl(x)−
∫

Θ3

kjL∇τϕdl(x) ≥ γ2||ϕ|| · |j|L2(Θ4) , (14)

where the values of j on each el3 and el4 are the same.

(v) The linear form l(ψ) is continuous.

The point (v) is a straightforward consequence of the assumption (H4).

Lemma 5.1. Let us assume that (H1) is fulfilled, and let us consider a node e ∈
Θ̃2 ∪Θ3 ∪Θ4.

(i) For every (ϕ, 0) ∈ Ψad(0) such that (L∇τϕ)|Θ4
− (kL∇τϕ)|Θ3

= 0 we have:

|L∇τϕ|e ≤
∑
e′∈Θ2

C0(e, e′)|L∇τϕ|e′ thus |L∇τϕ|2Θ̃2∪Θ3∪Θ4
≤ C1|L∇τϕ|2Θ2

, (15)

where C0(e, e′) and C1 are some positive constants.

(ii) Let us assume, in addition, that (H2) is fulfilled. For each e ∈ Θ̃2 there exists

some constants C2(e, e′) related to e′ ∈ Θ3 ∩ Z(e) such that:

|u|e ≤
∑

e′∈Θ3∩Z(e)

C1(e, e′)|v|e′ and |u|Θ̃2
≤ C|v|Θ1

3
, (16)

where Θ1
3 is the subset of Θ3 when α = α0.

Proof. Let us denote by f|Θ2
the derivative L∇τϕ|Θ2

. Since (ϕ, 0) ∈ Ψad(0), ϕ is

solution of

L∇τϕ|Θ2
= f|Θ2

,

L∇τϕ|Θ0
= 0 ,

L∇τϕ|el4 − kL∇τϕ|el3 = 0 for every l ,∫
β

L∇τϕdl(x) = 0 for each circuit β of Θ−Θ1 .

Using the assumption (H1)(i), one knows that this system has a unique solution

∇τϕ|Θ−(Θ1∪Θ̃2) which is continuous with respect to f|Θ2
.

For e ∈ Θ̃2 ∪ Θ3 ∪ Θ4, the assumption (H1)(i) means that L∇τϕ|e is a linear

combination of ∇τϕ|Θ−(Θ1∪Θ̃2). It implies in turn that L∇τϕ|e is also continuous

with respect to f|Θ2
. This proves (i).

Let us prove (ii). From the definition of Z(e), u|e is a unique linear combination

of (u|e′)e′∈Z(e)−e. Here continuity with respect to f|Θ2
is replaced by continuity

with respect to v|Θ3∩Z(e). �
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Lemma 5.2. (i) Let us assume that (H3) is fulfilled. For every (ψ, 0) ∈ Ψad(0)

satisfying ∇τψ|Θ4
= 0, there exists a constant C such that

|∇τψ|2Θ3
≤ C|∇τψ|2Θ2

and |∇τψ|2Θ1
3
≤ C|∇τψ|2Θ1

2

. (17)

(ii) Let us assume that (H4) is fulfilled. There exists a constant C such that for

every (ψ, 0) ∈ Ψad(0):

|∇τψ|2Θ1
≤ C|∇τψ|2Θ−Θ1

.

Proof. Let us prove (i). The first estimate is a straightforward consequence of (H3).

Let us prove the second estimate of (i). From (H3), for any e ∈ Θ1
3 there exists a

circuit β ⊂ {e} ∪ Θ0 ∪ Θ
1

2 ∪ Θ4. The inequality follows easily. The proof of (ii) is

straightforward. �

Lemma 5.3. If the assumption (H5) is satisfied, then the semi-norm |∇τψ|2Θ−Θ1

is a norm on Ψad(0).

Proof. The proof is straightforward. �

Lemma 5.4. If the assumptions (H1–H5) are satisfied then the properties (11) and

(12) are satisfied.

Proof. Let us prove (11). Let us consider the function α defined in (H2).

Let us pose v = kαL∇τψ on Θ3. Consider the solution u ∈ P0(Θ −Θ1) of (8)

and the unique (ϕ, 0) ∈ Ψad(0) such that

L∇τϕ = u+ αL∇τψ on Θ−Θ1.

The uniqueness of ϕ results in (H5). The existence of ϕ will be a consequence of

∇τϕ|Θ0
= 0 and

∫
β
L∇τϕdl(x) = 0. The equality ∇τϕ|Θ0

= 0 is immediate. In

another way, since α is constant on each circuit β:∫
β

L∇τϕdl(x) =

∫
β

u dl(x) + α

∫
β

L∇τψ dl(x) = 0 .

Let us verify that (L∇τϕ)|Θ4
− (kL∇τϕ)|Θ3

= 0.

(L∇τϕ)|Θ4
− (kL∇τϕ)|Θ3

= u|Θ4
− ku|Θ3

− (kLα∇τψ)|Θ3

= (kαL∇τψ)|Θ3
− (kαL∇τψ)|Θ3

= 0 .

Now, let us derive the inequality (11). Let us denote by Θ
1
2 and Θ1

3 (respectively

Θ
2
2 and Θ2

3) the subsets of Θ2 and Θ3 where α = α0 (respectively where α = 1).∫
Θ2

gL∇τψ∇τϕdl(x) =

∫
Θ2

gαL|∇τψ|2 dl(x) +

∫
Θ̃2

g∇τψu dl(x)

≥ 1

2
|(gL)1/2∇τψ|2Θ̃2

+ α0|(gL)1/2∇τψ|2Θ1
2

+ |(gL)1/2∇τψ|2Θ2
2

− 1

2
|(L−1g)1/2u|2

Θ̃2
.
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From Lemmas 5.1(ii) and 5.2(i) there exist some constants C2 and C3 such that:

|(L−1g)1/2u|2
Θ̃2
≤ C2α

2
0|L∇τψ|2Θ1

3
≤ C3α

2
0|(gL)1/2∇τψ|2Θ1

2

thus∫
Θ2

gL∇τψ∇τϕdl(x) ≥ 1

2
|(gL)1/2∇τψ|2Θ̃2

+ (α0 − C3α
2
0)|(gL)1/2∇τψ|2Θ1

2

+ |(gL)1/2∇τψ|2Θ2
2

.

Let us pose α0 < 1/C3, thus there exists a constant C4 such that:∫
Θ2

gL∇τψ∇τϕdl(x) ≥ C4|L∇τψ|2Θ2
.

≥ C4|L∇τψ|Θ2 |L∇τψ|Θ2
≥ C5|L∇τψ|Θ2 |L∇τϕ|Θ2

.

Applying Lemmas 5.1(i) and 5.2(i), there exists a constant C6 such that:∫
Θ2

gL∇τψ∇τϕdl(x) ≥ C6|L∇τψ|Θ · |L∇τϕ|Θ .

In conclusion, ∫
Θ2

gL∇τψ∇τϕdl(x) ≥ C||ψ|| · ||ϕ|| .

This is (11).

For the proof of (12), we pose

L∇τψ = α−1(L∇τϕ− u) on Θ .

The end of the derivation of (12) is the same derivation of (11). This ends the proof

of Lemma 5.5. �

Let us prove (13). For every i ∈ P0(Θ4) there exists ϕ such that (ϕ, i) ∈ Ψad(0)

and L∇τϕ = i on Θ4, if and only if, for every circuit β ⊂ Θ4 ∪ Θ0, i satisfy the

compatibility condition
∫
β∩Θ4

i dl(x) = 0. Since there exists no circuit in Θ4 ∪Θ0,

this compatibility condition never occurs. Using the assumption (H7) we can pose

∇τϕ = 0 on (Θ1 ∪ Θ2 ∪ Θ3) − Θ∗. The value of ∇τϕ on Θ∗ is determined by the

circuit relations
∫
β
L∇τϕ dl(x) = 0 for each β such that β ∩ Θ4 6= ∅. Thus, (13)

results from the inequality |∇τϕ|Θ ≤ |∇τϕ|Θ4 .

Finally, let us prove (14). Using the assumption (H1), we pose v|Θ3
= j and

|e|∇τϕ = u on Θ, this implies that |∇τϕ|Θ ≤ C|j|Θ3 , which leads to (14).

5.2. Step 2

Equivalence between the variational formulation and Eqs. (1)–(4).
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Consider (2). Since i = g|e|∇τϕ on Θ2, i = 0 on Θ3 and i = id on Θ1, we have∫
Θ2

gL∇τϕ∇τψ dl(x) +

∫
Θ0

i∇τψ dl(x) +

∫
Θ4

i∇τψ dl(x) = −
∫

Θ1

id∇τψ dl(x)

for all ψ ∈ P1(Θ) such that ψ = 0 on σ0 .

The variational formulation of (42) and of the condition u = ud on Θ0 are:∫
Θ3

Lk∇τϕj dl(x) +

∫
Θ4

L∇τϕj dl(x) = 0 for every j ∈ P0(Θ3)

and

∫
Θ0

L∇τϕj0 dl(x) =

∫
Θ0

udj0 dl(x) for every j0 ∈ P0(Θ0) ,

where j takes the same value on each el3 and el4 belonging to the same amplifier.

Here i on Θ0 plays the role of a Lagrange multiplier. Equivalently, (ϕ, i) ∈ Ψad(ud)

is the unique solution of:∫
Θ2

gL∇τϕ∇τψ dl(x) +

∫
Θ4

i∇τψ dl(x) = −
∫

Θ1

id∇τψ dl(x)

∫
Θ3

Lk∇τϕj dl(x) +

∫
Θ4

L∇τϕj dl(x) = 0 for every (ψ, j) ∈ Ψad(0) .

The proof of the converse is straightforward. �

6. Proof of Theorem 2

First, let us prove property 1 and give some of its consequences.

6.1. Proof of Proposition 3.1

If v ∈ L1(Θε),

‖v‖L1(Θε) =

∫
Θε
|v(x)| dl(x) =

∑
i∈Iε

∫
T εi

|v(x)| dl(x) ,

since v̂ε is independent of z in each set T εi , then∑
i∈Iε

ε

∫
T

|v̂ε(xεi ,y)| dl(y) = ε1−n
∑
i∈Iε

∫
Y εi

dz

∫
T

|v̂ε(xεi ,y)| dl(y)

= ε1−n
∫

Ω

∫
T

|v̂ε(z,y)| dl(y) dz .

This proves property 3.1. �

Let us consider (ε(n−1)/2vε)ε∈N−1 a bounded sequence of L2(Θε). Using Corolla-

ry 3.2 and the two-scale convergence definition, one can extract a subsequence (vε)ε
of (vε)ε∈N−1 which two-scale converges in L2 weakly towards some v ∈ L2(Ω× T ).

The mean value v0ε(z) =
∫
T
v̂ε(z,y) dl(y) is also bounded in L2(Ω), then one can
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extract another subsequence still denoted by (vε)ε which converges in L2(Ω) weakly

towards some v0 ∈ L2(Ω).

Lemma 6.1. For every z ∈ Ω,

v0(z) =

∫
T

v(z,y) dl(y) .

Proof. Using the two-scale convergence of (vε)ε, for every w ∈ L2(Ω),

lim
ε→0

∫
Ω

∫
T

v̂ε(z,y) dl(y)w(z)dz =

∫
Ω

∫
T

v(z,y) dl(y)w(z) dz .

Using the weak convergence of (v0ε)ε,

lim
ε→0

∫
Ω

∫
T

v̂ε(z,y) dl(y)w(z) dz = lim
ε→0

∫
Ω

v0ε(z)w(z) dz =

∫
Ω

v0(z)w(z) dz .

Thus, v0(z) =
∫
T
v(z,y) dl(y). �

6.2. Proof of Theorem 2(i1)

Let us prove part (i1) of Theorem 2. Corollary 3.2 applied to Θε′ implies that there

exists an extracted subsequence (ϕε)ε of (ϕε)ε∈N−1 which two-scale converges in L2

weakly towards a ϕ0(z,y). In addition,

ε(n−1)/2‖∇ετϕε‖L2(Θε′) = ‖ε−1∇τ ϕ̂ε‖L2(Ω×T ′) ≤ C ,

thus, (∇τ ϕ̂ε)ε strongly converges towards 0 in L2(Ω×T ′). Thus ∇τϕ0 = 0 in Ω×T ′.
This means that ϕ0 is independent of y. The fact that ∇zϕ

0(z,y)τ0 ∈ L2(Ω× T ′)
will be proved later.

6.3. Proof of Theorem 2(i2)

Let us establish the two-scale limit of fε = ε(n−1)/2∇ετϕε. The extremities of T ′

are denoted by s− and s+. They are located periodically on ∂Y . We start from the

equality for every ψ ∈ L2(Ω;H1(T ′)):∫
Ω×T ′

f̂ε(z,y)ψ(z,y) dl(y) dz =

∫
Ω×T ′

1

ε
∇τ ϕ̂ε(z,y)ψ(z,y) dl(y) dz

= −
∫

Ω×T ′

1

ε
ϕ̂ε(z,y)∇τψ(z,y) dl(y) dz

+

∫
Ω

1

ε
[ϕ̂ε(z,y)ψ(z,y)]s

+

s− dz . (18)

Let us consider the last term. For the sake of simplicity, we assume that the

extremities s+ and s− are located on the faces having their normal in the di-

rection of the first vector e1 of the Euclidean basis. Let us consider I∗ε =

{1, . . . , N−2}×{0, . . . , N−1}n−1 ⊂ Iε. The set C∞] (T ′) is constituted of functions
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belonging to C∞(T ′) which are Y -periodic. The set of indices Iε − I∗ε related to

cells located on the boundary is partitioned into Iε+ = {N−1}×{0, . . . , N−1}n−1

and Iε− = {0} × {0, . . . , N − 1}n−1. In the following, τ1 and nΩ1 denote the first

components of τ and of the external normal nΩ to Ω. In addition, Γ+ = {z ∈ ∂Ω,

z1 = 0} and Γ− = {z ∈ ∂Ω, z1 = 1}.

Lemma 6.2. If the sequence ϕε satisfies the estimate εn−1||ϕε||H1(Θε) ≤ C, then

one may extract a subsequence denoted by ϕε, such that for any ψ ∈ H1(Ω × T ′)
verifying ∇τψ = 0 on T ′, ϕε satisfies

lim
ε→0

∫
Ω

1

ε
[ϕ̂ε(z, s)ψ(z, s)]s

+

s− dz = −
∫

Ω×T ′
ϕ0(z)τ1∂z1ψ(z,y) dl(y) dz

+

∫
(Γ+∪Γ−)×T ′

ϕ0(z)ψ(z,y) · τ1nΩ1 ds(z) .

Proof of Lemma 6.2. First, let us prove that for every function ψ∈H1(Ω;H1
] (T ′))

verifying ∇τψ = 0 we have∫
Ω

1

ε
[ϕ̂ε(z,y)ψ(z,y)]s

+

s− dz = −
∫

Ωε×T ′
∇τ (ϕ̂ε(z,y)y · ∇zψ(z,y)) dl(y) dz

+

∫
Γ+

ϕ̂ε(z, s+)ψ
ε
(z, s+) ds(z) −

∫
Γ−
ϕ̂ε(z, s−)ψ

ε
(z, s−) ds(z) +O(ε) . (19)

Here Ωε = ∪i∈I∗εY εi . Since Ω = ∪i∈IεY εi , we have∫
Ω

1

ε
[ϕ̂ε(z,y)ψ(z,y)]s

+

s− dz

=
∑
i∈Iε

∫
Y ε

i

1

ε
ϕ̂ε(xεi , s

+)ψ(xεi , s
+)− 1

ε
ϕ̂ε(xεi , s

−)ψ(xεi , s
−) dz

=
∑
i∈Iε

εn−1ϕ̂ε(xεi , s
+)ψ

ε
(xεi , s

+)− εn−1ϕ̂ε(xεi , s
−)ψ

ε
(xεi , s

−) ,

where ψ
ε
(z,y) = 1

εn

∫
Y εi
ψ(x,y) dx for every (z,y) ∈ Y εi × T ′. Since ϕε ∈ H1(Θε),

ϕ̂ε(xεi , s
−) = ϕ̂ε ◦ T ε(xεi , s−) and ϕ̂ε(xεi , s

+) = ϕ̂ε ◦ T ε(xεi , s+) ,

where for (z,y) ∈ Ω × {s−, s+}, T ε(z,y) = (z + εnY (y),y − nY (y)). Since ψ is

Y -periodic with respect to y, we have

=
∑
i∈I∗ε

εnϕ̂ε(xεi , s
+)
ψ
ε
(xεi , s

+)− ψε ◦ T ε(xεi , s+)

2ε

−
∑
i∈I∗ε

εnϕ̂ε(xεi , s
−)
ψ
ε
(xεi , s

−)− ψε ◦ T ε(xεi , s−)

2ε

+
∑

i∈Iε+
εn−1ϕ̂ε(xεi , s

+)ψ
ε
(xεi , s

+)−
∑

i∈Iε−
εn−1ϕ̂ε(xεi , s

−)ψ
ε
(xεi , s

−) .
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Using the periodicity condition on ψ we find that ψ
ε
(z, s+) = ψ

ε
(z, s−). Using this

equality leads to

=
∑
i∈I∗ε

εnϕ̂ε(xεi , s
+)
ψ
ε
(xεi , s

+)− ψε(xεi + εnY (s+), s+)

2ε

−
∑
i∈I∗ε

εnϕ̂ε(xεi , s
−)
ψ
ε
(xεi , s

−)− ψε(xεi + εnY (s−), s−)

2ε

+
∑

i∈Iε+
εn−1ϕ̂ε(xεi , s

+)ψ
ε
(xεi , s

+)−
∑

i∈Iε−
εn−1ϕ̂ε(xεi , s

−)ψ
ε
(xεi , s

−) .

For (z,y) ∈ Y εi × T ′, and i ∈ Iε, let us remark that

ψ
ε
(xεi ,y)− ψε(xεi + εnY (y),y)

2ε
= −y1∂z1ψ(z,y) +O(ε) .

Thus

= −
∫

Ωε
[ϕ̂ε(z,y)y1∂z1ψ(z,y)]y=s+

y=s− dz + εn−1
∑

i∈Iε+
ϕ̂ε(xεi , s

+)ψ
ε
(xεi , s

+)

− εn−1
∑

i∈Iε−
ϕ̂ε(xεi , s

−)ψ
ε
(xεi , s

−) +O(ε)

= −
∫

Ωε
[ϕ̂ε(z,y)y1∂z1ψ(z,y)]y=s+

y=s− dz +

∫
Γ+

ϕ̂ε(z, s+)ψ
ε
(z, s+) ds(z)

−
∫

Γ−
ϕ̂ε(z, s−)ψ

ε
(z, s−) ds(z) +O(ε)

= −
∫

Ωε×T ′
∇τ (ϕ̂ε(z,y)y1∂z1ψ(z,y)) dl(y) dz +

∫
Γ+

ϕ̂ε(z, s+)ψ
ε
(z, s+) ds(z)

−
∫

Γ−
ϕ̂ε(z, s−)ψ

ε
(z, s−) ds(z) +O(ε) . (20)

This is (19). Since ∇τ (ϕ̂ε(z,y) y1∂z1ψ(z,y)) = ∇τ ϕ̂ε(z,y)y1∂z1ψ(z,y) + ϕ̂ε(z,y)

∇τ (y1∂z1ψ(z,y)), and since ∇τ ϕ̂ε(z,y) tends to zero in L2(Ω× T ′), one may pass

to the limit in the above term. Since ϕ0 and ψ are constants with respect to y ∈ T ′
and since

∫
T ′ τ1 dl(y) = 1, where τ1 = ∇τy1, one may pass to the limit. This leads

to:

= −
∫

Ω×T ′
ϕ0(z)∇τ (y1∂z1ψ(z,y)) dl(y) dz+

∫
(Γ+∪Γ−)×T ′

ϕ0(z)ψ(z,y)·τ1nΩ1 ds(z) .

This ends the proof of Lemma 6.2. �
Let us denote by f(z,y) the two-scale limit in L2 of fε. For every ψ ∈

H1(Ω;H1
] (T ′)) such that ∇τψ(z,y) = 0 for (z,y) ∈ Ω× T ′, one has:∫

Ω×T ′
f(z,y)ψ(z,y) dl(y) dz =

∫
Ω×T ′

∂z1ϕ
0(z)τ1ψ(z,y) dl(y) dz
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or equivalently:∫
Ω×T ′

f(z,y)ψ(z,y) dl(y) dz =

∫
Ω

∇zϕ
0(z) · τ0(z)ψ(z,y) dl(y) dz ,

where τ0(z) =
∫
T ′ τ(z, y) dl(y).

This proves that ∂z1ϕ
0(z)τ1 ∈ L2(Ω) and means that there exists a function ϕ1

such that∫
Ω×T ′

f(z,y)ψ(z,y) dl(y) dz =

∫
Ω×T ′

∇zϕ
0(z) · τ0(z)ψ(z,y) dl(y) dz

−
∫

Ω×T ′
ϕ1(z,y)∇τψ(z,y) dl(y) dz

for every ψ ∈ H1(Ω;H1
] (T ′)). Since ψ is T ′-periodic, this equality is equivalent to

∇τϕ1(z,y) +∇zϕ
0(z) · τ0(z) = f(z,y) in Ω× T ′,

[ϕ1(z,y)]y=s+

y=s− = 0 in Ω .

Since ϕ0 ∈ H1(Ω), we see that ϕ1 ∈ L2(Ω;H1
] (T ′)). This ends the proof of Theo-

rem 2(i). �

6.4. Proof of Theorem 2(ii)

Using (20), we have∫
Ω×T ′

f̂ε(z,y)ψ(z,y) dl(y) dz = −
∫

Ωε×T ′
∇τ (ϕ̂ε(z,y)y1∂z1ψ(z,y)) dl(y) dz

+

∫
Γ+

ϕd(z)ψ
ε
(z, s+) ds(z)

−
∫

Γ−
ϕd(z)ψ

ε
(z, s−) ds(z) +O(ε) .

Passing to the limit we obtain:∫
Ω×T ′

f(z,y)ψ(z,y) dl(y) dz =

∫
Ω×T ′

∂z1ϕ
0(z)τ1ψ(z,y) dl(y) dz

+

∫
(Γ+∪Γ−)×T ′

(ϕd(z)−ϕ0(z))ψ(z,y) · τ1nΩ1 ds(z) ,

which implies in particular that ϕ0(z) = ϕd(z) on Γ+ ∪ Γ−. This is part (ii). �

6.5. Proof of Theorem 2(iii)

Corollary 3.2 implies that there exists an extracted subsequence (ηε)ε of (ηε)ε∈N−1

which two-scale converges in L2 weakly towards a η0(z,y). In addition, ε(n−1)/2

‖ε∇τηε‖L2(Θε′′) = ‖∇τ η̂ε‖L2(Ω×T ′′) ≤ C, thus (∇τ η̂ε)ε converges weakly towards

∇τη0 in L2(Ω× T ′′). �
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6.6. Proof of Theorem 2(iv)

Since ϕε = ηε on θε ∩ θε′ thus ϕ̂ε = η̂ε on Ω× (T ′ ∩T ′′). But ϕ̂ε converges towards

ϕ0 in Ω×T ′ and η̂ε converges towards η0 in Ω×T ′′ thus ϕ0 = η0 on Ω× (T ′∩T ′′).
�

7. Proof of Theorem 3

The proof consists of two steps. First, we derive a uniform estimate of the solution

(ϕε, iε). Second, we pass to the limit in the variational formulation. The estimates

are written on the set Θε, which is dependent on ε. After applying the two-scale

transform, they are written on Ω × T which is independent of ε. This allows one

to use the classical compactness arguments for the extraction of convergent subse-

quences.

7.1. Estimate of the solution

Let us define the norm || · ||2ε on (ϕε, iε) ∈ Ψε
ad(0) by

||(ϕε, iε)||2ε = |∇τϕε|2Θε′ + |ε∇τϕε|2Θε′′ + |ϕε|2Θε + |ε−1iε|2Θε′4 + |ε−2iε|2Θε′′4
.

Lemma 7.1. If the assumptions (H1–H7) and (H1bis–H6bis) and (H8) are fulfilled,

then ||(ϕε, iε)||2ε ≤ C.

Proof of Lemma 7.1. The proof is based on the same arguments as that of the

existence and uniqueness of the solution. We establish successively the following

four estimates:

(i) There exists a positive constant δ (independent of ε) such that ∀ (ψε, 0) ∈ Ψε
ad(0)

verifying ∇τψε = 0 on Θε
4, there exists (ϕε, 0) ∈ Ψε

ad(0) different from zero such

that for every couple (elε3 , e
lε
4 ) ∈ Θε

3×Θε
4, ϕε satisfies (Lε∇τϕε)|elε4 = (kεLε∇τϕε)|elε3

and ∫
Θε2

gεLε∇τϕε∇τψε dl(x) ≥ δε||(ϕε, 0)||ε · ||(ψε, 0)||ε . (21)

(ii) There exists a positive constant β such that ∀ (ϕε, 0) ∈ Ψε
ad(0), for every couple

(elε3 , e
lε
4 ) ∈ Θε

3×Θε
4, such that (Lε∇τϕε)|elε4 = (kεLε∇τϕε)|elε3 , there exists (ψε, 0) ∈

Ψε
ad(0) different from zero verifying ∇τψε = 0 on Θε

4 and∫
Θε2

gεLε∇τϕε∇τψε dl(x) ≥ βε||(ϕε, 0)||ε · ||(ψε, 0)||ε . (22)

(iii) There exists a strictly positive constant γ1 such that for every jε ∈ P0(Θε
4),

there exists (ϕε, 0) ∈ Ψε
ad(0) such that:∫

Θε4

jε∇τϕε dl(x) ≥ γ1||(ϕε, 0)||ε · ||(0, jε)||ε . (23)
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(iv) There exists a strictly positive constant γ2 such that for every jε ∈ P0(Θε
4),

there exists (ϕε, 0) ∈ Ψε
ad(0) such that:∫

Θε4

jεLε∇τϕε dl(x)−
∫

Θε3

kεjεLε∇τϕε dl(x) ≥ εγ2||(ϕε, 0)||ε · ||(0, jε)||ε , (24)

where the values of jε on each elε3 and elε4 are the same.

From Ref. 8, these estimates imply the estimate of Lemma 7.1.

Let us prove the estimate (21). This proof follows the same steps as that of

Lemma 5.4. We pose vε = αkε∇τψε|Θε3 where α is determined as in the proof of

Theorem 1. Consider a solution uε ∈ P0(Θε) of (8) and ϕε such that

Lε∇τϕε = uε + αL∇τψε on Θε .

Following the same arguments as in Sec. 5, we establish that there exists a positive

constant C such that:∫
Θε2

gεLε∇τψε∇τϕε dl(x) ≥ Cε||(ψε, 0)||ε · ||(ϕε, 0)||ε .

This is (21).

For the proof of (22), we pose

|eε|∇τψε = α−1(|eε|∇τϕε − uε) on Θε .

Thus, the derivation of (22) is the same as that the derivation of (21).

Let us prove (23). For iε ∈ P0(Θε
4) let us pose (ϕε, iε) ∈ Ψε

ad(0) such that

Lε∇τϕε = iε on Θε′
4 and Lε∇τϕε = ε−1iε on Θε′′

4 .

Then, the derivation of (23) is similar to that of (13). �

Finally, let us prove (24). Using the assumption (H1), we pose jε such that

ε−1jε = vε on Θε′
3 , ε−3jε = vε on Θε′′

3 , and ϕε such that Lε∇τϕε = uε on Θε. The

assumption (H1bis) leads to the estimate

|∇τϕε|2Θε′ + |ε∇τϕε|2Θε′′ ≤ C|ε−1jε|2Θε′3 + |ε−2jε|2Θε′′3
.

Replacing (Lε∇τϕε)|Θε4 − (kεLε∇τϕε)|Θε3 by εvε we find that∫
Θε4

jεLε∇τϕε dl(x)−
∫

Θε3

kεjεLε∇τϕε dl(x) = ε2(|ε−1jε|2Θε′3 + |ε−2jε|2Θε′′3
)

which leads to (24) because jε|Θε3
= jε|Θε4

. This ends the proof of Lemma 7.1. �

7.2. Passing to the limit in the variational formulation

Let us derive the two-scale variational formulation. Applying Theorem 2 implies

that there exists a subsequence (ϕε, iε)ε of (ϕε, iε)ε∈N−1 , such that (ϕε, iε)ε two-

scale converges in L2 weakly towards some limits ϕ0 on Ω × T and i on Ω × T4.

In other words, (∇τϕε)ε two-scale converges in L2 weakly towards some limits
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∇zϕ
0 · τ + ∇τϕ1 on Ω × T ′ and ∇τϕ0 on Ω × T ′′. Here (ϕ0

|Ω×T ′ , ϕ
0
|Ω×T ′′ , ϕ

1) ∈
H1
τ (Ω, T ′)× L2(Ω;P1(T ′′))× L2(Ω;P1

] (T
′)). In particular, this means that

D(ϕ0, ϕ1) = ud in Ω× T0 .

In conclusion (ϕ0, ϕ1, i) ∈ Ψad](ud).

In the following two lemmas, we establish the strong convergence of some par-

ticular test functions useful to pass to the limit in the variational formulation.

Let us consider a given function ψ0 defined on Ω × T which has a restriction

independent of y on every Ω×Tc, Here Tc represents any connected component Tc
of T ′. That is

ψ0 ∈ C2(Ω;P1(T )) and ψ0
|Ω×Tc ∈ C

2(Ω) .

Let ψ0 be given. Let us define the test function ψ0ε on Θε by

ψ0ε(x) = ψ0(x) for each vertex x ∈ Θε′ ,

ψ0ε(x) = ψ0(xεi ,y), for each vertex x = xεi + εy ∈ Y εi ∩Θε′′ .

In addition, ψ0ε is assumed to be affine on each edge of Θε.

Lemma 7.2. (i) ψ0ε and ∇τψ0ε two-scale converge in L2 strongly towards some

ψ0 and ∇zψ
0 · τ on Ω× T ′.

(ii) ψ0ε and ε∇τψ0ε two-scale converge in L2 strongly towards some ψ0 and ∇τψ0

on Ω× T ′′.

Proof. (i) Consider an edge e ⊂ T ′ with extremities s− and s+ and consider the

subset θε ⊂ Θε such that its two-scale transformation is equal to Ω× e. Since ψ0ε

is affine on each edge of θε, we have

ψ̂0ε(z,y) = ψ̂0ε(z, s−) + (yb− s−)∇yψ̂
0ε(z, s−) for every (z,y) ∈ Ω× e .

For z ∈ Y εi ,

∇yψ̂
0ε(z, s−) = ε∇zψ

0(xεi ) + εO(ε) .

thus

ψ̂0ε(z,y) = ψ0(xεi ) +O(ε) and ε−1∇τ ψ̂0ε(z,y) = τ(y) · ∇zψ
0(xεi ) +O(ε) .

Passing to the limit in these expressions gives

lim
ε→0

ψ̂0ε(z,y) = ψ0(z) and lim
ε→0

ε−1∇τ ψ̂0ε(z,y) = ∇zψ
0(z) · τ(y) .

Since the domain Ω× Tc is bounded, this leads to Lemma 7.2(i).

(ii) Since T ′′∩∂Y = ∅, ψ0ε is well defined on Θε′′. For (z,y) ∈ Y εi ×T ′′, ψ̂0ε(z,y) =

ψ̂0ε(xεi ,y) + O(ε) converges strongly towards ψ0 and ̂(ε∇τψ0ε) = ∇τ ψ̂0ε(xεi ,y) +

O(ε) converges strongly towards ∇τψ0. �
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Let us define the test function ψ1ε. For a given ψ1 ∈ H1
] (T ′) such that (0, ψ1, 0)

∈ Ψ0
ad](0), and a given ρ ∈ D(Ω), let us consider the function ψε∈H1(Θε′) defined

by its two-scale transformation ψ̂ε(z,y) = ψ1(y) for every (z,y) ∈ Ω×T ′. The test

function ψ1ε associated to ψ1 and ρ is

ψ1ε(x) = ρ(x)ψε(x) .

For a given j ∈ C0(Ω;P0(T4)), consider the function jε ∈ P0(Θε
4) defined as follows:

jε(x) = j(xεi ,y) on Θε′
4 and jε(x) = εj(xεi ,y) on Θε′′

4 ,

for x = xεi + εy ∈ eε ⊂ Θε
4 ∩ Y εi .

Lemma 7.3. (i) The sequences ψ1ε and ε∇τψ1ε two-scale converge in L2 strongly

towards some ρ(z)ψ1(z,y) and ρ(z)∇τψ1(z,y) on Ω× T ′.
(ii) The sequence equal to jε on Θ′4 and ε−1jε on Θ′4, two-scale converges in L2

strongly towards a j.

Proof. (i) The convergence of ψ1ε is immediate. The convergence of ε∇τψ1ε results

from the fact that ∇τρ two-scale converges towards ∇zρ. Thus ε∇τρ two-scale

converges towards 0. The proof of (ii) is evident. �

Let us pass to the limit in the variational formulation. Let us consider (ψ0, ψ1, j)

∈ Ψad](0) satisfying the continuity assumptions stated in Lemmas 7.2 and 7.3 and

let us consider (ψ0ε, ψ1ε, jε) ∈ Ψε
ad(0) associated to (ψ0, ψ1, j), given by Lemmas 7.2

and 7.3. Thus,∫
Θε′2

Lεgε∇τϕε(∇τψ0ε + ε∇τψ1ε) dl(x) +

∫
Θε′′2

Lεgε∇τϕε∇τψ0ε dl(x)

+

∫
Θε′4

iε(∇τψ0ε + ε∇τψ1ε) dl(x) +

∫
Θε′′4

iε∇τψ0ε dl(x)

= −
∫

Θε′1

iεd(∇τψ0ε + ε∇τψ1ε) dl(x)−
∫

Θε′′1

iεd∇τψ0ε dl(x)

and ∫
Θε3

Lεkε∇τϕεjε dl(x)−
∫

Θε4

Lε∇τϕεjε dl(x) = 0 .

Let us divide the first equation by ε, using the two-scale transformation of the

expressions and using Lemmas 7.1, 7.2 and 7.3, one may pass to the limit when ε

vanishes. The test functions for the first equation is

∇zψ
0 · τ + ρ∇τψ1 on Ω× T ′ .

Let us remark that it is equivalent to consider the variational formulation with the

test function ∇zψ
0 · τ +∇τψ1 or with the test function ∇zψ

0 · τ0 +∇τψ1. Finally,
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the variational formulation is∫
Ω×T ′2

LgD(ϕ0, ϕ1)D(ψ0, ψ1) dl(y) dz +

∫
Ω×T4

iD(ψ0, ψ1) dl(y) dz

= −
∫

Ω×T1

idD(ψ0, ψ1) dl(y) dz,

∫
Ω×T3

kD(ϕ0, ϕ1)j dl(y) dz

−
∫

Ω×T4

D(ϕ0, ϕ1)j dl(y) dz = 0 .

This completes the proof of Theorem 3. �

8. Proof of Theorem 4

The proof will be complete after proving estimates (21)–(24) with a convenient

norm || · ||ε and we will pass to the limit in the variational formulation. However,

we will first check the assumptions (H1–H7) in order to show that these assumptions

are also satisfied.

Fig. 6. The cells n and n+ 1.

Let us check the assumptions (H1–H7). We denote by Θjε
k = {ej,nk }n=1,...,ε−1 .

Here

Θ
ε

2 = Θ1ε
2 , Θ̃ε

2 = Θ2ε
2 ,

Θε′ = Θε
1 ∪Θ1ε

2 ∪Θ1ε
3 ∪Θ2ε

3
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and

Θε′′ = Θ1ε
4 ∪Θ2ε

4 ∪Θ2ε
2 .

For n ∈ {1, . . . , ε−1}, we have

uε|e1,n2
= u|e1,n3

= 0 ,

thus

uε|e1,n4

= vε|e1,n3

,

uε|e2,n3

= uε|e1,n+1
4

− uε|e1,n4

= vε|e1,n+1
3

− vε|e1,n3

,

εuε|e2,n4

= k2u
ε
|e2,n3

+ εvε|e2,n3

= k2

(
vε|e1,n+1

3

− vε|e1,n3

)
+ εvε|e2,n3

,

and

uε|e2,n2
= −uε|e2,n4

.

Thus, the solution uε exists and is unique. Hence, (H1) is satisfied.

Let us prove (H2). Let us pose αε = α0 on Θε
3 ∪ Θ1ε

2 ∪ Θ1ε
4 and αε = 1 on

Θ2ε
2 ∪Θ2ε

4 . Here Z(e2,n
2 ) = e2,n

2 ∪ e2,n
4 thus (H2) is clearly satisfied.

The assumptions (H3–H7) are clearly satisfied.

Now, we consider the norm

||(ψ, j)||2ε =

∫
Θ1ε

2 ∪Θ1ε
3

(∇τψ)2 dl(x) +

∫
Θ1ε

4

(ε∇τψ)2dl(x)

+

∫
Θ2ε

3

(∫ x1

0

ψdx1

)2

dl(x) +

∫
Θ2ε

4 ∪Θ2ε
2

(
ε

∫ x1

0

ψdx1

)2

dl(x) + |ε−2j|2Θε4 ,

and we will prove that

||(∇τϕε, iε)||ε ≤ C|ε−2iεd|2Θε1 .

For this purpose, we prove the estimate (21)–(24) using this norm. Let us prove

(21). We choose uε and ϕε as in the proof of Theorem 3:

Lε∇τϕε = uε + αεLε∇τψε on Θε .

Since

∇τψε = 0 on Θε
4 and uε = 0 on Θ1ε

2 ,

thus

∇τψε = 0 on Θ2ε
3 ∪Θ2ε

2 and uε = 0 on Θ1ε
3 .

Then, ∫
Θε2

gεLε∇τψε∇τϕε dl(x) =

∫
Θ1ε

2

αεgεLε∇τψε∇τψε dl(x)

≥ |(αεgεLε)1/2∇τψε|2Θ1ε
2
≥ Cε|∇τψε|Θε · |∇τϕε|Θ1ε

2
.
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For n ∈ {1, . . . , ε−1 − 1},

ε∇τϕε|e2,n2
= −ε∇τϕε|e2,n4

= −k2∇τϕε|e2,n3

= k2

(
∇τϕε|e1,n4

−∇τϕε|e1,n+1
4

)
= ε−1k2k1

(
∇τϕε|e1,n3

−∇τϕε|e1,n+1
3

)
= −ε−1k2k1

(
∇τϕε|e1,n2

−∇τϕε|e1,n+1
2

)
. (25)

Or equivalently,

∇τϕε|e1,n+1
2

= −∇τϕε|e1n+1
3

= k−1
1 ∇τϕε|e1n+1

4
= k−1

1

∫ xn1

0

∇τϕε|e23 dx1

= (k2k1)−1

∫ xn1

0

ε∇τϕε|e24dx1 = −(k2k1)−1

∫ xn1

0

ε∇τϕε|e22 dx1 .

Thus, there exists a positive constant C such that:∫
Θε2

gεLε∇τψε∇τϕε dl(x) ≥ Cε||(∇τψε, 0)||ε · ||(∇τϕε, 0)||ε .

This is (21).

For the proof of (22) it is sufficient to pose Lε∇τψε = (αε)−1(Lε∇τϕε − uε) on

Θε.

The proofs of (23)–(24) and of the uniform continuity on the right-hand side of

the variational formulation are similar to their proofs of Theorem 3. This ends the

proofs of (21)–(24).

The additional estimate

|ϕε|2Θε ≤ C|ε−2iεd|2Θε1

is necessary for the application of Theorem 2. It directly results from:

−ε−1k2k1(∇τϕε|e1,n2
−∇τϕε|e1,n+1

2

) = g−1k2k1ε
−2(iεd)|en1

and from (25). In conclusion,

||(∇τϕε, iε)|| ≤ C|ε−2iεd|2Θε1 ,

which allows one to pass to the limit in the variational formulation, and to get the

same variational formulation as that in Theorem 3.
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Here, ∇τϕ1 = 0 on Ω× (e1
2 ∪ e1

3 ∪ e2
3) because ϕ1 is Y -periodic. Thus (ϕ0, 0, i) ∈

Ψad](0) is the unique solution of:∫
Ω×e22

g∇τϕ0∇τψ0 dl(y) dz +

∫
Ω×e12

g∇zϕ
0∇zψ

0 dl(y) dz +

∫
Ω×{e14∪e24}

i∇τψ0 dl(y) dz

= −
∫

Ω×e1
id∇τψ0 dl(y)

∫
Ω×{e14,e24}

∇τϕ0j dl(y) dz

−
∫

Ω×{e13,e23}
k∇zϕ

0j dl(y) dz = 0 for all (ψ0, 0, j) ∈ Ψad](0) . (26)

Since (ϕ0, 0, i) ∈ Ψad](0),

∇τϕ0
|Ω×e22

= −∇τϕ0
|Ω×e24

.

From (262),

= −k2∇zϕ
0
|Ω×e23

.

Since (ϕ0, 0, i) ∈ Ψad](0),

ϕ0
|Ω×e23

= ∇τϕ0
|Ω×e14

= k1∇zϕ
0
|Ω×e13

= −k1∇zϕ
0
|Ω×e12

,

it follows that

∇τϕ0
|Ω×e22

= k2k1∆zϕ
0 .

This ends the proof of Theorem 4. �
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France 6–8 Décembre 1995.



July 13, 1999 8:39 WSPC/103-M3AS 0004

932 M. Lenczner & G. Senouci-Bereksi

10. E. Canon and M. Lenczner, Models of elastic plates with piezoelectric inclusions Part I:
Models without homogenization, to appear in Math. Comput. Modelling.

11. E. Canon and M. Lenczner, Models of elastic plates with piezoelectric inclusions
Part II: Models with homogenization, preprint de l’Equipe de Mathematiques de
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