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The author presents a first simplified two-scale model of the elastic structure of an atomic force
microscope array. It can be used for rapid prototyping and for designing model based control loops.
Its derivation is based on the concept of two-scale approximation. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2710001�

The atomic force microscopy �AFM� has been invented
by Binnig and reported in Ref. 1. Since that time, many
applications have emerged in various fields of sciences and
technologies. The main limitations of the AFM devices are
their low speed and reliability of operation. This may be
improved by designing model based control, see, for in-
stance, Ref. 2. Today, the technology has evolved towards
fabrication of AFM arrays, see, e.g., Ref. 3, and model based
control can also help to improve their efficiency. In this letter
we present, for the first time, a simplified elastic AFM array
model that can be used for control as well as for rapid pro-
totyping. Its rigorous derivation is based on the mathematical
concept of two-scale approximation, see Refs. 4–6, and will
be reported in a forthcoming paper.

We consider a two-dimensional array of AFMs com-
prised of n2 parallel elastic bases, oriented in the x1 direction,
and n1 clamped elastic cantilevers per base. The cantilevers
are equipped with a rigid tip. They are oriented in the x2

direction and are distributed periodically along the bases, see
Fig. 1. The characteristic size of a periodicity cell is denoted
by �. The length, the width, and the thickness of the bases
are denoted by LB, ��B, and aB. Those of the supple part and
of the rigid part of the cantilevers are, respectively, �LF, ��F,
aF and �Ltip, ��tip=��F, atip, see Fig. 2 for the in-plane di-
mensions. The array is comprised of an isotropic homoge-
neous material with density � and Lamé constants � and �. It
occupies the domain denoted by �P and is assumed to be
thin enough for being modelized by the Love-Kirchhoff thin
plate equation. For the sake of shortness, we consider only
forces applied to the cantilever tips.

The domain �P is included in �=�� �−�3� /2 ,�3� /2�
with section �= �0,L1�� �0,L2� and decomposed in a set of
n1�n2 cells of periodicity Yi with size ��1���2���3.
In other words, L1=n1�1, L2=n2�2, and the multi-index
i= �i1 , i2� varies in �1, . . . ,n1�� �1, . . . ,n2�. We introduce the
reference cell Y =� j=1

3 �−� j /2 ,� j /2� deduced from the cells Yi

by a shift and a dilatation by 1/�. Through the same shifts
and dilatation, the intersections Yi��P are transformed into
the array reference cell YP�Y.

We denote by uP�t ,x� the transverse mechanical dis-
placement solution of the Love-Kirchhoff thin plate equation
in �P which is independent of x3. Its two-scale approxima-
tion is defined through the three following steps where the
time variable plays the role of a parameter.

�1� The two-scale transform ûP of uP is a function of the
variable macro x̃�� and of the variable micro y�YP. It
is defined by

ûP�t, x̃,y� = �
i��1,. . .,n1���1,. . .,n2�

	Yi
�x̃,0�uP�t,xi + �y� ,

xi denoting the center of Yi.
�2� The AFM size L1�L2 being frozen, we consider the

geometry of the array as depending on the parameter �.
Thus, the two-scale transform ûP is a function of �
which is assumed to be sufficiently regular so that the
expansion

ûP = uA + O���

holds, with uA a function defined on ��YP independent
of �.

�3� Finally, the two-scale approximation of uP is ūA defined
on �P by

ūA�t, x̃� = �
i��1,. . .,n1���1,. . .,n2�

	Yi
�x̃,0�uA�t,x1,�x2 − xi2�/��

for a function uA depending on �t ,x1 ,y2� only.

Now, we state the AFM array model, for one row, under
the assumption that the displacement in each cantilever is
constant in the x1 direction and that the cantilevers are much
thinner that the base or more precisely that aF /aB
��� /L1�4/3. Since the array is not connected in the direction
x2, this variable plays the role of a parameter and can be
ignored in the considered case. The forces applied to the tip
of the ith cell are denoted by Fi. For the sake of convenience,
let us introduce the variable y2

C=y2−�B+�2 /2 that vanishes
at the junction between the base and the cantilever in YP. It
appears that uA is independent of y2 in the base, so the model
equations are expressed in the rectangular domain �x1 ,y2

C�
� �0,L1�� �0,LF+Ltip�. The line y2

C=0 corresponds to the
base, the open rectangle �0,L1�� �0,LF� represents the elas-
tic part of the cantilevers, and �0,L1�� �LF ,LF+Ltip� its rigid
part. For t
0 and x1� �0,L1�,

�M�tt
2uA + RM�x1¯x1

4 uA + �RRC�y2y2y2

3 uA = 0 �1�

for y2
C=0 and

�F�tt
2uA + RC�y2¯y2

4 uA = 0 �2�

for y2
C� �0,LF�. The boundary conditions are uA=�x1

uA=0
for �x1 ,y2

C�� �0,L1�� �0�, �y2
uA=0 for �x1 ,y2

C�� �0,L1�
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�R�tt
2	 uA

�y2
uA
 + �FRCQ	− �y2¯y2

3 uA

�y2y2

2 uA 

=

1

�
M�y2

Ctip��
i

Fi��xi�1
�x1�

for �x1 ,y2
C�� �0,L1�� �LF�, where the sum holds on the cells

belonging to the row of cantilevers and where y2
Ctip is the

second coordinate of the tip in YP. Once uA is computed in
the elastic part, its expression in the rigid part is

uA = M�y2
C�	 uA�LF�

�y2
uA�LF� 
 .

The initial conditions are on uA and on �tu
A in �0,L1�

� �0,LF�. Let us denote by YR the rigid part in the reference
cell Y and by yG2 the coordinate y2

C of the mass center.
The parameters of the model are QF= �� /2aFLF

4�F�Q,

N�y2
C�= � 1 y2

C

0 1
�, M�y2

C�= �1,0�N�y2
C�N−1�LF�, J0

A= �YR�,

J2
A=�YR

�y2
C−yG2

C �2dy2
C, LF,G=LF−yG2

C , Q=J0
A� 1 −LF,G

−LF,G J2
A/J0

A+LF,G
2 �,

�M =2aB�B�, �F=2aF�, �R=��, RM = �4�BaB
3� /3��+2���

��2��+��−�2 /2��+���, and RC=8�4aF
3���+�� /3��+2��.

Remark: If the cantilevers are not equipped with a rigid
part, the model must be modified by setting Q=0.

For the model illustration, some simulations with a force
oscillating at the first cantilever eigenfrequency and applied
to the fifth tip �a� or to the fifth and sixth tips �b� have been
conducted. The structure is isotropic and homogeneous, its
volume mass is �=2329 kg/m3, and its Lamé coeff cients
are �=6.1�1011 and �=5.2�1011. The other parameters
are �=50 �m, �1=1, n1=10, n2=1, �B=0.333, aB=� /5 m,

�F=�tip=Ltip=0.25, LF=0.833, aF=� /40 m, and atip
=� /2 m. The ratios of the maximum displacement of the ten
tips to these of the excited tips ��a� the fifth tip and �b� the
fifth and the sixth tips� are reported in Table I.

We denote by ��A ,�A� the solutions of the associated
spectral problem which is derived from the above model by
replacing uA by �A and �tt

2 by −�A. They constitutes an
infinite sequence and can be written under the form �k1k2

A

=RC�k1k2

C / ��FLF
4� and �k1k2

A �x1 ,y2�=
k1

B �x1 /L1�
k1k2

C �y2
C /LF�

for �k1 ,k2��N*�N, where ��k1

B ,
k1

B � is the solution of the
spectral problem


B�� = �B
B in �0,1� ,


B = 
B� = 0 at �0,1� ,

and for each �B, ��C ,
C� is the solution of the spectral prob-
lem


C�� = �C
C in �0,1� ,


C��0� = 0,

	− 
C��1�

C��1�


 = �CQA	 
C�1�

C��1�


 , �3�

and

q1
C��0� = �q0�C − �B�
C�0� ,

with QA= �� /2aFLF�F�SQS, S= � 1 0
0 1/LF

�, q0

=L1
4RC�M / �LF

4RM�F�, and q1=L1
4RC�F / �LF

3RM�. For �B large
enough, ��C ,
C� are independent of �B, so they may be in-
dexed by the index k2 only. In our simulations, we have

FIG. 1. Array of cantilevers.

FIG. 2. Two-dimensional cell.
FIG. 3. Shapes of �
k2

C �k2=0,¯,3 in solid line superimposed on �
k2

P �k2=1,¯,3 in
dashed line.

TABLE I. Ratios of the maximum displacement of the ten tips to these of
the excited tips: �a� the fifth tip and �b� the fifth and the sixth tips.

Tips 1 2 3 4 5 6 7 8 9 10

�a� �%� 8 9 11 12 100 13 12 11 1 0.9
�b� �%� 1.2 0.5 0.3 0.2 100 100 0.2 0.3 0.5 1.2
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found that this was always the case. We denote by ��P ,
P�
the solution of the spectral problem associated with a single
clamped cantilever. It is governed by the same equation that
Eq. �3�, except that the last boundary condition is replaced
by 
P�0�=0. The first graph of Fig. 3 represents the eigen-
vector 
0

C and the others the superimposed images of the
eigenvectors 
k2

C in solid line and of the eigenvectors 
k2

P in
dashed line for k2=1 , . . . ,3. For k2�1, the modes 
k2

C and

k2

P differ mainly by a constant that becomes smaller when
k2 increases. The logarithm of the eigenvalues �k2

A for

k2=0 , . . . ,8 with markers “o” and �k2

P for k2=1 , . . . ,9 with
markers “�” is compared in Fig. 4. Finally, the eigenvectors
�k1k2

A for �k1 ,k2�� �1,2�� �0,1� are displayed in Fig. 5.
The AFM array model presented here is extremely light,

so it can be used for real time model based control of the
array as well as for model based image processing. Further
extensions of the models are also suitable to encompass elec-
trostatic and thermal couplings.
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FIG. 4. Logarithm of the eigenvalues ��k2
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FIG. 5. Array modes ��k1,k2�
A for k1=1 ,2 and k2=0 ,1.
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