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Abstract. In this paper we establish a simplified model of general spatially
periodic linear electronic analog networks. It has a two-scale structure. At the
macro level it is an algebro-differential equation and a circuit equation at the
micro level. Its construction is based on the concept of two-scale convergence,
introduced by the author in the framework of partial differential equations,
adapted to vectors and matrices. Simple illustrative examples are detailed by
hand calculation and a numerical simulation is reported.

1. Introduction. It is well known that when the size of an analog electronic net-
work increases too much, the size of the unknown vectors, namely the voltages,
the currents and the electric node′s voltage, become very large and the system of
equation becomes impossible to solve on existing computers. In this paper, we are
concerned by such large systems of electronic equations arising in the case of spa-
tially periodic architectures of analog electronic circuits. Among the applications
that we have in mind, some of them are for purely analog electronic systems or
for Micro-Electro-Mechanical Systems (MEMS) arrays which have always a peri-
odic structure and include or will include in a near future an electronic network.
The MEMS arrays are used for a wide range of applications in various scientific
or technological areas as biology, medicine, communications, aeronautics, etc... .
Due to the small place available in those architectures, analog circuits are preferred
in comparison with digital circuits. Other motivations of using arrays of analog
circuits are their good computing power per unit area (when moderated resolutions
are required) accompanied with a low energy consumption. Some applications to
Smart Structures may also be found in the cases where the actuators and sensors are
numerous and distributed in a periodic way in their host structure, see for example
[7] and [6].

The method for the simplified model derivation that we present here refers to
the general homogenization which has been intensively developed in mechanics for
composite materials modelling. Various approaches have been investigated under
various denominations. We will not make a comparison of them, we only mention
that the more general and rigorous one was based on an asymptotic expansion
with respect to the vanishing cells size (or equivalently to the number of cells that
is assumed to tend to infinity). It was introduced by E. Sanchez-Palencia and
then widely developed in the reference book [11]. This theory has been rigorously
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justified in [2] and later its domain of applications has been expanded and the
proofs significantly simplified by the introduction of the two-scale convergence in
[1] and later by the introduction of the two-scale transform and a new two-scale
convergence in [8]. This last improvement has allowed the treatment of network
equations which was not encompassed by the other approaches. Furthermore, it
has led to a so simple and natural technique that later it has been rediscovered
independently by two other groups [3] and [5] in the context of partial differential
equations.

In our first works on the electronic networks homogenization [8], [9] and [10],
we have formulated the electric network equations under the form of partial differ-
ential equations under variational form. Its well posedness has been proved by a
combination of functional analysis arguments commonly used in the field of par-
tial differential equations and some graph theory properties. Then, the two-scale
limit of the transposed incidence matrix, which was expressed as a spatial deriva-
tive along the network, has been carefully formulated. This was the corner-stone of
the two-scale models construction from which the homogenized models have been
built. This program has been achieved for general network topologies but limited to
static problems and to some particular linear devices, passive devices in [8], passive
devices plus linear VCVS in [9] and passive devices plus linear VCCS in [10].

Let us turn to this paper contributions. First, the two-scale transform and con-
vergence which was formulated in the context of functions and partial differential
equations are now rewritten for vectors and matrices which is the usual framework
in electronics. It is the first time that the fundamental properties of the two-scale
transform of vector and of matrices are stated and proved. Second, the asymptotic
of the Kirchhoff voltage law is carefully analyzed. This is the more difficult and
technical part. The technic of this proof is new. It is more general and adaptable
that the former thus it may be easier to extend to complex systems including elec-
tronics as well as thermal or mechanical effects for instance. Third, this paper covers
general linear multi-port devices under the condition that all their ports belong to
a same cell. We say that they are local. Fourth, the condition under which the
model is justified and its solution exists are made in details. Fifth, three illustrative
examples are presented. They have been chosen very simple so that to allow hand
calculations with the hope that they are sufficiently illustrative. The solution of the
third example was numerically simulated so we report a comparison between the
complete solution and the solution of our simplified model. Through this example
we also underline the interest of the simplified model in term of computing time.

The paper is organized as follows. In the second section, the problem is in-
troduced and the three examples are stated. The third section if devoted to the
statement of the assumptions and of the simplified model itself. Then the definition
and the properties of the two-scale transform for vectors and for matrices are stated
and partially proved in the fourth section. Some technical points are postponed in
annex. The derivation of the model is detailed in the fifth section. Finally, in
the sixth section, the simplified model is applied to the three examples and the
numerical results are reported.

2. Presentation of the problem. In this section we start by introducing stan-
dard circuit equations in § 2.1, then we describe what is called a periodic circuit §
2.2 and we end by three examples of such circuits in § 2.3-2.5.
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2.1. Circuit equations. A graph associated with an electrical circuits is denoted
by G = (E ,N ) where E is the branch set and N the node set. We denote by
ϕ ∈ R|N |, v ∈ R|E| and i ∈ R|E| the nodal voltages (or electric potential), the branch
voltages and the currents where |Z| represents the number of elements belonging to
a set Z. The circuit equations used in this paper are:

• the Kirchhoff voltage law:

v = ATϕ, (1)

• the Tellegen theorem:

iTATψ = 0 for all ψ ∈ Ψ, (2)

• the branch equations characterizing the circuit devices:

Mv + Ri = us, (3)

• and the ground node equations:

ϕI = 0 for all node nI ∈ N0 (4)

where A ∈ R|N | × R|E| is the incidence matrix, N0 ⊂ N is the subset of ground
nodes,

Ψ = {ψ ∈ R|N | such that ψI = 0 for all nI ∈ N0}

is the set of admissible potentials, M and R are two square matrices with |E| rows
and columns and us ∈ R|E| represents voltages and currents sources regrouped in a
single vector.

In the following, we reformulate this set of equations in a condensed form:

ϕ ∈ Ψ, v = ATϕ,

MATϕ+ Ri = us, (5)

and iTATψ = 0 for all ψ ∈ Ψ.

These equations may take into account general multi-port linear devices in statics.
Linear circuit equations of evolution may also be written on this form when applying
the Laplace transform.

2.2. Periodic circuit. Now let us consider the class of circuits that are distributed
in d ≥ 1 space directions so that their graph is periodic in all these directions. Elec-
trical devices are assumed to be periodically distributed excepted on the boundary
where specific devices may be installed so that to realize specific boundary condi-
tions. Each branch is assumed to belong entirely to one and only one cell. If it is
not the case, the circuit must be rearranged in a convenient manner.

We assume that the circuit is confined in a bounded set Ω ⊂ Rd and that the
number of its periods is large in all the d directions. For simplicity, it is assumed
that Ω is an unit square Ω = (0, 1)d and that in all directions the period lengths
are equal to an identical small parameter ε.

A unit graph is built by picking one cell of the complete graph, expanding it by
a factor 1/ε and shifting it so that to occupy the unit cell Y = (− 1

2 ,
1
2 )d. The unit

graph is denoted by G = (E,N). From the above assumption, it turns out that E
is a set of entire branches. Because N is εY−periodic, each node n ∈ N located
on the boundary of Y has its counterpart n′ on the opposite side. For instance, on
the Figure 1 n′

1 = n3, n
′
3 = n1, n

′
2 = n4 and n′

4 = n2. We assume that n and n′

are linked by at least one path (a sequence of connected branches) that does not
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include any ground node. Such a path is called a crossing path. Let us introduce
the subset EC of “crossing branches”.

Criterion:The subset EC ⊂ E is constituted of all branches of some of the
crossing paths. For each n and n′ defined as above the branches of at least one
crossing path linking n to n′ among many must belong to EC .

It may be noticed that this criterion do not determine totally EC . A complemen-
tary criterion is given in the remark 1. The complementary set E−EC is denoted by
ENC . The subset EC is partitioned in its nc connected components EC = ∪nc

k=1ECk.
The subsets NC and NNC of N are defined as the set of nodes involved in at

least one of the branch of EC and ENC respectively. It is worth pointing out that
these two subsets are not a partition of N because in general NC ∩ NNC 6= ∅ as
soon as EC have ENC common nodes.

The set N0 of ground nodes is shared in two parts, the first N0Γ referring to
ground nodes located on the boundary Γ of the whole domain Ω and the other
being distributed periodically in the graph. The corresponding set of this later
in N is denoted by N0. The ground nodes in N0Γ correspond to some nodes in
N located on the cell boundary. Therefore they belong to NC which have been
separated in many connected components NCk which in turn define a partition of
N0Γ = ∪nc

k=1N0Γk. We denote by Γ0k the part of Γ where the nodes N0Γk are
distributed.

The solution of the simplified model introduced in this paper realizes an approx-
imation of the solution of 5 for small values of ε (ε << 1). It is derived as a limit
of the latter when the cells length ε diminishes towards zero.

2.3. Example 1: A regular grid of resistors. The first example of periodic
circuit has been extensively studied in the literature. It is a two-dimensional regular
mesh of resistors. The elementary cell is made of four resistors (with the same
resistance in all cells) that realize two crossing paths in the two directions and one
source of current that may vary from one cell to the other. Thus EC is made of the
resistors and ENC of the current source. The nodes located on the part Γ0 of the
boundary are connected to the earth. The complementary part of the boundary
is denoted by Γ1. Making an adapted choice of resistance r = εr0 and of current
sources is = εi0s, this circuit realizes the discretization by the finite differences
method of the Laplace equation with mixed (Dirichlet and Neumann) boundary
conditions:

−∆ϕ0 = f in Ω

ϕ0 = 0 on Γ0 and ∇ϕ0.n = 0 on Γ1

where f = 2r0i
0
s, i

0
s is a field distributed in Ω and i0s is the vector constituted of

the values of i0s at the cell centers. It turns out that the components of the nodal
voltage ϕ at the center of the cells are some approximations of ϕ0 at those points.
The model presented in this paper recover this result and in addition provides the
expressions of the currents and voltages in all branches of the circuit. Evidently,
our model is very general so it encompasses much more general situations.

2.4. Example 2: Disconnected circuits. In that example the sub-circuits of a
cell is disconnected from the sub-circuit of the other so EC = ∅. The reference
cell is made of a voltage source and of a resistor. The voltage source vs may take
different values in different cells but not the resistor. The circuit equations can be
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Figure 1. Example 1

solved independently in each cell, it comes that

ϕ = −vs and i = −
vs

r
.

Figure 2. Example 2

If the vector vs is an approximation of a continuous field v0
s for ε ≪ 1 then the

vectors ϕ and i are some approximations of the continuous fields −v0
s and − v0

s

R .
This trivial result is encompassed by our model that can represent general periodic
disconnected circuits.

2.5. Example 3: Active and passive devices. The first two examples are el-
ementary illustrations of crossing and non crossing circuits with passive devices.
It could be possible to choose more complex circuits to illustrate the interest of
the simplified model presented hereafter. But in this paper we prefer to stay sim-
ple as much as we can. From that simple examples, the interested reader will be
able to foresee more complex applications. So the third example is also elementary
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and is made of passive and active devices, of crossing sub-circuits and non crossing
sub-circuits, see the figure. Here EC is made of resistors and of a actively con-
trolled current source when ENC is constituted of a passive voltage source and of
the amplifier′s input.

Figure 3. Example 3

3. Statement of the simplified model. Before to state the model in § 3.3 we
introduce in § 3.1 the concept of two-scale transform and in § 3.2 the assumption
on which the model is justified.

3.1. Two-scale transform. The multi-integer µ = (µ1, .., µd) enumerates all the
cells Y ε

µ in Ω and takes its values in {1, ..,m}d. The center of a cell Y ε
µ is denoted

by xε
µ. We define the concept of two-scale transform relatively to a set Z of objects

being distributed εY−periodically in Ω. It must be understood that Z may represent
either N or E . Similarly, Z represents either N or E. The objects of Z are indexed
by I ∈ {1, .., |Z|} and those of Z by j ∈ {1, ..|Z|}. Each object is referenced by an
unique index I, but it can also be referred by a multi-integer µ referring to the cell
which it belongs and by an index j in Z. This correspondence is denoted by I ∼
(µ, j) and is not one to one in general. Using this correspondence, for each vector
u ∈ R|Z| one may define a unique tensor Uµj with (µ, j) ∈ {1, ..,m}d × {1, .., |Z|}
by Uµj = uI for I ∼ (µ, j).

By another way, we introduce the set P0(Ω) of piecewise constant functions on
each cell of Ω: f(x) =

∑
i χY ε

µ
(x)fi, each fi being a scalar coefficient and χY ε

µ
(x)

being the characteristic function of the set Y ε
µ equal to 1 when x ∈ Y ε

µ and 0

otherwise. We denote by P0(Ω)|Z| the set of vectors having |Z| components, each
of them being in P0(Ω). It is easy to verify that P0(Ω) is included in L2(Ω) the set
of square integrable functions in Ω.

Definition 1. The two-scale transform of a vector u ∈ R|Z| is the vector of func-
tions û ∈ P0(Ω)|Z| defined by

ûj(x) =
∑

µ∈{1,..,m}d

χY ε
µ
(x)Uµj for all x ∈ Ω and j ∈ {1, .., |Z|}
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where Uµj = uI with I ∼ (µ, j). The linear map u 7→ û from R|Z| to P(Ω)|Z| ⊂
L2(Ω)|Z| is denoted by TZ .

Let us illustrate this concept on the example 2 where d = 2, |E| = 2 and |E| =
2m2. The components of the two-scale transform v̂(x) = (v̂1(x), v̂2(x)) ∈ P0(Ω)2

of branch voltages v ∈ R2m2

have the form v̂j(x) =
∑

µ∈Y ε
µ
χY ε

µ
(x)Vµj for j = 1, 2

where Vµj represent the voltages in the 2 branches of the cell Y ε
µ .

In the following, we will constantly refer to the concept of local matrices B ∈
R|Z1| × R|Z2|, Z1 and Z2 being two periodic sets, which transform a vector having
its non vanishing components in one cell into a vector having also its non vanishing
components in the same cell.

Definition 2. (i) B is said to be local if BIJ = 0 for all I ∼ (µ, j) and J ∼ (λ, l)
when µ 6= λ.

(ii) Let B ∈ R|Z1|×R|Z2| be a local matrix, if there exist a matrixB ∈ R|Z1|×R|Z2|

such that BIJ = δµλBjl for all I ∼ (µ, j) and J ∼ (λ, l) then B is said to be local
and εY−periodic. The matrix B is called the reduced matrix of B.

Here δµλ is the Kronecker symbol equal to 1 when µ = λ and equal to zero
otherwise. In other words, a local εY−periodic matrix is a bloc diagonal matrix so
that all its blocs are identical.

Example 1. Since we have assumed that each branch belong to only one cell it
comes that the transpose of the incidence matrix AT involved in the Kirchhoff
Voltage Law (1) is local and εY−periodic. Its reduced matrix is denoted by AT .
Remark that this is not the case for the incidence matrix itself.

The linear space L2(Ω)|Z| admits a scalar product and a norm

(u, v) =

∫

Ω×Z

uj(x)vj(x) d(x, j) and ||u|| = (u, u)1/2

where we use the notation∫

Ω×Z

fj(x) d(x, j) =
∑

j/zj∈Z

∫

Ω

fj(x) dx

zj describing an element of Z. This notation is constantly used in this paper for
Z being E, N or one of their parts. The proposition 1 shows that for Z = E and
Z = E the two-scale transform preserves the norm,

εduT .u = εd
∑

I

|uI |
2 = ||û||2 for all u ∈ R|E|. (6)

The linear space L2(Ω)|Z| being normed and ε being a parameter tending to zero,
one will say that a sequence uε ∈ L2(Ω)|Z| indexed by ε converges strongly in
L2(Ω)|Z| towards a limit u0, which necessarily belongs to L2(Ω)|Z|, if ||uε − u0||
vanishes when ε tends to zero. The sequence is said to be weakly convergent in
L2(Ω)|Z| towards u0 if the scalar product (uε −u0, v) vanishes when ε tends to zero
for all v ∈ L2(Ω)|Z|, see [12] for more details. The strong convergence implies the
weak convergence but the converse is generally false. For example, the sequence
sin(x

ε ) ∈ L2(Ω) is bounded in L2(Ω), it is weakly convergent towards 0, but it does

not converge strongly towards any limit in L2(Ω).
The weak convergence plays an important role in our approach because the model

is stated on the weak limits of the voltage′s and current′s two-scale transforms. The
existence of such weak limits comes from the following lemma (see [12]).
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Lemma 1. From any bounded sequence in L2(Ω) one may extract a subsequence
that is weakly convergent in L2(Ω).

3.2. Assumptions. Before to state further assumptions, let us summarize those
made in the past sections.

(H0) A branch e ∈ E can intersect the boundary of a cell only with its tips.
(H1) Each opposite nodes n and n′ are linked by at least one crossing path that

do not come across the ground. Furthermore, they do not belong to any corner of
the cell.

The next assumptions state that not only the graph is periodic but also the
distribution of devices in the circuit as well as their coefficients.

(H2) The matrices M and R are local and εY−periodic. Their reduced matrices
are denoted by M and R.

The next assumption says that the voltages and the currents are respectively of
the order of ε and 1 in EC and of the order of 1 and ε in ENC . We formulate this
by using the scaling matrices Sv, Sc and Ss applied to the two-scale transforms

îε = Sĉi, v̂ε = Svv̂, ûε
s = Ssûs, ϕ̂

ε = ϕ̂. (7)

(H3) The norms ||̂iε||, ||v̂ε||, ||ϕ̂ε||, ||ûε
s|| are bounded and the data ûε

s converges
weakly in L2(Ω)|E| towards a limit u0

s.
The |E| × |E| scaling matrices are

Sv = ε−1IEC
+ IENC

, Sc = IEC
+ ε−1IENC

and Ss = ΠcSc + ΠvSv (8)

where for any subset E1 of E the |E| × |E| matrix IE1
is the projector on E1:

(IE1
)jk = δjk if ej ∈ E1

= 0 otherwise.

Each branch equation in (3) being homogeneous or to a current or to a voltage, from
this distinction we deduce a partition of E in two subsets. The |E| × |E| matrices
Πc and Πv (for currents and voltages respectively) are defined as the projectors on
these two subsets.

The reduced matrices M and R of M and R are scaled in a consistent manner

M ε = SsMS−1
v and Rε = SsRS

−1
c . (9)

(H4) The scaled reduced matrices M ε and Rε converge towards some limit M0

and R0.

Remark 1. As indicated in the criterion of section 2.2, EC is made of all the
branches of some crossing paths and for each couple (n, n′) at least one crossing
path linking n and n′ must be part of EC . In the case where many crossing paths
are linking n and n′ the designer is free to decide which are included in EC and
which are not, with regard to the assumption (H2).

Let us introduce the so-called cell problem (or problem micro). For two given
vectors η ∈ Rnc , us ∈ R|E| and a given matrix θ ∈ Rd ×Rnc the vectors i, v ∈ R|E|

and (ϕC , ϕNC) ∈ Ψm(η) are solution of the cell problem

v = IEC
ATϕC + IENC

ATϕNC

R0i+M0v = us −M0(τθ + I0η) (10)

and iTw = 0



HOMOGENIZATION OF ELECTRONIC CIRCUITS 475

for all vector w = IEC
ATψC + IENC

ATψNC with (ψC , ψNC) ∈ Ψm, the admissible
nodal voltage set for the cell problem being

Ψm = {(ψC , ψNC) ∈ R|N |
per × R|N | such that IN0

C
∪N−NC

ψC = 0, INC∪N0
ψNC = 0}.

The tensor τ is defined by

τ lkp =
∑

j s.t. nj∈NCp

yk(nj)Ajl for el ∈ ECp (11)

= 0 otherwise.

where y(n) ∈ Rd is the coordinates vector of a node n ∈ N . Throughout this paper,
we will use the tensor product notation where the summation is on the two last
indexes of τ

(τθ)l =
∑

k

∑

p

τ lkpθkp. (12)

Moreover, I0 is a matrix in R|N | × Rnc defined by

I0
jp = 1 if nj ∈ NCp (13)

= 0 otherwise,

N0
C is a set of nc nodes constituted of one arbitrary node of each connected com-

ponent NCp. Finally

R|N |
per = {φ ∈ R|N | such that φj = φj′ for all couple (nj , nj′) of opposite nodes}.

(14)
(H5) For each η ∈ Rnc , θ ∈ Rd × Rnc and us ∈ R|E| the cell problem (10) has a
unique solution (ϕC , ϕNC , i, v).

From (H5) and the map (η, θ, us) 7→ (i, v, ϕNC) being linear there exists some
matrices Lx, Hx and a third order tensor Px such that

Liη+Piθ+Hius = i, Lϕη+Pϕθ+Hϕus = ϕNC and Lvη+Pvθ+Hvus = v (15)

where Pxθ is defined according to (12).

3.3. The model. From the assumption (H3) and the lemma 1 there exists at least

one extracted subsequence of (̂iε, v̂ε,ϕ̂ε) that is weakly converging towards some
limits (i0, v0, ϕ0) in L2. The model satisfied by the latter is stated in this subsection.
It constitutes the main result of the paper.

Theorem 1. (i) If the assumptions (H0-H3) are fulfilled then IEC
ATϕ0 = 0 or

equivalently there exist ϕ0
C ∈ L2(Ω)nc such that

ϕ0 = I0ϕ0
C + ϕ0

NC (16)

where ϕ0
NC := IN−NC

ϕ0. Moreover there exists ϕ1
C ∈ L2(Ω; R|N |

per) such that

v0 = ∂τϕ
0
C + IEC

ATϕ1
C + IENC

ATϕ0 and IN−NC
ϕ1

C = 0. (17)

This is the asymptotic Kirchhoff Voltage Law.
(ii) Furthermore, if the assumptions (H4) and (H5) are satisfied then ϕ0

C ∈ ΨH is
solution of the algebro-differential equation, so-called homogenized circuit equations,

QH∇ϕ0
C + SHϕ0

C = FHu0
s and AH(Pi∇ϕ

0
C + Liϕ

0
C) = −AHHiu

0
s in Ω (18)

with the boundary conditions

ϕ0
Cp = 0 on Γ0p and (Pi∇ϕ

0
C + Liϕ

0
C)nτ = 0 on Γ − Γ0p.
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(iii) Finally (ϕ1
C , ϕ

0
NC , i

0, v = IEC
ATϕ1

C + IENC
ATϕ0

NC) is solution of the cell
problem (10) with (η, θ, us) = (ϕ0

C ,∇ϕ
0
C , u

0
s).

The homogenized matrices QH , SH , FH and operator AH are defined by

QH = R0Pi +M0(τ + Lv), SH = R0Li +M0(IEC
AT I0 + Lv),

FH = I −R0Hi −M0Hv and AH = −∂τ∗ + I0TAIENC

where ∂τ∗i = τ∗∇i with τ∗pkl = τ lkp and the use of notation (12). The derivative

∂τϕ
0
C and the normal nτ are defined by

∂τϕ
0
C = τ∇ϕ0

C and (nτ )lp =

d∑

k=1

τ lkpnk

∇ being the gradient (∂xk
)k=1..d and n = (nk)k=1..d being the outward normal

vector to the boundary Γ of Ω. Finally, the admissible set of macroscopic potential
is

ΨH = {ψ ∈ L2(Ω)nc such that ∂τψ ∈ L2(Ω)|E| and ψk(x) = 0 on Γ0k}.

4. Properties of the two-scale transform. We prove the fundamental proper-
ties of the two-scale transform which are useful for the model derivation.

4.1. Adjoint of TE and norm preservation. First the adjoint T ∗
E of the two-

scale transform TE is established. Then the relationship between the scalar product
[., .] and the norm |.| in R|E|, defined by

[u,v] = ε−duT .v and |v| = [v,v]1/2 for all u,v ∈ R|E|,

and the scalar product and the norm in L2(Ω)|E| is derived.

Proposition 1. (i) Under the assumption (H0) the adjoint T ∗
E is equal to

(T ∗
Eu)I = ε−d

∫

Y ε
µ

uj(x) dx for I ∼ (µ, j) (19)

for all u ∈ L2(Ω)|E|.
(ii) Furthermore, the restriction T ∗

E to P(Ω)|E| is

(T ∗
Eu)I = Uµj for I ∼ (µ, j)

for all u ∈ P(Ω)|E| so that uj(x) =
∑

µ∈{1,..,m}d χY ε
µ
(x)Uµj .

(iii) T ∗
ETE = IE on R|E|.

(iv) TET
∗
E = IE on P0(Ω)|E|.

(v) TE is one to one from R|E| to P0(Ω)|E| and T ∗
E is its inverse.

(vi) The scalar product as well as the norm are conserved through the two-scale
transform

(TEu, TEv) = [u,v] and ||TEu|| = |u| for all u,v ∈ R|E|. (20)

Proof. (i) For u ∈ L2(Ω)|E| T ∗
Eu is defined through the equality [T ∗

Eu,v] = (TEv, u)

for all v∈ R|E|. But

(TEv, u) =

∫

Ω

(TEv).u(x)dx = εd
∑

µ∈{1,..,m}d

|E|∑

j=1

ε−d

∫

Y ε
µ

uj(x)dxVµj

which leads to the characterization of T ∗
E because the correspondence ∼ is one to

one.
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The point (ii) is a straightforward consequence of the point (i).
(iii) Let u ∈ R|Eε| and I ∼ (µ, j) (T ∗

ETEu)I = T ∗
I (
∑

λ∈{1,..,m}d UλjχY ε
λ
(x)) =

ε−d
∫

Y ε
µ

∑
λ∈{1,..,m}d χY ε

λ
(x) dx Uλj = Uµj = uI .

(iv) Let u ∈ P0(Ω; R|E|) so that uj(x) =
∑

µ∈{1,..,m}d UµjχY ε
µ
(x) then

(TET
∗
Eu)j(x) = (TE(ε−d

∫
Y ε

µ
uj(x

′)dx′))j(x) which is equal to
∑

µ∈{1,..,m}d ε−d

∫
Y ε

µ
uj(x

′)dx′χY ε
µ
(x). Replacing u by its expression yields

=
∑

µ∈{1,..,m}d

∑
λ∈{1,..,m}d ε−d

∫
Y ε

µ
χλ(x′) dx′ UλjχY ε

µ
(x). Finally we use the

fact that ε−d
∫

Y ε
µ
χλ(x′) dx′ = δµλ to conclude that (TET

∗
Eu)j(x) =

∑
µ∈{1,..,m}d

UµjχY ε
µ
(x) = uj(x).

(v) is just a consequence of (iii) and of (iv).
The proof of (vi) is straightforward (TEu, TEv) = [T ∗

ETEu,v] = [u,v] from which
the equality of norms follows by posing v = u.

4.2. Two-scale transform of matrices. We start this section by providing the
definition of the two-scale transform of a matrix operating on R|E| providing that the
assumption H0 holds. We continue by stating some of its properties in the particular
case of |E| × |E| matrices. Since we wish to apply the two-scale transform to the
incidence matrix AT which operate on R|N | we end this section by defining the
two-scale transform of general local εY−periodic matrices which evidently applies
to AT .

Definition 3. Assuming that H0 holds, then the two-scale transform of a matrix
B ∈ R|Z|×R|E| is the linear operator defined from L2(Ω)|E| to P0(Ω)|Z| ⊂ L2(Ω)|Z|

by

B̂ = TZBT
∗
E.

Let us focus on matrices B ∈ R|E| × R|E|. Its two-scale transform B̂ = TEBT ∗
E is

a linear operator from L2(Ω)|E| to P0(Ω)|E| ⊂ L2(Ω)|E|, however, in the following
statement we consider only its restriction defined from P0(Ω)|E| to itself. The norm

of such a matrix is |B| = sup
u∈R|E|

|Bu|
|u| .

Proposition 2. For B a |E| × |E| matrix and u,v ∈ R|E| the following properties
hold:

(i) (̂Bu) = B̂û;

(ii) (B̂û, v̂) = [Bu,v];

(iii) B̂T = B̂∗;

(iv) ||B̂|| = |B|.

Proof. (i) (̂Bu) = TEBu = TEBT ∗
ETEu = B̂û.

(ii) (B̂TEu, TEv) = (TEBT ∗
ETEu, TEv) = [Bu, T ∗

ETEv] = [Bu,v].

(iii) B̂T = TEB
TT ∗

E = (TEBT
∗
E)∗ = B̂∗.

(iv) ||B̂|| = supu∈P0(Ω;R|E|)
|| bBu||
||u||

E

, ||B̂u|| = ||TEBT ∗
Eu|| = |BT ∗

Eu| and ||u||
E

=

|T ∗
Eu| yield ||B̂|| = supu∈P0(Ω;R|E|)

|BT∗
Eu|

|T∗
E

u| = sup
v∈R|E|

|Bv|
|v| = |B| because T ∗

E is one

to one from P0(Ω; R|E|) to R|E|.

We cannot define the two-scale transform of a general matrix B ∈ R|Z1| × R|Z2|

but we can do it for local εY−periodic matrices providing that Z1 and Z2 are two
periodic sets.
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Definition 4. If B ∈ R|Z1| × R|Z2| is a local εY−periodic matrix and B is its

reduced matrix then the two-scale transform B̂ of B is defined by

(B̂φ)j(x) =

|Z2|∑

k=1

Bjkφk(x) for all φ ∈ P0(
)
|Z2|.

Based on this definition the following property holds.

Lemma 2. If B ∈ R|Z1| × R|Z2| is a local εY−periodic matrix then

B̂φ = B̂φ̂.

4.3. Two-scale convergence of Kirchhoff Voltage Law. This section is de-
voted to the derivation of the point (i) of the main theorem 1. The proof is a little
technical, so it has been decomposed. One part requiring detailed explanation re-
garding the two-scale transform for nodes as well as tricky operations is postponed
in annex.

Let us recall that the sets N and E of nodes and of branches depend on the
number of cells in the circuit or equivalently depend on the parameter ε. For a
given ε we consider a vector of nodal voltages ϕ ∈ R|N | and v = ATϕ ∈ R|E| the
branch voltages. By doing so, ϕ and v are also depending on ε and all together
constitute a sequence indexed by ε. The same thing can be said about their scaled
two-scale transforms ϕ̂ε = ϕ̂ and v̂ε = Svv̂ where the dependence on ε is made more
visible. When their norms ||ϕ̂ε|| and ||v̂ε|| are bounded, thanks to the lemma 1, one
may extract a subsequence of the couple still denoted by (ϕ̂ε,v̂ε) which converges
weakly in L2(Ω)|N | × L2(Ω)|E| towards a limit (ϕ0, v0).

Lemma 3. The weak limits (ϕ0, v0) satisfy IEC
ATϕ0 = 0 or equivalently there

exists ϕ0
C ∈ L2(Ω)

nc such that

INC
ϕ0 = I0ϕ0

C

then

ϕ0 = I0ϕ0
C + ϕ0

NC where ϕ0
NC = IN−NC

ϕ0

and there exists ϕ1
C ∈ L2(Ω; R|N |

per) such that

v0 = ∂τϕ
0
C + IEC

ATϕ1
C + IENC

AT (ϕ0
NC + I0ϕ0

C).

Proof. (i) We start by proving that INC
ϕ0 = I0ϕ0

C . The fact that ||v̂ε|| is bounded
and the lemma 2 imply together that ε−1||IEC

AT ϕ̂
ε|| is bounded and by passing to

the limit in (IEC
AT ϕ̂

ε, w) ≤ Cε||w|| for all w ∈ L2(Ω)|E| that IEC
ATϕ0 = 0. This

is equivalent to say that ϕ0 is constant on each connected component ECk of EC

or equivalently that there exists a vector ϕ0
C ∈ L2(Ω)|nc| such that INC

ϕ0 = I0ϕ0
C .

(ii) Let us establish that IENC
v0 = IENC

AT (ϕ0
NC + I0ϕ0

C) where

ϕ0
NC = IN−NC

ϕ0.

The fact that ϕ̂ε and v̂ε converge weakly towards ϕ0 and v0 implies that the
equality IENC

v̂ε = IENC
AT ϕ̂

ε converges weakly towards IENC
v0 = IENC

ATϕ0 =
IENC

AT (ϕ0
NC + I0ϕ0

C).
(iii) The end of the proof is devoted to the derivation of the expression of v0 in

EC :

IEC
v0 = ∂τϕ

0 + IEC
ATϕ1

C .
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The subset of N of nodes belonging to the boundary of the cell Y is denoted by

∂N. Let us define the subspace R|N |
antiper of R|N |

R|N |
antiper = {φ ∈ R|N | such that φj = −φj′ for all nj ∈ ∂N} (21)

and let us pose v = IEC
v0 − ∂τϕ

0
C . From the lemma 4, (v, µ) = 0 for µ ∈ C1(Ω)|E|

such that Aµ(x) ∈ R|N |
antiper and IN−∂NAµ(x) = 0 for all x ∈ Ω or in another word

such that µ(x) ∈ KerB, B being the |N | × |E| matrix defined by

(Bµ)j = (Aµ)j + (Aµ)j′ for nj ∈ ∂N

= (Aµ)j for for nj ∈ N − ∂N.

Since KerB = (ImBT )⊥ thus v(x) ∈ ImBT i.e. there exists φ(x) ∈ R|N | such that
v(x) = BTφ(x). But

(BTφ)j =

|N |∑

k=1

Akj((IN−∂Nφ)k + (I∂Nφ)k + (I∂Nφ)k′ )

then by posing ϕ1
C ∈ R|N | with components ϕ1

Ck = (IN−∂Nφ)k+(I∂Nφ)k+(I∂Nφ)k′

yields v = ATϕ1
C , ϕ

1
C(x) ∈ R|N |

per . Moreover IEC
v = 0 implies that IN−NC

ϕ1
C = 0.

This complete the proof.

Lemma 4. If µ ∈ C1(Ω)|E| satisfies

Aµ(x) ∈ R|N |
antiper and IN−∂NAµ(x) = 0 for all x ∈ Ω

then

(IEC
v0 − ∂τϕ

0
C , µ) = 0.

Proof. Since the components of IEC
v0 − ∂τϕ

0
C vanish on ENC there is no loss of

generality to consider that IENC
µ = 0 and to prove that

(v0, µ) = (∂τϕ
0
C , µ). (22)

In the one side (v0, µ) = limε→0(v̂
ε, µ) and in the other side (v̂ε, µ) = 1

ε (ϕ̂ε, Aµ) =
1
ε (ϕ̂ε, ψ)∂N with ψ = Aµ. Then (v0, µ) = limε→0

1
ε (ϕ̂ε, ψ)∂N and by using the

lemma 7,

(v0, µ) = lim
ε→0

1

ε

∫

Ω×∂N

ϕ̂
ε
j(x)ψj(x) d(x, j)

= lim
ε→0

−

∫

Ω×∂N

ϕ̂
ε
j(x)(y.∇xψ)j(x) d(x, j) + b(ϕ̂ε, ψ)

= −

∫

Ω×∂N

ϕ0
j(x)(y.∇xψ)j(x) d(x, j) +

∫

∂(Ω,N)

ϕ0
j(x)ψj(x) ds(x, j)

where

∂(Ω, N) = {(x, n) ∈ Γ × ∂N such that nY (n) = nΩ(x)}.

(i) Let us prove that
∫

Ω×∂N

ϕ0
j(x) (y.∇xψ)j(x) d(x, j) = (ϕ0

C , ∂τ∗µ)

with

(∂τ∗µ)p(x) =

d∑

k=1

|E|∑

l=1

τ lkp∂xk
µl(x) for p ∈ {1, .., nc}.
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From ∂N ⊂ NC and INC
ϕ0 = I0ϕ0

C comes
∫

Ω×∂N

ϕ0
j(x) (y.∇xψ)j(x) d(x, j) =

∫

Ω×∂N

(I0ϕ0
C)j(x)(y.∇xψ)j(x) d(x, j).

Combined with the facts that INC−∂N (τ .∇xψ) = 0 and IN−NC
I0ϕ0

C = 0 yields

= (I0ϕ0
C , y.∇xψ) = (ϕ0

C , I
0T (y.∇xAµ)) = (ϕ0

C , ∂τ∗µ).

(ii) For all ν ∈ R|N |
antiper and x ∈ Γ let us prove that:

∑

j/(x,nj)∈∂(Ω,N)

νj =
∑

j/nj∈∂N

νjy(nj)nΩ(x)

where R|N |
antiper is defined in (21). We remark that if (x, nj) ∈ ∂(Ω, N) then

nY (nj).nΩ(x) = 1 and νj = νjnY (nj).nΩ(x). Moreover nY (nj′ ) = −nY (nj) and
νj′ = −νj imply that νjnY (nj) = νj′nY (nj′ ).

Thus νj = 1
2 (νjnY (nj) +νj′nY (nj′ ))nΩ(x) = (νjy(nj) + νj′y(nj′))nΩ(x) and
∑

j/(x,nj)∈∂(Ω,N)

νj =
∑

j/(x,nj)∈∂(Ω,N)

(νjy(nj) + νj′y(nj′))nΩ(x)

=
∑

j/nj∈∂N

νjy(nj)nΩ(x).

(iii) Let us derive the formula:
∫

∂(Ω,N)

ϕ0
j(x)ψj(x) ds(x, j) =

∫

Γ×N

(I0ϕ0
C)j(y.nΩAµ)j(x) ds(x, j).

with (y.nΩAµ)j(x) =
∑d

k=1

∑|E|
l=1 yk(nj)nΩk(x)Ajlµl(x). Since IEC

ϕ0 = I0ϕ0
C

∫

∂(Ω,N)

ϕ0
j(x)ψj(x) ds(x, j) =

nc∑

k=1

∫

Γ

ϕ0
Ck(x)

∑

j / (x,nj)∈∂(Ω,N)

I0
jkψj(x) ds(x).

But (ii) with νj = I0
jkψj(x) (k being frozen), providing that ψ = Aµ, says that

∑

j / (x,nj)∈∂(Ω,N)

I0
jkψj(x) =

∑

j/nj∈∂N

I0
jk(Aµ)j(x)y(nj).nΩ(x).

Thus ∫

∂(Ω,N)

ϕ0
j(x)ψj(x) ds(x, j) =

∫

Γ×∂N

(I0ϕ0
C)j(x)(y.nΩAµ)j(x) ds(x, j).

A reasoning similar to this made in (i) yields

=

∫

Γ×N

(I0ϕ0
C)j(y.nΩAµ)j(x) ds(x, j).

(iv) The end of the proof is done using (i), (iii) and the Green like formula:

−
nc∑

p=1

∫

Ω

ϕ0
Cp(x)(∂τ∗µ)p(x) dx+

|N |∑

j=1

∫

Γ

(I0ϕ0
C)j(x)(y.nΩAµ)j(x) ds(x)

=

|E|∑

l=1

∫

Ω

(∂τ∗ϕ0
C)l(x)µl(x) dx.
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4.4. Convergence of test functions. Let us introduce the set of admissible two-
scale potentials

Ψ = {(ψ0
C , ψ

1
C , ψ

0
NC) ∈ L2(Ω)nc × L2(Ω; R|N |

per) × L2(Ω)|N |

s.t. ∂τψ
0
C ∈ L2(Ω)|E|, IN−NC

ψ1
C = 0, INC∪N0

ψ0
NC = 0, (23)

ψ0
Cp(x) = 0 ∀x ∈ Γ0p for all p = 1..nc}.

For (ψ0
C , ψ

1
C , ψ

0
NC) ∈ Ψ∩ C1(Ω)nc ×C1(Ω; R|N |

per)×C1(Ω)|N | let us define ψ0 and ψ1

in R|N | by

ψ0
I = ψ0

Cp(x
ε
µ + εy(nj)) for nj ∈ NCp for p = 1, .., nc

= ψ0
NCj(x

ε
µ) for nj ∈ N −NC ,

ψ1
I = ψ1

Cj(x
ε
µ) for nj ∈ N − ∂N

=
1

2
(ψCj(x

ε
µ) + ψCj′(x

ε
µ′)) for nj ∈ ∂N

where I ∼ (µ, j) and (µ′, j′), (see in annex for details regarding (µ′, j′)).

Lemma 5. (i) ψ̂
0

= I0ψ0
C + ψ0

NC +O(ε).

(ii) SvA
T ψ̂

0
= ∂τψ

0
C + IENC

AT (ψ0
NC + I0ψ0

C) +O(ε).

(iii) ψ̂
1

= ψ1
C +O(ε).

(iv) IEC
AT ψ̂

1
= IEC

ATψ1
C +O(ε).

Proof. (i) Let us prove successively that INC
ψ̂

0
(x) = I0ψ0

C(x) + O(ε) and that

IN−NC
ψ̂

0
= ψ0

NC +O(ε). Let us start with INC
ψ̂

0
. For nj ∈ NCp,

ψ̂
0

j (x) =
∑

µ

ψ0
Cp(x

ε
µ + εy(nj))χY ε

µ
(x) =

∑

µ

ψ0
Cp(x

ε
µ)χY ε

µ
(x) +O(ε)

=
∑

µ

ψ0
Cp(x)χY ε

µ
(x) +O(ε) = ψ0

Cp(x) +O(ε).

Now we continue with IN−NC
ψ̂

0
. For nj ∈ N −NC :

(IN−NC
ψ̂

0
)j(x) =

∑

µ

ψ0
NCj(x

ε
µ)χY ε

µ
(x) =

∑

µ

ψ0
NCj(x)χY ε

µ
(x) +O(ε)

= ψ0
NCj(x) +O(ε).

(ii) Let us establish successively that IEC
SvA

T ψ̂
0

= ∂τψ
0
C + O(ε) and that

IENC
SvA

T ψ̂
0

= IENC
AT (ψ0

NC + I0ψ0
C)+O(ε). Using IEC

Sv = 1
εIEC

, for el ∈ EC :

(IEC
SvA

T ψ̂
0
)l(x) =

1

ε

|N |∑

j=1

Ajlψ̂
0

j(x)

=
1

ε

∑

µ

nc∑

p=1

|N |∑

j=1 s.t. nj∈NCp

Ajlψ
0
j(x

ε
µ + εy(nj))χY ε

µ
(x).
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But ψ0
j(x

ε
µ + εy(nj)) = ψ0

j (x
ε
µ) +

∑d
k=1 ∂xk

ψ0
j(x

ε
µ)εyk(nj) + εO(ε) then

=
1

ε

∑

µ

nc∑

p=1

|N |∑

j=1 s.t. nj∈NCp

Ajlψ
0
j(x

ε
µ)χY ε

µ
(x)

+

d∑

k=1

Ajl∂xk
ψ0

j(x
ε
µ)εyk(nj)χY ε

µ
(x) + εO(ε).

Since
∑|N |

j=1 s.t. nj∈NCp
Ajl = 1 − 1 = 0 for all l and ∂xk

ψ0
j(x

ε
µ) = ∂xk

ψ0
j(x) + O(ε)

for x ∈ Y ε
µ it remains

1

ε

nc∑

p=1

|N |∑

j=1 s.t. nj∈NCp

d∑

k=1

Ajl∂xk
ψ0

j (x)εyk(nj) + εO(ε) = (∂τψ
0
C)l +O(ε).

Now, IENC
SvA

T ψ̂
0

= IENC
AT ψ̂

0
= IENC

AT ψ̂
0

= IENC
AT INNC

ψ̂
0
. But

(INNC
ψ̂

0
)j(x

ε
µ) = ψ0

NCj(x
ε
µ) for nj ∈ N −NC

= ψ0
Cp(x

ε
µ + εy(nj)) for nj ∈ NCp ∩NNC .

But ψ0
Cp(x

ε
µ + εy(nj)) = ψ0

Cp(x
ε
µ)+O(ε) (INNC

ψ̂
0
)(xε

µ) = ψ0
NC(xε

µ)+ I0ψ0
C +O(ε).

Thus

(IENC
SvA

T ψ̂
0
)(x) = IENC

SvA
T (ψ0

NC + I0ψ0
C)(x) +O(ε).

This complete the proof of (ii).
(iii) For nj ∈ NC − ∂N

ψ̂
1

j(x) =
∑

µ

ψ1
Cj(x

ε
µ)χY ε

µ
(x) =

∑

µ

ψ1
Cj(x)χY ε

µ
(x) +O(ε) = ψ1

Cj(x) +O(ε).

For nj ∈ ∂N

ψ̂
1

j (x) =
∑

µ

1

2
(ψ1

Cj(x
ε
µ) + ψ1

Cj′(x
ε
µ′))χY ε

µ
(x)

but ψ1
Cj′(x

ε
µ′) = ψ1

Cj′(x
ε
µ) +O(ε) = ψ1

Cj(x
ε
µ) +O(ε) due to periodicity. Then

=
∑

µ

ψ1
Cj(x

ε
µ)χY ε

µ
(x) +O(ε) = ψ1

Cj(x) +O(ε).

The global result ψ̂
1

j = ψ1
Cj +O(ε) follows.

(iv) comes from (iii) by applying IEC
AT on each side of the equality.

5. Proof of the Theorem 1. The point (i) has been established in the lemma
3. In order to state (ii) and (iii), we establish the so called two-scale model which
is posed on both the cell circuit and the macroscopic domain Ω. From (i) we know
that ϕ0 and of v0 can be expressed with respect to the fields ϕ0

C , ϕ
1
C and ϕ0

NC so
that they satisfy the expression (16) and (17).

Lemma 6. Under the assumptions (H0-H4), (ϕ0
C , ϕ

1
C , ϕ

0
NC) ∈ Ψ and i0 ∈ L2(Ω)|E|

are solution of the two-scale circuit equations

R0i0(x) +M0v0(x) = u0
s(x) for all x ∈ Ω (24)

(i0, ∂τψ
0
C + IEC

ATψ1
C + IENC

AT (ψ0
NC + I0ψ0

C) = 0

for all (ψ0
C , ψ

1
C , ψ

0
NC) ∈ Ψ with Ψ defined in (23).
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In order to prove (iii), we replace v0 by its expression and pose ψ0
C = 0 :

v = IEC
ATϕ1

C + IENC
ATϕ0

NC

R0i0(x) +M0v(x) = u0
s(x) −M0(∂τϕ

0
C + IENC

AT I0ϕ0
C)(x) for all x ∈ Ω

(i0, IEC
ATψ1

C + IENC
ATψ0

NC) = 0.

This proves that (ϕ1
C , ϕ

0
NC , i

0, v) is solution of the cell problem (10) with (η, θ, us) =

(ϕ0
C ,∇ϕ

0
C , u

0
s)(x) at a given x and (ψC , ψNC) := (ψ1

C , ψ
0
NC).

Remark that INC∪N0
ψ0

NC = 0 has been replaced by IN0

C
∪N−NC

ψC = 0 for the

sake of uniqueness of ϕC .
(ii) Thanks to the assumption (H5) and to (iii) we know that

i0 = Liϕ
0
C + Pi∇ϕ

0
C + Hiu

0
s,

ϕNC = Lϕϕ
0
C + Pϕ∇ϕ

0
C + Hϕu

0
s,

and v = Lvϕ
0
C + Pv∇ϕ

0
C + Hvu

0
s.

Replacing in the two-scale branch equations leads to

(R0Pi +M0(τ + Lv))∇ϕ
0
C + (R0Li +M0(IENC

AT I0 + Lv))ϕ
0
C

= (I −R0Hi −M0Hv)u
0
s

or equivalently to QH∇ϕ0
C +SHϕ0

C = FHu0
s. Now, posing ψ1

C = ψ0
NC = 0 it follows

that ∫

Ω×E

(Pi∇ϕ
0
C + Liϕ

0
C)j(x)(∂τψ

0
C + IENC

AT I0ψ0
C)j(x) d(x, j)

= −

∫

Ω×E

(Hiu
0
s)j(x)(∂τψ

0
C + IENC

AT I0ψ0
C)j(x) d(x, j) for all ψ0

C ∈ ΨH .

Applying standard argument in related to variational formulations of partial differ-
ential equations yields to the partial differential equation (182) and its associated
boundary conditions.

It remains to prove the lemma 6.

Proof. The fact that (ϕ0
C , ϕ

1
C , ϕ

0
NC) ∈ Ψ comes from the lemma 3. It remains to

derive the equations (24). We start from the circuit equations (5). Let us apply the
two-scale transform and the lemma 2 to the first equation and the scalar product
preservation (20) and the lemma 2 to the second equation:

M v̂ +Rî = ûs and (̂i, AT ψ̂) = 0.

Introducing the scaled two-scale transforms (7) and (9) of vectors and matrices

M εSvA
T ϕ̂

ε +Rε̂iε = ûε
s and (̂iε, SvA

T ψ̂) = 0.

The scalar product between the first equation and a test function j ∈ L2(Ω)|E|

yields

(M εSvA
T ϕ̂

ε, j) + (Rε̂iε, j) = (ûε
s, j) and (̂iε, SvA

T ψ̂) = 0

or equivalently

(SvA
T ϕ̂

ε,M εT j) + (̂iε, RεT j) = (ûε
s, j) and (̂iε, SvA

T ψ̂) = 0.

Thanks to (H3) and (H4) and the lemma 5 one may pass to the limit ε→ 0

(v0,M0T j) + (i0, R0T j) = (u0
s, j) and (i0, w0) = 0.



484 MICHEL LENCZNER

The first equation being valid for all j ∈ L2(Ω)|E| is also equivalent to R0i0+M0v0 =
u0

s. According to the lemma 5 for each (ψ0
C , ψ

1
C , ψ

0
NC) ∈ Ψ, there exists such a w0

with

w0 = ∂τψ
0
C + IEC

ATψ1
C + IENC

AT (I0ψ0
C + ψ0

NC).

Plugging this expression in the second equation ends the proof.

6. Examples. Let us establish in detail the homogenized models for the three
examples.

6.1. Example 1. The nodes and branches are numbered according to the figure,
nc = 1, EC = {e1, e2, e3, e4}, ENC = {e5}, NC = {n1, n2, n3, n4, n5}, NNC =
{n2, n6}, N0 = {n6}, N

0
C = {n2} (arbitrary choice in NC). The local matrices are

R =

(
rI4 04×1

01×4 1

)
, M = M ε = M0 =

(
−I4 04×1

01×4 0

)
, ûs =

(
04

îs

)
,

Sv =

(
1
εI4 04×1

01×4 1

)
, Sc =

(
I4 04×1

01×4
1
ε

)
, Πc =

(
04×4 04×1

01×4
1
ε

)
,

Πv =

(
I4 04×1

01×4 0

)
, Ss =

1

ε
I5, R

ε =

(
1
εrI4 04×1

01×4 1

)
, ûε

s =

(
04
1
ε îs

)
.

So we assume that r = εr0 and îs = ε(i0s + O(ε)) then R0 =

(
r0I4 04×1

01×4 1

)
,

u0
s =

(
04

i0s

)
. The incidence matrix is

AT =




1 −1 0 0 0 0
0 1 −1 0 0 0
0 1 0 −1 0 0
0 −1 0 0 1 0
0 1 0 0 0 −1



.

Here ψNC = 0, then Ψm = {ψC ∈ R6 / ψC = Jψ∗
C where ψ∗

C ∈ R2} with J =(
1 0 1 0 0 0
0 0 0 1 1 0

)T

. Moreover y(n) =
1

2

(
−1 0 1 0 0 0
0 0 0 1 −1 0

)
, τ =

−
1

2

(
1 1 0 0 0
0 0 1 1 0

)T

, I0 =
(

1 1 1 1 0
)T
, u0

s =
(

0 0 0 0 i0s
)T
.

The problem micro has the form K(i, ϕ∗
C)T = L(θ, η, is)

T (here we prefer to work
with i0s in place of the whole u0

s). An explicit calculation shows that G = K−1L =(
G11 04×2

03×2 G22

)
with G11 = − 1

2r0

(
1 1 0 0
0 0 1 1

)T

and G22 =

(
0 0 0
1 0 0

)T

.

Thus Li, Pv and Hv vanish, Pi = 1
2r0 τ, Hi = Lv =

(
0 0 0 0 1

)T
. Then,

QH , SH and FH vanish and ϕ0
C is governed by the Laplace equation

∆ϕ0
C = 2r0i0s in Ω

with the boundary conditions ϕ0
C = 0 on Γ0 and ∇ϕ0

C .n = 0 on Γ−Γ0. Finally, the
two-scale current and voltages are given by

i0 =
(
∂x1

ϕ0
C ∂x1

ϕ0
C ∂x2

ϕ0
C ∂x2

ϕ0
C is0

)T

v0 =
(
∂x1

ϕ0
C ∂x1

ϕ0
C ∂x2

ϕ0
C ∂x2

ϕ0
C ϕ0

C

)T
.
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6.2. Example 2. Here nc = 0, EC = ∅, ENC = {e1, e2}, NC = ∅, NNC =

{n1, n2}. The local matrices are R =

(
r 0
0 0

)
, M = M ε = M0 =

(
−1 0
0 1

)
,

ûs = ûε
s =

(
0

îs

)
, Sv = I2, Sc = 1

εI2, Πc = 0, Πv = I2, Ss = I2, R
ε =

(
εr 0
0 0

)
, AT =

(
1 −1
−1 1

)
. So we assume that r = 1

εr
0 and îs = v0

s + O(ε)

then R0 =

(
r0 0
0 0

)
, u0

s =

(
0
v0

s

)
. Since EC = ∅ there is no macroscopic

model and (i0, v, ϕ0
NC) solves only the cell problem with Ψm = {ψNC ∈ R2 /

ψNC = Jψ∗
NC where ψ∗

NC ∈ R} with J =

(
1
0

)
. So The problem micro has

the form K(i, ϕ0∗
NC)T = L(vs)

T which leads to i0 = −
v0

s

r0 (1, 1)T ϕ0
NC = −v0

s and

v = v0
s(−1, 1)T .

6.3. Example 3. Here nc = 1, EC = {e1, e2, e3, e4, e5}, ENC = {e6, e7}, NC =
{n1, n2, n3, n4, n5}, NNC = {n6, n7}, N0 = {n7}, N0

C = {n2} (arbitrary choice in

NC), R =

(
R̃ 04×3

03×4 δ11 + δ33

)
, R̃ =

(
r1I2 02×2

02×2 r1I2

)
,

M = M ε =

(
−I4 04×3

03×4 kδ13 + δ22

)
, ûs =




05

îs
0



 , Sv =

(
1
εI5 05×2

02×5 I2

)
,

Sc =

(
I5 05×2

02×5
1
εI2

)
, Πc =

(
04×4 04×2

02×4
1
ε (δ11 + δ33)

)
, Πv =

(
I4 04×3

03×4 δ22

)
,

Ss =

(
1
εrI4 04×3

03×4 δ11 + δ22 + 1
εδ33

)
, Rε =

(
1
εrI4 04×3

03×4 δ11 + δ33

)
, ûε

s =




05

v̂s

0





where we used the submatrix δij having all its entries vanishing excepted the
entry (i, j). The size of such a submatrix is known by its surrounding subma-

trices. So we assume that rq = εr0q , R̃ = εR̃0, k = k0 and v̂s = v0
s + O(ε)

then R0 =

(
R̃0I4 04×3

03×4 δ11 + δ33

)
, u0

s = (05, v
0
s , 0)T . The incidence matrix is AT =

(
X11 X12

X21 X22

)
where X11 =




1 −1 0 0 0
0 1 −1 0 0
0 1 0 −1 0
0 −1 0 0 1


 , X12 = 04×2, X21 = δ11 −

δ12, X22 =




0 0
1 −1
−1 1



 , y(n) is the same than in example 1, I0 = INC
and τ =

−
1

2

(
1 1 0 0 1 0 0
0 0 1 1 0 0 0

)T

. Here Ψm = {(ψC , ψNC) = (JCψ
∗
C , JNCψ

∗
NC)

where (ψ∗
C , ψ

∗
NC) ∈ R2 × R} with JC =

(
1 0 1 0 0 0 0
0 0 0 1 1 0 0

)T

and JNC =

(
0 0 0 0 0 1 0

)T
. The problem micro has the form K(i, ϕ∗

C , ϕ
∗
NC)T =

L(θ, η, v0
s)T (here we prefer to work with v0

s in place of the whole u0
s). An explicit

calculation shows that G = K−1L =

(
G11 G12

06×2 G22

)
with



486 MICHEL LENCZNER

G11 = − 1
2r0

(
1 1 0 0
0 0 1 1

)T

, G12 = 1
2k0

(
0 0 0 0
−1 1 0 0

)

and G22 =

(
0 0 0 0 0 0
k0 0 0 − 1

2k
0r0 0 1

)
. Since

i = Ti(θ, η, vs)
T ,

v = IEC
ATJCϕ

∗
C + IENC

ATJNCϕ
∗
NC = Tv(θ, η, vs)

T ,

and ϕNC = JNCϕ
∗
NC = Tϕ(θ, η, vs)

T

with Ti = [K−1L]{1,..,7}×., Tϕ = JNC [K−1L]{10}×. and Tv = IEC
ATJC

[K−1L]{8,9}×. + IENC
ATJNC [K−1L]{10}×..

Then Pi = [Ti].×{1,2} = −
1

2

(
1
r0

1

1
r0

1

0 0 0 0 0

0 0 1
r0

2

1
r0

2

0 0 0

)T

, Li = [Ti].×{3} =

0, Hi = [Ti].×{4} = k0

2 (−1, 1, 0, 0, 2, 0, 0)T , Pv = [Tv].×{1,2} = 0, Lv = [Tv].×{3} = 0
and

Hv = [Tv].×{4} = (− r0

1
k0

2 ,
r0

1
k0

2 , 0, 0,
r0

1
k0

2 , 1,−1)T , Pϕ = [Tϕ].×{1,2} = 0, Lϕ =

[Tϕ].×{3} = 0 and Hϕ = [Tϕ].×{4} = (0, 0, 0, 0, 0, 1, 0)T . QH , SH and FH vanishes

and ϕ0
C is governed by the Laplace equation

(
1

r01
∂2

x1x1
+

1

r02
∂2

x2x2
)ϕ0

C = k0∂x1
v0

s in Ω (25)

with the boundary conditions ϕ0
C = 0 on Γ0 and ∇ϕ0

C .n = 0 on Γ−Γ0. Finally, the
two-scale current and voltages are given by

i0 = −
1

2
(
∂x1

ϕ0
C

r01
+
k0v0

s

2
,
∂x1

ϕ0
C

r01
−
k0v0

s

2
,
∂x2

ϕ0
C

r02
,
∂x2

ϕ0
C

r02
,−2k0v0

s , 0, 0)T , (26)

v0 = −
1

2
(∂x1

ϕ0
C + r01k

0v0
s , ∂x1

ϕ0
C − r01k

0v0
s , ∂x2

ϕ0
C , ∂x2

ϕ0
C , (27)

∂x1
ϕ0

C + r01k
0,−2v0

s , 2v
0
s)

T

and ϕ0
NC = (0, 0, 0, 0, 0, 1, 0)Tv0

s . (28)

7. Numerical validation. This section is devoted to some validations of the two-
scale model stated in the theorem 1 based on comparisons of solutions of the com-
plete periodic electronic circuit, also called Direct Circuit Simulation (DCS), with
solutions of the two-scale model. Our study is done on the third example detailed
above for various voltage source distributions and various parameters.

In each case, the assumptions H0-H5 are fulfiled, so that the application of the-
orem 1 is well justified. In particular, the assumption H3, saying that the data
and the DCS′s solution must be bounded, has been checked numerically for an in-
creasing number of cells. This has been done by running the DCS for a sequence of
circuit with an increasing number of cells. Thus, the norms of the scaled two-scale
transforms of voltages and currents have been plotted as functions of the circuit
size. In each case, it has been found that those norms remain almost constant.

For each of the following test, one starts by choosing a continuous distribution of
voltage sources (v0

s(x))x∈Ω then the voltage sources applied to the periodic circuit
are deduced through the inverse two-scale transform (19) and scaling (8):

vs = T ∗
ES

−1
v v0

s .
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Simply speaking the voltage source in a cell is equal to the scaled mean value of v0
s

over the cell. Once the solution (v0, i0) of the two-scale model (25-27) are available,
the voltages and the currents may be approximated through

v ≈ T ∗
ES

−1
v v0 and i ≈ TS−1

i i0.

The associated errors of approximation in a branch ej ∈ E are

rv,j = (
∑

µ

(v − T ∗
ES

−1
v v0)2I)1/2 and ri,j = (

∑

µ

(i − T ∗
ES

−1
i i0)2I)1/2 for I ∼ (µ, j)

when the global errors are

rv =

7∑

j=1

(
∑

µ

r2v,j)
1/2 and ri =

7∑

j=1

(
∑

µ

r2i,j)
1/2.

The approximation of the node voltages ϕ is realized on a different manner. From
the solution ϕ0

C of (25) the approximation of the node voltages is build as follows

ϕI ≈ ϕ0
C(xε

µ + εy(nj)) for I ∼ (µ, j) and nj ∈ NC .

The corresponding local and global errors are

rϕ,j = (
∑

µ

(ϕI − ϕ0
C(xε

µ + εy(nj))
2)1/2 and rϕ = (

∑

µ

r2ϕ,j)
1/2.

For the voltage at the sixth node which belong to a non crossing path the approx-
imation is more simple because it does not need to refer to the spatial location in
the cell

ϕI ≈ ϕ0
C(xε

µ) for I ∼ (µ, 6).

We limit this presentation to some continuously distributed voltage sources v0
s

so that the equation (25) can be solved explicitly. However, we will also refer to
its resolution by a Finite Element Method (FEM) with triangular P 1 elements. Its
mesh is taken regular and constituted of N ×N squares, each being divided in two
triangles.

Let us start with the distributed current source

v0
s(x) =

π(r01 + r02)

k0r01r
0
2

cos(πx1) sin(πx2)

so that
ϕ0

C(x) = sin(πx1) sin(πx2) (29)

from which the currents and voltages are easily deduced through the relation (26-
27). In all the subsequent study k0 = r01 = 1 and we start by choosing r02 = 1.
The first column of the figure 4 represents the voltage distribution at the first node
(first row) and of the first branch (second row) computed for a 15x15 cells DCS.
The same fields computed with a FEM with N = 15 are plotted on the second
column. These results show a good qualitative agreement between the solutions of
both models.

Quantitative results are reported on the figure 5. The first and second graphs
present the relative local errors for the first node′s voltage and the first branch′s
voltage

rϕ,1

(
∑

µ(ϕ0
C(xε

µ + εy(n1))2)1/2
and

rv,1

(
∑

µ(T ∗
ES

−1
v v0)2I)1/2

with I ∼ (µ, 1).

The results are related to three circuits with 10 × 10, 15 × 15 and 20 × 20 cells for
the DCS and three meshes with N = 10, 15 and 20 for the FEM. For simplicity we
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0 1  
0  

1  
φε : node =1

0  1  
0  

1  
φ0 : node =1

0 1  
0  

1  
vε :  edge =1

0  1  
0

1
vH :  edge =1

Figure 4. Comparison of the complete model and the two-scale model

have reported results only for the first node and the first branch. However the same
experiments for other nodes and branches have been carried out and have provided
the same kind of results. All of them show a significant decrease in the difference
between both solutions when the number of cells increases. This says that the two-
scale model is an increasingly better approximation of the DCS when the number
of cells increases. This is in agreement with the statement of the theorem 7. By
another way, the results show also that the approximation is not much sensitive to
a mesh refinement, which means that a relatively coarse mesh is enough to give a
correct approximation of ϕ as well as the local fields v and i. In short, the results
show that the two-scale model can be considered as an efficient approximation of the
DCS at a low cost. Regarding the question of computational cost, the graph to the
right presents the ratio of the computation time tH for the two-scale model versus
the computation time tε of the DCS for the three circuits and the three meshes.
Let us quote that only the order of magnitude are meaningful because our code
is not fully optimized. More the number of cells increases more the computation
time of the two-scale model is low compared to this of the DCS. For example for
20×20 cells and N = 10 the ratio tH/tε is less than 1/10. Through our experiments
we have also noticed that this ratio is even better when the circuit complexity is
increased.

The above presentation is focused on the comparison of the DCS and the FEM
for the two-scale model regarding the voltages of the first node and of the first
branch. Now we extend the study to the analysis of the global relative error

rv

(
∑
I

(T ∗
ES

−1
v v0)2I)1/2
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Figure 5. Errors and simulation times

as well as to the partial relative errors
rv,j

(
∑
I

(T ∗
ES

−1
v v0)2I)1/2

for j = 1, 2, 3 when v0 is computed exactly from (29-27). It is worthwhile to notice
that the voltages are equal on the first and the fifth branches, they are opposite
on the sixth and seventh branches and they are also equal on the third and the
fourth branches in this particular example. The voltage on the sixth branch being
imposed it is not of interest for our analysis. It is so for the currents because they
are easily deduced from the voltages by some simple linear relations. Finally, only
the partial relative errors related to the voltages of the first, the second and the
third branches are reported. Those relative errors as functions of the number of
cells are presented on the left graph of the Figure 6. Let us first remark that all
partial errors and then the global error diminish to zero when the number of cell
increases. By doing the simulation we have observed a sensitivity of the results with
respect to the ratio r01/r

0
2 . In the right graph convergence results related to r02 = 10

are reported. Indeed we observe an improved rate of convergence at least on the
first and second branches.

4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

number of cells in each direction

E
rr

or
s

v1

v2 

v3

r02 = 1 

Global error

4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

number of cells in each direction

E
rr

or
s

r02 = 10 

v1

v2

v3 Global error

Figure 6. Global and partial relative errors

From the result reported in the Figure 4, it may be deduced that the the dis-
tribution of errors is relatively uniform in the whole domain. We found that this
is no more the case for some other choices of distributed voltage source v0

s . As an
example, we consider a uniform voltage source distribution v0

s(x) = 1 for which
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ϕ0
C(x) = 0 and v0

1 = − 1
2 when r01 = r02 = 1. The global and partial errors are

represented to the left of the Figure 7. All of them decrease to zero which validate
the theorem 1. However, from the right graph, where the distribution of errors for
the voltage on the first branch is plotted for a 24x24 cells circuit, one see a concen-
tration of error near the four corners. We also have observed that more the number
of cells increases more the error is concentrated near the corners. This example
illustrate the need for further exploration of the error analysis as well as the need
of an improvement of the model in order to avoid such localized errors.
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0.1
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E
rr
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v3
Global error

0 1
0
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Figure 7. Global and partial relative errors for v0
s = 1

8. Annex. The proof of the lemma 4 necessitates the fundamental lemma 7 stated
and proved hereafter. It requires additional results on two-scale transform for nodes
that we establish at first. The proof includes quite long calculations that we do not
want to see in the core of the paper. However, we must emphasis that it constitutes
an important part of our work.

8.1. Properties of the two-scale transform TN . Let us recall that the set N is
made of nodes nI with I∈ {1, .., |N |} and the set N of nodes nj with j ∈ {1, .., |N |}.
The subset of N of nodes belonging to the boundary of the cell Y is denoted by ∂N.
Because N is εY−periodic, it turns out that each node n ∈ ∂N has its counterpart
n′ ∈ ∂N on the opposite side. If the former′s index is j then the latter′s one
is denoted by j′. The outward normal vector to the boundary of Y at n being
denoted by nY (n), it turns out that nY (n′) = −nY (n). For a given multi-integer
µ ∈ {1, ..,m}d we define the multi-integer

µ′ = µ+ nY (n)

associated to n and µ. Let I and (µ, j) be linked through the relation I∼ (µ, j). If nI

belongs to only one cell then there exists an unique such (µ, j). If nI is located at
the interface between two cells then I is associated to two couples (µ, j) and (µ′, j′)
with µ′ and j′ derived as above from µ and j. In short we say that I∼ (µ, j) and
I∼ (µ′, j′). Conversely if two couples (µ, j) and (λ, l) correspond to the same I then
j is the index of a node located on the boundary of the cell and (λ, l) = (µ′, j′).
These statements are condensed in the next proposition.

Proposition 3. Two couples (µ, j) and (λ, l) come from a same index I if and only
if nj ∈ ∂N and (λ, l) = (µ′, j′).
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The map that send a vector u ∈ R|N ε| towards a tensor U ∈ Rmd

× R|N | has
been well defined in § 3.1. From the above discussion, it is clear that it is not onto.

There exist some U ∈ Rmd

× R|N | that does not have a counter-image u ∈ R|N ε|.

Proposition 4. A tensor U ∈ Rmd

×R|N | is the image of u ∈ R|N ε| if and only if
Uµj = Ukl for all couples (µ, j), (λ, l) such that nj ∈ ∂N and (λ, l) = (µ′, j′).

Proof. We must prove that Uµj = Ukl for all couples (µ, j) and (λ, l) associated a
same index I. The proposition 3 yields the conclusion.

It becomes clear that if ∂N 6= ∅ then TN is not onto in P0(Ω)|N |. Let us state
the compatibility conditions on v ∈ P0(Ω)|N | insuring that it has a counter-image
by TE . For a given x ∈ Ω and node n ∈ ∂N we define

x′ = x+ εnY (n).

Proposition 5. A function v ∈ P0(Ω; R|N |) is the two-scale transform of a vector
of R|N ε| if and only if

vj′ (x
′) = vj(x)

for all (x, nj) ∈ Ω × ∂N and for x′ = x+ εnY (nj).

Proof. Since v ∈ P0(Ω)|N | it may be written vj(x) =
∑

µ∈{1,..,m}d VµjχY ε
µ
(x). From

the proposition 3 there exists u ∈ R|N ε| such that Uµj = Vµj if and only if Vµj =
Vµ′j′ for all µ ∈ {1, ..,m}d and j ∈ ∂N. In other words vj(x

ε
µ) = vj′(x

ε
µ′) or

equivalently vj(x
ε
µ) = vj′ (x

ε
µ + εnY (nj)) because xε

µ′ = xε
µ + εnY (nj). The result

follows remarking that v is piecewise constant with respect to x.

For a given node n ∈ ∂N, the largest subset of x ∈ Ω such that x′ ∈ Ω is denoted
by Ω(n) :

Ω(n) = {x ∈ Ω such that x′ ∈ Ω}.

Because nY (n′) = −nY (n) one may observe that x = x′ + nY (n′), so x ∈ Ω(n) if
and only if x′ ∈ Ω(n′).

The outward normal vector to the boundary Γ of Ω in a point x ∈ Γ is denoted
by nΩ(x) and the subset of couples (x, n) ∈ Γ× ∂N having the same normal nY (n)
and nΩ(x) is denoted by

∂(Ω, N) = {(x, n) ∈ Γ × ∂N such that nY (n) = nΩ(x)}.

A straightforward characterization of the complementary set Ω − Ω(n) of Ω(n)
follows:

Ω − Ω(n) = {x = x− εθnY (n) where θ ∈ (0, 1) and (x, n) ∈ ∂(Ω, N)}. (30)

Fundamental lemma

Lemma 7. If φ ∈ P0(Ω; R|N |) belongs to the range of TN and ψ ∈ C1(Ω; R|N |
antiper)

then

1

ε

∫

Ω×∂N

φj(x)ψj(x) d(x, j) = −

∫

Ω×∂N

φj(x)(y.∇xψ)j(x) d(x, j) + b(φ, ψ) +O(ε)

more precisely

|
1

ε

∫

Ω×∂N

φj(x)ψj(x) d(x, j) +

∫

Ω×∂N

φj(x)(y.∇xψ)j(x) d(x, j) − b(φ, ψ)|

≤ ε(e1(φ, ψ) + e2(φ, y.∇xψ) + e2(φ, ψ)).
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Here

y.∇xψ ∈ C0(Ω)|N |, (y.∇xψ)j(x) =
d∑

l=1

yl(nj)∂xl
ψj(x),

b(φ, ψ) =
∑

j∈∂N

∫

Γ

χ∂(Ω,N)(x, j)φj(x)

∫ 1

0

ψ(x− εθnY (nj))dθ dx

e1(φ, ψ) =
1

2
||φ||∂N (||

∆εnY
ψ − nY .∇xψ

ε
||∂N + ||(y −

nY

2
)∇x∆εnY

ψ||∂N )

e2(φ, ψ) = (

∫

∂(Ω,N)

φ2
j(x) dx)

1/2(

∫

∂(Ω,N)

∫ 1

0

ψ2
j(x− εθnY ) dθdx)1/2

where nY (n) is set to zero for n /∈ ∂N, (∆εnY
ψ)j(x) =

ψj(x+ εnY (nj)) − ψj(x)

ε
,

R|N |
antiper is defined in (21) and for shortness we have used the notations

(φ, ψ)
∂N

=

∫

Ω×∂N

φj(x)ψj(x) d(x, j) and ||φ||
∂N

= (φ, φ)1/2
∂N
.

Proof. For each n ∈ ∂N we use the partition of Ω in Ω(n) and its complementary
so that

(φ, ψ)
∂N

= aint(φ, ψ) + ab(φ, ψ)

where

aint(φ, ψ) =
∑

nj∈∂N

∫

Ω(nj)

φj(x)ψj(x)d(x, j)

and ab(φ, ψ) =
∑

nj∈∂N

∫

Ω−Ω(nj)

φj(x)ψj(x)d(x, j).

(i) The characterization (30) of Ω−Ω(n) yields |ab(φ, ψ)| = |εb(φ, ψ)| ≤ εe2(φ, ψ).
(ii) Let us prove that

aint(φ, ψ) = −aint(φ, ψ(x+ εnY (n))).

In the one side φ belongs to the range of TE and the proposition 5 tell us that
φj(x) = φj′ (x

′) and in the other side ψj = −ψj′ . Then

aint(φ, ψ) = −
∑

nj∈∂N

∫

Ω(nj)

φj′(x
′) ψj′(x) dx.

For a given j let us first apply the variable change x → x′ = x + εnY (nj) which
maps Ω(nj) to Ω(nj′ ) and in a second step let us replace the numbering by j with
a numbering by j′ it comes

= −
∑

nj′∈∂N

∫

Ω(nj′ )

φj′ (x
′) ψj′(x) dx

′ = −aint(φ, ψ(x′)) = −aint(φ, ψ(x+ εnY (n))).

(iii) Let us deduce that

|
1

ε
aint(φ, ψ) + aint(φ, (y.∇x)ψ)| ≤ εe1(φ, ψ). (31)

Thanks to (ii),

1

ε
aint(φ, ψ) =

aint(φ, ψ) − aint(φ, ψ(x′))

2ε
= −

1

2
aint(φ,∆εnY

ψ). (32)
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For n ∈ ∂N, we make use of the decomposition y(n) = [y(n)] + {y(n)} in its
periodic part {y(n)} = (y(n) + y(n′))/2 and its counter-periodic parts [y(n)] =
(y(n) − y(n′))/2. For n ∈ N − ∂N , [y(n)] and {y(n)} are set to 0. From the
triangular inequality,

|
1

ε
aint(φ, ψ) + aint(φ, y.∇xψ)| ≤ |

1

ε
aint(φ, ψ) + aint(φ, [y].∇xψ)|

+|aint(φ, [y].∇xψ) − aint(φ, y.∇xψ)|

combined with (32) and the fact that nY (y) = 2[y] :

≤ |
1

2
aint(φ,∆εnY

ψ − nY .∇xψ)| + |aint(φ, {y}.∇xψ)|.

Applying (32) with ψj := {y(nj)}∇xψj :

aint(φ, {y}∇xψ) = −
ε

2
aint(φ, {y}.∇x∆εnY

ψ) ≤
ε

2
||φ||∂N ||{y}.∇x∆εnY

ψ||∂N

thus

≤
ε

2
||φ||

∂N
(||

∆εnY
ψ − nY .∇xψ

ε
||∂N + ||{y}.∇x∆εnY

ψ||∂N )

which is the wanted result (31).
(iv) Thus

|
1

ε
aint(φ, ψ) + (φ, y.∇xψ)

∂N
| ≤ ε(e1(φ, ψ) + e2(φ, y.∇xψ)).

after remarking that

(φ, y.∇xψ)
∂N

− aint(φ, y.∇xψ) = ab(φ, y.∇xψ)

and by using (i).
(v) The conclusion comes from

|
1

ε
(φ, ψ)

∂N
+ (φ, y.∇xψ)

∂N
− b(φ, ψ)|

≤ |
1

ε
aint(φ, ψ) + (φ, y.∇xψ)

∂N
| + |

1

ε
ab(φ, ψ) − b(φ, ψ)|

and by using (i) and (iv).

Conclusion: A two-scale model of spatially periodic linear electronic circuit
have been stated, proved and illustrated by few simple examples. Its statement
and derivation are based on the concept of two-scale transform and convergence of
vector and matrices also introduced in this paper. The numerical results prove the
interest of the method in terms of computation cost. We think that this kind of
model which gives a global view of the whole system could also be very useful in a
process of circuit design.
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