
INSTITUTE OF PHYSICS PUBLISHING SMART MATERIALS AND STRUCTURES

Smart Mater. Struct. 12 (2003) 437–446 PII: S0964-1726(03)62188-9

Distributed optimal control of vibrations:
a high frequency approximation approach
Mahamane Kader1, Michel Lenczner2 and Zeljko Mrcarica3
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Abstract
This paper focuses on the design of distributed control related to distributed
mechanical systems. The sensors and actuators are assumed to be numerous
and periodically distributed. The problem addressed in this paper is: ‘Can
we find a way to approximate an optimal control law with a distributed
electronic circuit for vibration reduction?’. Solutions to this problem are
proposed in the framework of vibration control using piezoelectric actuators
and sensors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper is related to a distributed control problem arising
in structural mechanics. Consider a thin beam covered on one
side with a distribution of piezoelectric actuators and on the
other side with piezoelectric sensors. Assume that this beam
is subjected to either external forces or initial excitation. Our
control objective is the optimal reduction of the vibration level.

The control strategy determination can be based on
different theories. One of them, the optimal control theory,
leads to an explicit expression of the control law. It
has the advantage of being optimal with respect to a
choice of functional that is minimized. Mathematical
foundations of such a theory are well established and are also
classical for many linear partial differential equations, see
the comprehensive presentations of Curtain and Zwart [5],
Bensoussan et al [2] and Lasiecka and Triggiani [6]. In
practice, there is a strong limitation in the use of it for
distributed control with many actuators and sensors. In
fact, it produces a control law requiring that each actuator
uses the data coming from every sensor. This constraint is
generally unacceptable for realistic fabrication of distributed
control systems. So, in practical applications, the active
reduction of vibrations is performed with several single-input
single-output (SISO) analog systems, that cannot implement
an optimal control, or with one multiple-input multiple-
output (MIMO) numeric system. It has now been realized that,
due to time computation constraints, the size of such MIMO

Figure 1. System including a distributed circuit.

systems is limited and cannot be used for a large number of
actuators and sensors.

The goal of this paper is to propose a new implementation
of optimal control that does not suffer such a limitation.
We show how the simplest optimal control strategy (linear
quadratic regulator (LQR)) can be applied, in a realistic way,
using a distributed electronic circuit. Each pair of actuator and
sensor is only linked with its closest neighbors, see figure 1.
The proposed solution is a kind of MIMO analog system.
This approach, if applicable in reality, could cover the gap
between cheap systems with limited efficiency (analog SISO)
and expensive systems with good efficiency (numeric MIMO).

Let us remark that the problem of vibration control for
a one-dimensional beam is quite simple and does not require
a distribution of many actuators and sensors. However, this
study is a preliminary investigation before considering more
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complex cases of distributed control. Further interesting
applications could be acoustic control or fluid flow control.

As already mentioned, we have implemented the simplest
optimal control strategy, namely the LQR. In the future,
application of more sophisticated control theory, including
robust control, should be investigated.

Finally, the proposed solution could be extended by the use
of numerical filters instead of analog ones. In this case, we will
obtain a ‘simplified’ numeric MIMO instead of a ‘complete’
one. The required computation power will be less and then the
possibility for numeric MIMO to deal with very large number
of sensors and actuators will be extended significantly.

The paper is organized as follows. In section 2, the
statement of the model and its reduction using asymptotic
analysis is given. This simplified model is used in order to
construct an optimal control law. The solution of the algebraic
Riccati equation and its approximation with partial differential
operators is given in section 3. Then, its approximation by
distributed analog circuit is described in section 4. The last
section is devoted to the numerical results.

2. Statement of the optimal control problem

We consider an elastic rectangular plate partially covered on
both sides with piezoelectric transducers. Those located on
the top are used as sensors while those located on the other
face are actuators. The plate is assumed to be clamped on the
two opposites sides �a

0 of the normal to the width direction
and is free on the other parts of its boundary. The glued face
of each piezoelectric transducer is connected to the earth. The
upper face of each sensor is connected to the input of a current
to current amplifier when the lower face of each actuator is
connected to the output of an active voltage source.

2.1. The three-dimensional plate model

The motion of a multi-layered plate equipped with a
distribution of piezoelectric transducers is characterized by the
general electrodynamics equations for piezoelectric bodies.
They can be found in [7]. Their weak form (or variational
formulation) that has been derived in [4], for example, is
composed of the weak form of the equation of dynamics:

∫
�a

(
ρa

3∑
i=1

∂2
t t u

a
i vi +

3∑
i, j=1

σ a
i j si j(v)

)
dx = 0,

for all admissible displacement field v ∈ V a
ad , where

V a
ad = {v = (vi )i=1...3 ∈ (H1(�a))3 such that v =

0 on �a
0 } and the weak form of the equation of elec-

trostatics:
∫
�a

∑3
i=1 Da

i ∂iψ dx = 0, for all admissi-
ble electric potentials ψ (see [4]). Here �a, a, x =
(x1, x2, x3), ∂i , ∂t , ρ

a, ua, si j(v), σ a , Da and H1(�a) are, re-
spectively, the domain occupied by the plate, its thickness, the
coordinates in R

3, the partial differential operators with re-
spect to xi and t , the volume mass, the vector of mechanical
displacements, the strains 1

2 (∂iv j +∂ jvi), the mechanical stress
tensor, the vector of electric displacements and the Sobolev
space {v ∈ L2(�a) such that ∂iv ∈ L2(�a) for i = 1 . . . 3}.
The other boundary conditions are not reported here (see [4]
for details). Initial conditions are also not detailed here.

Mechanical stresses and electric displacements are
assumed to be linearly dependent of the strain tensor skl(ua)

and of the electric fields ∂kφ
a (φa being the electric potential):

σ a
i j = ∑3

k=1(
∑3

l=1 Ri jkl skl(ua) + eki j∂kφ
a) and Da

k =∑3
j=1(

∑3
i=1 eki j si j(ua) − cki ∂iφ

a), where Ri jkl , eki j and cki

are the stiffness, piezoelectric and permittivity tensors.

2.2. The two-dimensional thin plate model

In the following model formulation and in our simulation, the
piezoelectric sensors and actuators are bonded symmetrically
on the two faces of the elastic plate. The two-dimensional thin
plate model considered in this section has been derived in [4]
using an asymptotic method.

The motion equation for the two-dimensional model is
given by

∫
ω

ρ∂2
t twv +

2∑
α,β=1

( 2∑
γ,δ=1

cαβγ δ∂
2
γ δw + eαβφ

)
∂2
αβv dx = 0 (1)

for all admissible displacement v ∈ Vad , with Vad = {v ∈
H2(ω), such that v = 0 and

∑2
α=1 ∂αvnα = 0 on �0 ⊂ ∂ω}.

Here ω, x = (x1, x2), �0, n = (n1, n2), ρ,w, cαβγ δ, eαβ, φ

and H2(ω) are the mean surface of the plate, the coordinates
in R

2, the boundary ∂ω where the plate is clamped, the vector
normal to �0 oriented to the exterior of ω, the surface mass,
the transverse mechanical displacement, the bending stiffness
tensor of the plate, the piezoelectric constant, the electric
voltage on actuators and the Sobolev space {v ∈ L2(ω) such
that ∂iv and ∂i jv ∈ L2(ω) for any i, j = 1, 2}. The current
flowing out of the upper surface S of a sensor, and measured
with a current amplifier, is equal to

i sensor =
2∑

α,β=1

eαβ

∫
S
∂3
αβtw ds. (2)

2.3. The homogenized one-dimensional beam model

Let us assume that sensors and actuators are numerous and
periodically distributed on the plate. Thanks to homogenization
theory, one may derive a simplified model of such a composite
structure (see [3] for a rigorous presentation). It leads to a
model of a homogeneous electro-mechanical medium, which
presents a behavior close to the original one. Nevertheless the
stiffness tensor, the piezoelectric strain and the permittivity
matrix of this model are constants. Distributed continuous
current and voltage model the currents flowing out of the
sensor’s upper surface and the actuator’s voltages. The
equations of the homogenized plate model are the same as (1)
and (2). Only the value of the coefficients makes a difference.
We do not introduce new notation for them; they are simply
indexed by an H . This model is used for the optimal control
synthesis.

We assume that the plate strains are pure bending in the
direction ξ of the beam axis. It turns out that the strain in the
other direction is small. Then the homogenized plate model
can be replaced by a one-dimensional beam model:

∂2
t tw + a�2w + b�φ = 0 on (t, ξ ) ∈ R

+ × �, (3)
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Figure 2. Coordinates ξ0, . . . , ξN+1.
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Figure 3. Realization of �hψh = Ih fh .

where a = cH
1111/ρ

H and b = eH
11/ρ

H . Here, � = ]0, L[ and
� is the one-dimensional Laplace operator: � = ∂2

ξξ . The
boundary conditions are w = ∂ξw = 0 on (t, ξ ) ∈ R

+×(∂� =
{0, L}). Initial conditions are chosen so that w(0, ξ ) = g(ξ )

and ∂tw(0, ξ ) = 0, where g represents the displacements of
the beam at t = 0. The density of current i delivered by the
sensors is i = e�∂tw on (t, ξ ) ∈ R

+ × �, where e = eH
11.

2.4. Optimal control

In the following, optimal control theory is applied to the one-
dimensional homogeneous beam model. It is based on the
general framework presented in [5]. We have chosen this
approach because it is the simplest one developed for infinite-
dimensional systems (in comparison with those of [2] and [6])
that can be applied for bounded control and observation
operators.

First, let us write the model as a first-order system of
differential equations:

∂t x = Ax + Bu for t > 0 and x(0) = x0. (4)

Here the state variable x = (w, ∂tw)t belongs to L2(R+;H),
where H = H2

0 (�)× L2(�), H2
0 (�) being the set of functions

w belonging to H2(�) such that w(t, ξ ) = ∂ξw(t, ξ ) = 0
on the boundary R

+ × ∂�. The scalar product on H is
((x1, x2), (y1, y2)) = ∫

�
∂2
ξξ x1∂

2
ξξ y1 + x2 y2 dξ . The control

variable is u = φ. The unbounded state operator A : D(A) ⊂
H → H is defined by A =

(
0 I

−a A0 0

)
. It is densely defined

on its domain D(A) = H4(�)∩H2
0 (�)×H2

0 (�), where A0 =
�2 = ∂4

ξξξξ , H2
0 (�) = {v ∈ H2(�) so that v = dv/dξ = 0 on

∂�}. Its adjoint, in the sense of an adjoint of unbounded op-

erators [5] (definition A.3.63, p 603), is A∗ =
(

0 −aI
A0 0

)
.

It is also defined from H to H with D(A∗) = D(A).
The bounded control operator B : U = H2(�) ∩

H1
0 (�) → H is defined by B =

(
0

−b�

)
, where H1

0 (�) =
{v ∈ H1(�) so that v = 0 on �0}. A straightforward
calculation shows that the adjoint B∗ : H → U of B
(see [5] definition A.3.57, p 601) is defined by B∗x =
(0,−b�−1)

(
w

∂tw

)
= −b�−1x2. Consider a scalar c and

the bounded observation operator C : H → Y = H2
0 (�)

defined by Cx = ( cI 0 )

(
w

∂tw

)
= cx1 ∈ Y .

Now, we consider the minimization problem: find u ∈
L2(R+; U ) which minimizes the cost functional

J (u) =
∫ ∞

0
|Cx |2Y + |Du|2U dt, (5)

where the state variable x and the control variable u are
constrained by the state equation (4). The bounded operator
D : U → U is just multiplication by a constant d > 0 : Du =
du.

Finally, J (u) is equal to
∫ ∞

0

∫
�

|c∂2
ξξw|2 + |d∂2

ξξ φ|2 dξ dt .
Such choices for C and D were made so that it forces both the
displacements x1 and the control u to be regular, that is ∂2

ξξw

and ∂2
ξξ φ belong to L2(�). This is a guarantee for the safety

of the mechanical structure as well as for the efficiency of the
electronic circuit (prevention of local peaks in φ). Another
criterion was on the decay rate (the real part of the exponent)
of the modal amplitudes. With such a functional J , they are
all the same. So, the efficiency of the resulting controller is
uniformly distributed on all vibration modes.

It can be shown directly that (A, B) is exponentially
stabilizable. This can be made by choosing one of the two
stabilizing laws described in the following and by showing
that the stabilized solution decays exponentially toward zero.
This results in an explicit calculation. The same thing can be
done for proving that (C, A) is exponentially detectable. So
the minimization problem admits a unique solution. Following
the optimal control theory, there exists a unique bounded
nonnegative self-adjoint solution X : H → H to the algebraic
Riccati equation:

(A∗X + X A − X B(D∗ D)−1 B∗X + C∗C)x = 0,

for all x ∈ D(A) (6)

and the optimal control u is given by

u = −(D∗ D)−1 B∗Xx, (7)

so the controlled equation is

∂2
t tw + a�2w + b2(X21w + X22∂tw) = 0

on (t, ξ ) ∈ R
+ × �. (8)
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Remark 1. The velocity feedback, to which the optimal
controller will be compared, φ = Ki = K e�∂tw, with
K > 0, leads to the exponentially stable system

∂2
t tw + a�2w + beK�∂tw = 0 on R

+ × �. (9)

Since φ is a second-order derivative with respect to ξ , its value
is proportional to the square of the spatial frequencies that are
present in w. In practice such feedback leads to the saturation
of the amplifiers and/or the actuators.

3. Exact solution X of the algebraic Riccati equation

In this section, we propose an approximation X0 of the exact
solution X . The derivation of X0 is based on the expression
of the exact solution X . Then, we detail the control law
that is obtained when X is replaced by X0. Since the state
equation is a second-order one, X is a 2×2 matrix of operators

X =
(

X11 X12

X21 X22

)
.

Proposition 1. The unique self-adjoint nonnegative solution
of the algebraic Riccati equation (6) is given by

X11 = √
2

(
d

b

)2

a
3
2

(
−A0 + A0

(
I +

(
bc

da

)2

A−1
0

)1/2)1/2

×
(

I +

(
bc

da

)2

A−1
0

)1/2

,

X12 =
(

d

b

)2

a

(
−I +

(
I +

(
bc

da

)2

A−1
0

)1/2)
,

X21 =
(

d

b

)2

a

(
−A0 + A0

(
I +

(
bc

da

)2

A−1
0

)1/2)
and

X22 = √
2a

(
d

b

)2

a

(
−A0 + A0

(
I +

(
bc

da

)2

A−1
0

)1/2)1/2

.

Proof. Its adjoint with respect to the scalar product (·, ·)H is
also a bounded operator from H to H and given by X∗ =(

X∗
11 A−1

0 X∗
21

A0 X∗
12 X∗

22

)
. Since the operator X is self-adjoint

then X11 = X∗
11, X22 = X∗

22, X12 = A−1
0 X∗

21 and X21 =
A0 X∗

12. Hence X12 = X∗
12 and X21 = X∗

21. So the equation
A∗X + X A − X B(D∗ D)−1 B∗X + C∗C = 0 is equivalent to

0 =
(

c2 I 0
0 0

)
+

(
0 −aI
A0 0

)(
X11 A−1

0 X∗
21

X21 X22

)

+

(
X11 A−1

0 X∗
21

X21 X22

) (
0 I

−a A0 0

)
−

(
X11 A−1

0 X∗
21

X21 X22

)

×
(

0 0
0 ( b

d )2 I

) (
X11 A−1

0 X∗
21

X21 X22

)
,

which is equivalent to (where b̂ = b/d)

−aX21 − A−1
0 X∗

21a A0 + c2 I − b̂2 A−1
0 X∗

21 X21 = 0

−aX22 + X11 − b̂2 A−1
0 X∗

21 X22 = 0

A0 X11 − X22a A0 − b̂2 X22 X21 = 0

X∗
21 + X21 − b̂2 X22 X22 = 0.

(10)

Since X21 = X∗
21 and commutes with A0:

b̂2 A−1
0 X21 X21 + 2aX21 − c2 = 0, (11)

X11 = aX22 + b̂2 A−1
0 X21 X22, (12)

A0 X11 − X22a A0 − b̂2 X22 X21 = 0, (13)

X2
22 = 2

b̂2
X21. (14)

Equation (11) has two roots: X21 = 1
b̂2

(
−a A0 ±

A0

√
a2 + b̂2c2 A−1

0

)
. From (14) X21 is nonnegative, so

X21 = a
b̂2

(
−A0 + A0

√
I + b̂2c2

a2 A−1
0

)
. Since X is

nonnegative, X22 is too, so from (14) and (12) we obtain

successively X22 =
√

2a
b̂4

(
−A0 + A0

√
I + b̂2c2

a2 A−1
0

)
and

X11 =
√

2a3/2

b̂2

√
−A0 + A0

√
I + b̂2c2

a2 A−1
0

√
I + b̂2c2

a2 A−1
0 . Since

X12 = A−1
0 X21, then X12 = a

b̂2

(
−I +

√
I + b̂2c2

a2 A−1
0

)
.

Remark 2. It is worth looking at this exact solution. Since it
is composed of square roots of partial differential operators,
it is clearly a non-local operator. Implementation of such a
control law using distributed circuits should require that any
given actuator should receive measurements from all sensors.
As was already explained in the introduction, this constraint
is too strong for the fabrication of real systems. That is the
reason why an approximation of X will be considered.

3.1. An approximation of X

An analysis of the algebraic Riccati equation shows that each
component Xi j of X can be written as Xi j = ∑

k∈Z
Xi j,k Ak

0.
We make a Taylor series expansion with respect to A−1

0 , for

each component X11 = cd
√

a
b I + bc3

2da
3
2

A−1
0 + o(A−1

0 ), X12 =
c2

2a A−1
0 − b2c4

8d2a3 A−2
0 + o(A−2

0 ), X21 = c2

2a I − b2c4

8d2a3 A−1
0 + o(A−1

0 )

and X22 = cd
b
√

a
I − bc3

8a
3
2 d

A−1
0 + o(A−1

0 ).

The following choice of an approximation X0 of X is based
on this series expansion, where only some terms are conserved.
It insures that both the quality of the approximation and the
stability of the homogenized model with this approximated
controller are good enough:

X0 =
( cd

√
a

b I + bc3

2a
3
2 d

A−1
0

c2

2a A−1
0

c2

2a I cd
b
√

a
I

)
.

We readily see that the residual operator Q(X0) = A∗ X0 +
X0 A − X0 B D−2 B∗X0 + C∗C has the simple expression

Q(X0) =
(− b2c4

4d2a2 A−1
0 0

0 0

)
. The approximation error is

given by the norm of the residual operator ‖Q(X0)x‖H �
b2c4

4d2a2λ1
‖x‖H, where λ1 is the first eigenvalue of A0. This

implies the next proposition.

Proposition 2. Q(X0) � 0 and the system (4) stabilized by
u = −D−2 B∗X0x is exponentially stable.
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Now, replacing X by X0 in (7), φ is the solution of the
boundary value problem:

�φ = c

d
√

a
∂tw +

bc2

2d2a
w in � and φ = 0 on ∂�.

(15)
By another way, from the sensor equation, ∂tw = wt is the
solution of

�wt = i

e
in � and wt = 0 on ∂�. (16)

Using this equation, one can compute ∂tw and thus w

by integration. Using (15), one can deduce φ. The resulting
control law is derived by a cascade of equations involving only
local operators. Thus, a distributed electronic circuit having
connections only between neighbors can approximate it.

Introducing (15) in (3), it gives ∂2
t tw + a�2w + bc

d
√

a
∂tw +

1
2 ( bc

d
√

a
)2w = 0, or equivalently, with d = bc

2σ0
√

a
(σ0 denoting

the decay rate of w):

∂2
t tw + a�2w + 2σ0∂tw + 2σ 2

0 w = 0. (17)

4. Approximation by a distributed electronic circuit

The control law based on X or X0 has been derived from
the homogenized beam model. That is the reason why it is
constituted with partial differential operators with constant
coefficients. Evidently, this control law cannot be directly
applied to a real system having a finite number of actuators
and sensors. Now, we will discretize the cascade of
equations constituting the controller. Then, a distributed circuit
implementing the discretized controller will be described.

The centers of the N actuators (and the sensors) are
denoted by (ξn)n=1...N . The distance between two actuators
(or sensors) is denoted by h. Their length is equal to h

2 .
The centers of the first and the last actuators are located,
respectively, at ξ = h

4 and ξ = L − h
4 , so (ξ1, ξ2, . . . , ξN ) =

( h
4 , (1 + 1

4 )h, . . . , (N − 3
4 )h) and h = L

N− 1
2
. This sequence is

completed with the coordinates of the extremities ξ0 = 0 and
ξN+1 = L .

The second-order finite difference discretization of the
Laplace equation −�ψ = f in �, with Dirichlet boundary
conditions ψ = 0 on the boundary ξ ∈ {0, L} is

4
ψ1 − ψ0

2R
− ψ2 − ψ1

2R
= 5

8
f1,

ψn − ψn−1

2R
− ψn+1 − ψn

2R
= fn for n ∈ {2, . . . , N − 1},

ψN − ψN−1

2R
− 4

ψN+1 − ψN

2R
= 5

8
fN ,

ψ0 = ψN+1 = 0,

where R = h2

2 , ψn and fn being some approximations of ψ(ξn)

and f (ξn). The factors 4 and 5
8 are introduced in order to

preserve the second order of the approximation scheme at the
extremities. This set of equations is denoted by �hψh = Ih fh ,
where ψh = (ψ0, . . . , ψN+1) and fh = ( f1, . . . , fN ). It can
be solved using the distributed circuit represented in figure 3,
Ih f being its distributed input, ψh the potentials at the resistors
nodes and R0 = R/2.

The finite difference approximation of equation (16)
is �hwt,h = 1

e Ihih , where wt,h = (wt,0, . . . , wt,N+1).
The components of ih = (i1, . . . , iN ) are the means
of the currents flowing from sensors: in = i sensor

n
h ≈

1
h

∫
Sn

e11∂
2
x1x1

wt,h(x1, x2) dx1 dx2. So, ih is an approximation
of the current density i . Finally, the computation of wt,h

is realized by the first layer of the circuit represented in
figure 4, with amplification coefficients k = 1

he and k0 = 5
8 k.

Furthermore, the values of wh = (w0, . . . , wN+1) are derived
by a temporal integration, using a capacitor so that C = 1.

The controller equation (15), with d = bc
2σ0

√
a

, is

approximated in the same way by �hφh = 2σ0
b Ih∂twh +

2σ 2
0

b Ihwh and implemented by the second layer of the circuit

in figure 4 with amplification coefficients k1 = 2σ 2
0

b , k2 = 2σ0
b

and k0
i = 5

8 ki for i ∈ {1, 2}. Finally, we remark that, as has
been announced in the introduction, each processing cell of the
circuit communicates only with neighboring cells.

In another way, the electronic realization of the velocity
feedback φh = Kih , or equivalently (φn = K

h i sensor
n )n∈{1,...,N },

is represented in figure 5, where K ′ = K
h .

5. Numerical simulations

The numerical simulations have been carried out for a brass
elastic plate. Its dimensions are 155 mm × 5 mm × 2 mm
and it includes sixteen pairs of sensors/actuators. The sixteen
pairs of square piezoelectric transducers are PZT ceramics,
with dimensions 5 mm × 5 mm × 0.2 mm. So L = 155 mm
and h = 10 mm.

Two series of simulations have been realized. They are
based, respectively, on the homogenized model, with which
an exact calculation is possible, and the two-dimensional thin
plate model, which is solved using a finite element method. For
both models, the velocity feedback and the optimal controller
have been numerically implemented.

5.1. Exact solution of the homogenized model

The eigenvectors associated with the homogenized
equation (3) are (ψn ∈ H2

0 (�))n∈N∗ solutions of a d4ψn

dξ 4 −
λnψn = 0 in �. Introducing the scaling y = ξ

L , the func-
tions ηn(y) = ψn(ξ ) are the solutions of ηn ∈ H2

0 (]0, 1[) and
d4ηn

dy4 −µ4
nηn = 0 in ]0, 1[, with µn so that λn = a µ4

n
L4 . The gen-

eral solution can be written ηn(µn y) = As1(µn y)+Bc1(µn y)+
Cs2(µn y) + Dc2(µn y), where s1(µn y) = sin(µn y) +
sinh(µn y), c1(µn y) = cos(µn y) + cosh(µn y), s2(µn y) =
− sin(µn y) + sinh(µn y) and c2(µn y) = − cos(µn y) +
cosh(µn y). Taking into account the boundary conditions,
it follows that µn is a solution of the transcendental equa-
tion cos µn cosh µn − 1 = 0 and ηn(µnξ) = C(s2(µn y) −
s2(µn)

c2(µn)
c2(µn y)). Finally, the eigenvectors ψn are deduced from

the expression for ηn by descaling.
Furthermore, the solution w(t, ξ ) can be decomposed on

the basis {ψn}n∈N∗ which is orthonormal for the L2(�) scalar
product: w(t, ξ ) = ∑

n∈N∗ wn(t)ψn(µnξ).
Replacing w by its decomposition in (8), (17) and (9), it

follows that wn is a solution of

∂2
t twn + λnwn +

b2

d2
(X21,nwn + X22,n∂twn) = 0 (18)
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Figure 4. Realization of the optimal controller.
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Figure 5. Realization of the velocity feedback.

in the optimal control case,

∂2
t twn + λnwn + 2σ0∂twn + 2σ 2

0 wn = 0 (19)

in the approximate optimal control case and

∂2
t twn + λnwn + eK bλn∂twn = 0 (20)

in the velocity feedback case. In (18), X21,n =(
d
b

)2(−λn + λn

√
1 + (bc)2/(d2aλn)

)
and X22,n = √

2a
(

d
b

)2√
−λn + λn

√
1 + (bc)2/(λnd2a) are the eigenvalues of X21 and

X22 associated with the eigenfunction ψn , that is X21ψn =
X21,nψn and X22ψn = X22,nψn . In (20), the amplification
coefficient K is chosen so that both controls, the velocity
feedback and the optimal one, lead to the same decay rate
of the first mode, that is K = 2σ0/ebλ1. So the equation with
velocity feedback can be rewritten as

∂2
t twn + λnwn +

λn

λ1
2σ0∂twn = 0. (21)

We have computed exact solutions of (18), (19) and (21). For
the range of frequencies being studied here, the results of (18)
and (19) are very similar, so only those of (18) and (21) are
discussed in this paper.

5.2. The two-dimensional thin plate model

The two-dimensional thin plate model (1) is discretized using
a finite element method. Thirty one elements are used
in the longitudinal direction and one element in the other.
Each of them are 5 mm × 5 mm in size, so each pair of
piezoelectric transducers is discretized with only one element.
The mechanical field w and the electrical potentials are
discretized on each element by the twelve-node non-conformal
Adini finite element and constant fields.

The global differential system associated to the
mechanical structure and the distributed circuit is solved using
the electronic circuit simulator Alecsis [1]. The electrical
circuits and their connection with the mechanical structure
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Figure 6. Voltage shapes.

are defined in Alecsis. The FE solver provides the mesh and
elementary matrices. The files created by the FE processing
program and the description of the electronic circuit are
introduced in Alecsis. This last constructs the global matrices
and solves the global differential system.

Simulations based on both circuits represented in figures 4
and 5 have been carried out using this FE circuit simulator. An
explicit Euler scheme with 1024 time steps was used for time
discretizations.

5.3. Numerical results

Before we discuss the results of the controlled systems,
let us compare the two models. They are two different
approximations of the same real system. The homogenized
one is its asymptotic limit, for a vanishing size of the
periodicity cell, while the other is just its finite element
approximation. Comparisons are made on the time and space
distribution of solutions. Eigenfrequencies are the major
model characteristics for its temporal behaviour. They are
denoted by fH om and fF E M and compared in table 1, which
shows a good agreement of the two models on this aspect.
Quadratic norms of the difference of normalized eigenmodes
ψn of the two models, which characterize spatial distributions
of solutions, are in the fifth column of table 1. Since they are
also very small, one can conclude that the two models behave
similarly.

Further, spatial distribution of controllers must be
compared. This is done in the sixth column of table 1, where

φ̄H om
n and φ̄F E M

n are the shapes, related to the mode number n,
of the optimal control computed on the homogenized model
and of the discretized approximate optimal control which is
the output of the distributed circuit of figure 4.

Here, the error magnitudes are much higher. This is
not surprising, because the computation of the approximate
optimal control requires two successive discretized Laplace
operator inversions, with discretization steps that are two times
larger than those used in the FEM. Due to the relatively large
error on the control shapes, an efficiency loss of the controller
is possible.

The further investigation is on the effect of the two kinds
of controls: the velocity feedback and the optimal control.
As usual, the most important quantity to be discussed is the
evolution of mechanical displacements. However, because
our interest is highly oriented towards electronics integration
in mechanical structures, severe restrictions on the size of
devices and consequently on the voltage amplitudes to be
imposed on actuators, must be considered. It is also useful
to draw attention to the fact that, with such control synthesis,
directly based on the partial differential equation and not on
modal participations, the control effect is global. It takes place
on every mode at the same time. For given excitations, the
distribution of the controller amplitude, with respect to each
mode, is determined only by the choice of the functional J (5).
So, it cannot be driven mode by mode.

Having all these considerations in mind, we have adopted
a functional J , see (5), which insures that the norm of the
controller is reasonably bounded with respect to frequency
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Figure 7. Displacements and voltages for homogenized model.

Table 1. Eigenfrequencies and mode shapes.

Modes f F E M f Hom | fF E M − fHom|
fHom

‖ψ Hom
n − ψ F E M

n ‖L2(�) ‖φ̄Hom
n − φ̄F E M

n ‖L2(�)

1 1.12 × 103 1.13 × 103 6.55 × 10−3 1.29 × 10−3 2.01 × 10−2

2 3.09 × 103 3.11 × 103 6.04 × 10−3 2.26 × 10−3 2.27 × 10−3

3 6.07 × 103 6.10 × 103 5.13 × 10−3 4.23 × 10−3 7.19 × 10−1

4 1.00 × 104 1.01 × 104 3.97 × 10−3 6.05 × 10−3 1.03 × 10−1

Table 2. Decay rates.

Modes FEM velocity FEM approx. opt. Hom. velocity Hom. optimal

1 −95 −69.9 −120 −120
2 −715 −80.8 −911 −120
3 −2729 −87.5 −3500 −120
4 −6652 −97.7 −9574 −120

Table 3. Energy J .

Modes FEM velocity FEM approx. opt. Hom. velocity Hom. optimal

1 83 90 79 79
2 145 121 158 93
3 341 182 381 216
4 739 339 834 411
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Figure 8. Displacements and voltages for FEM model.

growth. More precisely, it insures the same decay rate of the
controlled system solutions at every frequencies (see the fifth
column of table 2, which presents the decay rate of solutions
for both controls). The value −120 has been chosen arbitrarily,
so that voltages remain reasonably low (see their mean values
in figure 7 that is described below). In contrast, the decay
rates obtained with velocity feedback are much higher for
higher modes, which naturally leads to high voltages. These
assertions are rigorously true for the homogenized model, on
which the control has been synthesized. However, the same
tendencies are observed on the FEM model, with relatively
high errors due to the various approximations that cannot be
discussed here.

Figures 7 and 8 represent evolutions of the mechanical
displacements and voltages for both models. The four
simulations that are presented for each model correspond to
initial conditions proportional to the kth mode, with k ∈
{1, . . . , 4}. Evolution of modes 1, 2, 3 and 4 of mechanical
displacements at the respective positions ξ = L

2 , L
3 , L

4 and L
5

are represented in the upper parts of the figures. For each mode,
twelve periods with velocity feedback and optimal control
are superposed. Voltage spatial distributions for modes 1–
4, related to velocity feedback and optimal control, are so
different (see their representations in the upper and lower parts
of figure 6) that it does not make sense to compare voltage
evolution for both controllers at a given position. So, evolution
of the L2(�) norm means 1√

L
‖φ‖L2(�) = 1√

L
(
∫
�

|φ|2 dξ)1/2 is

reported in the lower parts of figures 7 and 8. The observations
that can be made on these results are just a consequence of
those already made on the decay rates. Let us simply remark
that the timescale differs for the representation of each mode,
which gives the feeling that the decay rates of the optimally
controlled solution depend on the mode number.

Now that models have been compared and control results
have been discussed, it remains to compare the functional costs
J = ∫ ∞

0 |Cw|2 + |Du|2 dt that should be minimized by the
optimal control. As predicted, the cost function J is minimized
by the optimally controlled solution for both models. Once
again, there is quite a large gap between the global solutions
of both models.

6. Conclusion

A MIMO LQR control problem, for a given functional,
with a large number of distributed inputs and outputs has
been addressed for the beam vibration reduction. Without
any particular treatment, such a problem should lead to a
very large controller that could not be implemented in real
time. So, a procedure of approximation, which uses the
homogenized model and a high frequency approximation
of the Riccati operator, provides a decentralized controller
that can be implemented by a distributed analog electrical
circuit. Numerical simulations have confirmed the interest
in this approach in spite of the predictable approximation
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error. Further explorations on stability, robustness, improved
approximation of the controller, as well as extensions to other
mechanical structures and cost functionals, still remain to be
done. Finally, experimental tests using this method remain to
be made.
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