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Abstract. This paper is devoted to the modelling of thin elastic plates with small, periodically
distributed, piezoelectric inclusions, in view of active controlled structure design. The initial equa-
tions are those of linear elasticity coupled with the electrostatic equation. Different kinds of boundary
conditions on the upper faces of inclusions are considered, corresponding to different ways of control:
Dirichlet, Neumann, local or nonlocal mixed conditions. We compute effective models when the
thicknessa of the plate, the characteristic dimensionf the inclusions, and/a tend together to

zero. Other situations will be considered in two forthcoming papers.

Mathematics Subject Classifications 1991): 35B27 homogenization of partial differential equa-
tions in media with periodic structures, 73B27 nonhomogeneous materials and homogenization.

Key words: linear elasticity, piezoelectricity, homogenization, plate theory, composite materials,
prescribed electric potential, local electric circuits, nonlocal electrical circuits, transfinite networks,
smart materials.

1. Introduction
1.1. GENERAL

This paper is part of systematic work devoted to the derivation of effective models
for piezoelectric/elastic composite plates including elementary electronic circuits.
In [4],we considered three dimensional elastic plates with a small number of piezo-
electric inclusions, and we derived effective models when the thickness of the plate
tends to zero. The models are static (and linear) but may be extended to dynamic
via the Laplace transform.

In the present paper, we consider plates with a great number of piezoelectric
transducers, periodically distributed in an elastic matrix, requiring homogenization.
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Two small parameters are thus involved in our analysis: the thicknetthe plate

and the characteristic dimensierof inclusions.Effective modelsmean that we
compute the limit models whenande simultaneously tend to zero. The fact that

a ande tend together to zero ensures that all the possible limit models are obtained.
Three different situations actually occur according to whether— 0, ¢/a— 0

or ¢ = a. The aim of the present paper is to obtain models in the case where the
inclusions are small with respect to the thickness of the plate, thatis- 0. The

two other situations will be treated in two forthcoming papers. We remark that
(simplified) models for: /e — 0 were presented in [5].

The goal we have in mind is to control structures by electrical regulation applied
to the upper and lower faces of piezoelectric transducers. More precisely, we try to
conceive distributed electronic circuits which act on structures for the purpose of
control. As in [4], we consider different possibilities for the boundary conditions on
the upper faces of inclusions, corresponding to different kinds of control: Dirichlet
conditions, if the tension is controlled, Neumann conditions, if the current is con-
trolled, and mixed conditions, if inclusions are connected to R-L-C circuits. In this
last class, we consider the case where the upper and lower faces of each inclusion
are connected, and the case where, in addition, each inclusion is connected to its
direct neighbours. From a mathematical point of view, this corresponds to local
mixed conditions and to nonlocal mixed conditions, respectively.

For the model associated with nonlocal boundary conditions, a Laplace operator
in the in-plane direction of the plate arises, acting on the transverse compdhent
of the electric field. This is a model of transfinite network type, as described, for
example, in Zemanian [12, 13] with a different approach. Let us mention that
one may choose a priori the form of the operatorIdh(and the corresponding
boundary conditions) by appropriately connecting the inclusions to each other (and
to the outside of the domain). In fact, we get here a complete family of transfinite
networks. This seems particularly interesting in the perspective of building relevant
controllers.

To derive the effective models, we use a mixing of two-scale convergence [1, 10]
and of classical arguments of plate theory [6, 7, 10]. Note, however, that, as in [4],
the derivation is made in the space of the gradients of solutions. This seems to
be unusual, but allows a more synthetic and readable presentation of the models
themselves as well as of their derivation. We think that this formalism, in itself, is
an interesting contribution of this work.

The obtained models do have rather a simple structure. The effective model
for Dirichlet conditions has the same form as the purely elastic plate model; the
influence of piezoelectrics only appears in the definition of the effective coefficients
and as a source term on the right hand side. This is not the case for nonlocal mixed
conditions: because of the differential operator induced by the R-L-C circuits, a
coupling arises between mechanical effects and a transverse component of the
electric field. For local mixed conditions, the situation is intermediate: see the
comments at the end of Section 5.
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For problems which include homogenization and plate theory, one must men-
tion the work of Caillerie [3]. Caillerie treated the case of thin static elastic plates
with rapidly oscillating coefficients, using the energy method of Tartar [2, 11]. It
should be noted that the parameterandes tend (except for: = &) successively
and independently to zero in [3].

A more extensive bibliographical review on piezoelectric plate models is given
in [4].

1.2. DETAILED CONTENTS

Section 2 is devoted to the presentation of the initial 3-dimensional equations:
elasticity and piezoelectricity equations in their linear and static versions. The
piezoelectric inclusions are assumed to be strictly included in the elastic matrix,
which is considered to be electrically insulated. For simplicity, as it is usually
the case in applications, the stiffness, piezoelectricity and permitivity tensors are
assumed to be constant in the direction of thickness of the plate. In the same spirit,
the upper and lower faces of the piezoelectrics are assumed to be metallized, that is,
covered with a thin film of conductive metal. Concerning the equation of elasticity,
standard boundary conditions are considered: Neumann conditions on the upper
and lower faces of the plate, Neumann and Dirichlet conditions on the lateral
boundary. For the equation of piezoelectricity, we consider Neumann conditions
on the lateral boundary, Dirichlet condition on the lower faces. As mentioned
in Section 1.1, various boundary conditions are considered on the upper faces,
namely: Dirichlet, Neumann, local and nonlocal mixed conditions. These kinds of
conditions are, to our knowledge (except Neumann conditions), unusual in plate
theory. They thus constitute an interesting point of this paper.

The corresponding weak formulations are presented in Section 3. In the sequel,
because of the relative formal complexity of the models, and because we want to
treat the various boundary conditions together, as much as possible, we adopt syn-
thetic tensorial notation rather than fully expanded formulae. We strongly believe
that this allows a better description of our computations as well as of our limit
models.

The precise assumptions on the data are presented in Section 4.1. We give, in
particular, the correct scalings. From a practical point of view, this indicates how
electric circuits must be chosen to obtain a significant influence on the effective
behaviour of the material. Resulting a priori estimates and first convergence results
are given in Sections 4.2 and 4.3.

Section 5 is devoted to the statement of the main result of the paper, Theo-
rem 5.1: an effective 2-dimensional plate model for each type of electrical bound-
ary condition, when the inclusions are much smaller than the thickness of the
plate.

Theorem 5.1 is proved in Section 6 by lettiage, £ /a tend simultaneously to 0
in the weak formulations of Section 3. The proof is in three steps.
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The first one, which is mathematically most difficult, consists in characterizing
two-scale limits of the strains and of the electric field. These results are new, even in
the case of pure elasticity. Caillerie considered weak limits only; the intermediate
two-scale limits were not described in [3]. These results are of general interest and
may apply to various situations which concern homogenization and plate theory.

The second step consists in eliminating the local variabty computing the
microscopic fields (depending oy with respect to the macroscopic fields (de-
pending only on the macroscopic variable Here, we use the classical arguments
of linear homogenization.

The third step consists in eliminating (part of) the transverse components of the
strains and of the electric field, which may be computed with respect to the other
components of these fields. This elimination slightly departs from the classical
plate theory, because of the nonstandard boundary conditions on the faces of the
inclusions.

We use the same formalism as in [4], based on tensorial notation and products,
and on simple algebraic operations such as projections. It allows us to deal rela-
tively easily with complex computations. Completely explicit formulae would be
lengthy and limit the readability. In our approach, steps 2 and 3 are almost formal
computation and may be easily adapted to variants of our models. In this way, one
could also easily extend the results to multilayered plate models, as in [4].

To conclude the paper, in Section 7, we propose, an illustration of our mod-
elling. We consider a transversally isotropic material (a PZT ceramic, for instance),
with Dirichlet conditions. This is the simplest possible example, because the effect
of piezoelectricity does not occur in the isotropic material. We use the program-
ming package Mathematica to compute, from the general formulation of Theo-
rem 5.1, quite explicit formulae for the effective coefficients. By comparing the
compact formulae of Section 5 with the expanded formulae of Section 7, one may
appreciate the formalism used in [4] and in the present paper. Moreover, the use of
Mathematica shows that this formalism is not only elegant; it is also practical.

2. Equations of 3-dimensional Piezoelectricity

This section is devoted to the presentation of the initial 3D equations. The cor-
responding weak formulations are given in Section 3, the corresponding effective
models are calculated in Sections 4—6.

2.1. GEOMETRY

Leta be the positive parameter measuring the thickness of the plate. The 3-dimen-
sional plate is initially represented 8% = wx]—a, a[, » being a bounded do-
main of R2. (Using the classical change of scales and variables introduced in [6],
we shall in fact work on the fixed domafp = wx]—1, 1[.)
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Figure 1. Composite plate with piezoelectric inclusions.
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Figure 2. Elementary cell with piezoelectric inclusion and metallization.

Let ¢ > 0 denote the characteristic dimension of inclusions. The domam
divided into two subdomainsf and w5 that are constructed as follows. LEt
be a rectangle subdomain Bf such that, without loss of generalityy| = 1.
LetY; CC Y with |Y1] > 0, andY, = Y \ Y1. The setw] is a union of all the
eY-periodic translations ofY; that are strictly contained i@, while v = o \ ®j.
Letb = (a, €). The elastic matrix is represented 8§ = w4x] —a, al, the set of
all piezoelectric inclusions b2} = w$x]—a, al.

The inclusions are numbered by a multi-index= (i1, i2) € T¢. Then, (-);
denotes the mean value on the upper face of the inclusion indexied-byevery
functionyr on Q°, ; is the restriction ofjr to the inclusion.

The boundary ofv is assumed to be smooth and divided into two regular parts
yp andyy, with |yp| > 0. The boundary of2 is divided into:I'}, = ypx] —a, al,
I'% = (yyx]—a, al) U (w x { —a, a}). The boundary of2? is divided intoI"l’+ =
w] x {a}, F’f‘ = o} x {—a} andT? = dwix]—a,al.

The current point in2¢ is x* = (x1, x2, x§), wherex§ €]—a,al andx =
(x1, x2) € w. The current point ir¥ is y = (y1, y»). The derivatives with respect
to x., x§ andy, are denoted by, 93 andd,,, respectively. The outer unit normal
to the boundaries a2 andY is denoted by andny, respectively.
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Specifically for the scaled domain, a constant use is made of

1 1
M) = /lf(Xe;) drs and N(f) = f— M(f) for fe L -1 1). (1)

Finally, let us mention that when referring to the fixed dom@inthe geometric
notation is the same, the subscripbeing removed, if necessary.

2.2. OTHER NOTATIONS

Bold characters are used for vector and matrix valued functions and, possibly,
for the corresponding functional spaces. We constantly use Einstein’s convention
of summation on repeated indices, with summation from one to three for Latin
indices, from one to two for Greek indices.

2.3. EQUATIONS OF3-DIMENSIONAL PIEZOELECTRICITY

The mechanical displacement$ = (u?);—1 3 and the electrical potentigl’ are
governed by the linear equations of piezoelectricity in their static version. In this
section, we recall these equations that underlie our models. The boundary condi-
tions for the upper and lower faces of inclusions that characterize different models
are specified in 2.4.

The plate is submitted to the volume mechanical fofées (fl.b)izl_z,g in Q¢4,
and to the surface mechanical forgés= (g’)i—1230nT%.

For anyv € H1(Q4), let us denote the strains by

1
5i7(V) = E(a"vf +9;v) Vi, je{l,23}, VYveHY(Q). (2)

The stresses” = (0/)); j—1.2.3 and the electrical displacemer®é= (D/);_123
are then given by
O’g = Rfiklskl(ub) + d/fij akwb in Q, (3)
D]lz = _dlfijsij (Ub) + c,iia,»gob in Q?_
The mechanical equilibrium equations and the mechanical boundary conditions
are:

b_ gb b _ b -
—aiaij_fi in Q, onj =g onl'y, fori=1,23,

(4)

u”=0onT4.

The electrostatic equation and the electrical boundary conditions on the lateral
faces of the inclusions are:

-3;D’ =0 inQf, D’.n=0 onI%. (5)
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In (3), R® = (Rfj)i,jki=1,2,3 d° = (df; ;)i j k=123 aNAC" = (c};);, j=1,2,3 denote the

tensors of stiffness, piezoelectricity, and permitivity. They satisfy

&
ij Ji>

We assume that the piezoelectric inclusions are electrically insulated from the
elastic matrix. The electrical influence Qf; on Q’{ is, therefore, neglected in our
analysis. Though, it is convenient to define the ten®itsd?, ¢ on the whole

domainQ®. We let, therefore,
Cfl- = 0, f/k =0 in Qg Vi, j, k e {1, 2’ 3} (7)

For the electrostatic equation, we go now into detail about the boundary conditions
on the upper and lower faces of inclusions.

2.4. BOUNDARY CONDITIONS ON THE UPPER AND LOWER FACES OF THE
PIEZOELECTRIC INCLUSIONS

For the sake of conciseness, we only consider situations where all the faces are
metallized, as it is usually the case in applications. From a mathematical point of
view, this means that the electric field is constant on each face of each inclusion.
Considering nonmetallized faces would lead to unnecessary technical complica-
tions. However, let us note that nonmetallized faces were considered by the authors
in [4] for models with few inclusions.

Three kinds of conditions are considered:

2.4.1. Dirichlet Conditions

(ﬂb . @3, + a(pf on Fi+’ (8)
(p,’jl —ag? on Fll’f,

c

whereg? andg? are constant on each inclusion.

This condition may result from the connection of each piezoelectric to the out-
put of a tension source providing tensigf, or to the input of a current amplifier
(hereg? = 0). In both cases, one of the faces is connected to the ground equal
to (pf;.

2.4.2. Neumann and Local Mixed Conditions

G .
o’ =¢b onTy,  (D’.nji=—-—¢@"+h" onIitviel, (9)
a

whereg’ = Qo+ — @’ . The functionsp?, andh” are constant on each inclusion,

G is a fixed nonnegative constant.
Equation (9) covers two sorts of boundary conditionsG I&= 0, (9) is a Neu-
mann condition

(D°-n)yi =h* onrit,
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which arises when the inclusions are connected to the output of a current 8burce

or to the input of a tension amplifieh{ = 0). WhenG > 0, (9) is the true mixed
condition. It occurs when the upper and lower faces of each inclusion are connected
by an R-L-C circuit of impedance/ G, h” being an additional source of current.

REMARK 2.1. The above explanations are slightly inaccurate. In fact, the current
which flows out of an inclusion is the time derivative @ - n);. One may think
of (9) as the Laplace transform of the Kirchoff law.

2.4.3. Nonlocal Mixed Conditions

They occur when dielectric inclusions are also connected together by R-L-C cir-
cuits. We consider here the case where the upper face of each inclusion is connected
with each of its direct neighbours, but not to the outside of the plate. This is
described as follows.

Let us introduce the shift operators

71 ¢ — N2, 72 - ¢ — N2,
+1 i— (i1+ 1), + i (i1,i2+ 1),

£ 2 & 2

Til'l I[ —> N 5 TEl I[ — N )

i — (il—l, iz), i — (il, iz—l).

With the convention
Gpay — ¢l =0 T30 ¢ T,
Y o (10)
Preiy — @ =0 if 7¢,(0) ¢ I°, fora=1,2,

the Kirchhoff law leads here to

2
G1 ~b | ~b G, b P TE b+
_2 (QDTE (l) - 2(/)' + (pToc (l)) - _(pl + h Py VI G ]I 3 On Fl 3
por ae 1 +1 a (11)

(D" -n)i =

(pb = (pf; OnF}i_.

Figure 3. Cell with nonlocal electric circuit.
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Hereas?/G1 (G1 > 0) designates the common impedance of the circuits linking
two adjacent inclusions.

REMARK 2.2. Condition (11) clearly corresponds to a discrete Laplace operator
in the two directions of the plate here with discrete homogeneous Neumann condi-
tions (10). Due to the above particular scaling on the impedance, in the asymptotic
processa, ¢) — (0, 0), this generates a Laplace operator on the transverse compo-
nent of the electric field. It is worth emphasizing that one can choose in advance the
operator (and the corresponding boundary conditions) on the transverse component
of the electric field by appropriately choosing the way to connect the upper faces
to each other.

2.4.4. General Comments

In the sequel, we often use common formulations for the above three boundary
conditions. To do so, we need to defibfe ¢?, G, andG for all the models with
the conventions

h? = 0 for Dirichlet conditions ¢? = 0 for mixed conditions, (12)

G andG; are two given nonnegative constants
G = G, =0 for Dirichlet conditions,

G1=0 for local mixed conditions
GG1>0 for nonlocal mixed conditions

(13)

Unlike [4], we do not treat separately the case of Neumann conditions. From a
mathematical point of view, it does not differ from the case of local mixed con-
ditions. One simply has to sét = 0 in the local mixed condition to obtain the
corresponding model.

Since all the faces are metallizeg,, ¢°, andg’ are constant on each face of
each inclusion. Also, because the current is provided by a single wire, the same
property holds for®.

The relevance of the scaling /a)~* and(G1/(ag?))~* on the capacities will
become apparent in the next sections. It will clearly indicate, according to inclu-
sions and thickness, the type of circuit that must be chosen to obtain a significant
effect on the global behaviour of the plate.

3. Weak Formulations

Notation, equations, and boundary conditions were stated in the previous sections.
The aim of the present section is the formulation, on the fixed doaiof the
corresponding weak formulations. The effective models are deduced from these
weak formulations (18) in the next two sections.
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3.1. SCALING OF THE EQUATIONS

Using the standard change of variabl€s— x = "(x1, x2, x3) = "(x1, X2, x§/a),
equations of Section 2 are reformulated @n= wx]—1, 1[. As already men-
tioned, the geometrical notation for the dom&ins the same as far?, the index

a being removed when necessary. The corresponding scaling for volume forces,
surface forces, and displacements is classical [6]:

0t (x) = (uli(x“), ulz’(x“), aug(x")) in Q,
o) = (FL(x9), L(x9), a2 fh(x?)  ine,
0 (x) = (g7(x9). g5(x*). a g5(x)) onyyx]—1,1|,
& (x) = a‘l(gll’(x"), glz’(x"), a‘lgé’(x")) onw x {—1, 1}.

The current sources’, the electric potentialg”, ¢2, andy? are unchanged. As
in the sequel we only work on the reference donfjrve use again, for simplicity,
the notatioru?, f*, ¢, h?, ¢*, ¢’ , andg,, without hats.

ForV = (v,y) € HY(Q) x H(Q%), we define the scaled strain tensor and the
scaled electric fieldK4(v) = (K5 (V)i j=1.23 andL?(¢) = (L{(¢))i=1,23 by

Kgﬁ (V) = sap(V) fora, 8 =1,2,

K4 (V) = K%(V) = a tsea(v) fora=1,2

K45(V) = a~?s33(V), (14)
L& (@) = 0q9 fora = 1,2 and

Li(p) = a o3¢,

whered; represents now/dxs. We also use the global notation

M) = (K& W), poy o (KEaM)) g 5 KisW). (LEW)),_y »» LSW)). (15)

3.2. WEAK FORMULATION

We put together the tensoR, d*, andc® in a global stiffness-piezoelectricity-
permitivity tensorR?, which is the 10x 10 symmetric matrix written in a format
compatible with (15):

(Rogysla.p.y.s=12 Ryg D py=12 (Rogadap=12 @yygapy=12 (d3,5)ap=12
(2R23V5)a,y,8=l,2 (4R§3y3)a,y=l,2 (2R2333)a=l,2 (2d;a3)a,y=l,2 (2d§a3)a=l,2

& & & & &
(R33,5)y.6=1.2 (2R33,3)y=1.2 R3333 (d,33)y=12 d333
(_d;y(g)a,y,ézl,Z (_Zdéy:g)a,y:l,Z (_d§33)a:1,2 (Cg(y)a,y:l,Z (523)01:1,2
(—d5,5)ys=12  (=2d5,3)3,-12 —d533 (c3,)y=12 €33
(16)

The linear forms associated with the mechanical and electric loads are

lf;(v):/fibvidx-i—/ ¢’v;ds, and lg(Zg)zf h’Ladx.
Q Y Q5
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Given the assumption on metallization, the set of admissible electric potentials
is chosen by

HX(Q5) = {¥ € HY(Q)); ¥ is constant in each connected parfgf U T~ }.
17)

The Hilbert space®v¢ andW4, are defined by
() Dirichlet conditions
WbD = Wa(gori, (pé’)
= {(v,p) e H(Q) x H}(Q); v=00nTp,
¢ = ¢> +agl on Fii},
We = W¢9(0,0).
(i) Mixed conditions
Wh =W? () :={(v,9) e H(Q) x H}(Q]); v=00nTp,
¢ =g, onl"},
W? = W?(0).

The backward difference operat®f is defined inclusion by inclusion by
(v;"/f)l = 8_1 t(l/fi - l)[/Ti-l(i)v l//i - l//T_Zl(i)) V' € I[s Vl// (S Hcl(Qi)

The weak formulations on the scaled domdn for the coupled prob-
lems (3)—(5) and (8)—(11), with the conventions (7), (10), (12), (13), are then
summarized by:

Jo M (V)REM“(UP)dx + 2 [o GM(L§(¢”)) M(LE(y))dx
+2 for GrVEM(LS(¢")) - ViM(LE(W))dx = (V) + I (L§(¥)) (18)
YV = (v, ) € We, with U> = (U, ) e W5,

The mean operato#( is defined in (1). We used (6) to reorganize the first term and
the relations

Blrer = Pjrer — Pre- = 2M(359")  and
er? = 2M(d3y) for the other terms.

REMARK 3.1. Itis worth pointing out that, for mixed conditions, the connection
of the two faces of each inclusion introduces the mean value of the transverse
component of the electric field in the equations.
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In (18) and throughout the paper, the products between matrices have to be
understood as bloc matrices products, where in each bloc Einstein’s convention of

summation is used. For exampleZM“(U?) is equal to

(RiysK5s 0+ 2Rj g 5K 4 RigsgKSgWP) 45 g L6 + dig 136D
(2R23y5 45 (WP) + AR5 SK U (UP) + 2RE K (WD) + 245 1% (6P + 25,314 (¢ ))
R3g,5K5 (“)+2R%ﬁK'(M)+R%%K%W%+d 33L$ (") + d533L5 (")

( s s KOy (UP) = 25 o KOa(UP) — dfgaKSa(P) + ¢, LS (00) + gLy ))

b b b b
—d§, s K35 (UP) = 2d5 3K 3o(UP) — dSaaKga(uP) + 5 LY (97) + 5L 5(0")

=12

=12

4. Assumptions on the Data. A Priori Estimates. Convergences

The aim of this section is twofold. The detailed assumptions on the data are stated
in 4.1. The resulting a priori estimates and first convergence results are given in 4.2.

4.1. ASSUMPTIONS ON THE DATA

We use in this paper the notion of two-scale convergence of Allaire [1] and Nguent-
seng [9]. Since we also need two-scale convergence for functions defir@gl on
we use the following practical definition.

DEFINITION 4.1. A sequenceéy?) of L2(Q}) is said to two-scale converge to a
limit ¥ in L2( x Y1) if ¥ € L?(Q x Y;) and if (P?y*) two-scale converges to
Py in L?(Q x Y), where P¢ and P denote the extension by O frofe; to © and
from Q x Y; 10 Q x Y, respectively.

In addition to the standard symmetry assumptions (6), the teRSods, andc®
constituting the stiffness-piezoelectricity-permitivity tengirare assumed to sat-

isfy
(R¢) two-scale converges in?(2 x Y) to some limitR € L>( x ¥),
| RE L) < C, R® does not depend o,
|ima—>0H$€”Lz(Q) = [[RllL2@xy)- (19)
'KR®K > ¢|K||? VK e R®with K;; = Kj;, a.e. inw,
‘LefL > c|lLf? VL € R3, a.e. inws.

Here and throughout the paperand C designate generic positive constants, not
depending om ande.

REMARK4.1. In view of the symmetry relationg;, = dj;;, coercivity forc’
andR¢ implies coercivity forR?. Conversely, two-scale convergence #®f im-
plies two-scale convergence fgf, ¢, andd®. The corresponding limits are natu-
rally denoted byR, ¢, andd.
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The mechanical forces are assumed to satisfy

fb € LZ(Q)a gb € Hl/Z(FN)7
(f*) converges weakly ih?(2) to some limitf, (20)
(g?) converges weakly ih?(I"y) to some limitg.

The assumptions relative to the electrical boundary conditions are:

h, ¢t andg? are constant on each inclusion

(h?) two-scale converges ih?(w x Y1) to some limith € L2(w),
(¢?) two-scale converges ih?(w x Y1) to some limitp,, € H(w),
(¢?) two-scale converges ih?(w x Y1) to some limitp. € L(w).

(21)

REMARK 4.2.  Sincep?, ¢2, andh? are constant on each inclusion, their two-
scale limits do not depend gnin Y;.

Let us recall that the convention (12)—(13) have been chosen to défigg,
G, andG4 for all the models.

4.2. A PRIORI ESTIMATES CONVERGENCES

Let us introduce the space of Kirchhoff-Love’s displacement fields
Vi ={veH (Q); v=00nTp, (s;3(V))iz123 =0},

or equivalently,

= = = = 1 2
Vi = {'(01 — x301v3, U2 — x30203, v3); U1, U2 € H' (@), v3 € H(w),
U1 =1, =vz=00nTp}.

In the sequel, fov € Vg, we frequently use the practical notatior= ’(v;, v7).

A priori estimates and the resulting convergence results for the sequéngé)
are summarized in the following lemma. The convergence statements hold a priori
for a subsequence. However, since we see with hindsight (from uniqueness of the
solution to the limit problem) that the complete sequences converge, we omit to
mention the extractions of subsequences.

LEMMA 4.1. If assumptiong6), (19)—(21)and convention§12), (13)hold, then
for sufficiently smalb:

(i) for each fixed there is a unigue solution to proble(h8);
(i) 1KU")lL2) + |||—a(<ﬂb)|||_2(szi) + Gl”v;M(L%((ﬂb))”Lz(Qi) <C;
(iii) there existM = (K, L) € (L2(2xY))’x (L?(Q2xY1))3 such thatM*(u?))
two-scale converges #d in L2(Q x Y) x L%(Q x Y1);
(iv) there existsl € Vg, andu® = '(ug, u3, 0) With uy, u3 € L3(Q2; H}(Y)/R),
such that(u”) converges weakly toin H1(Q), (V;:u?) and (3su”) two-scale
converge tov;u + V),ul anddsu, respectively, in.?(2 x Y);
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(v) (¢") two-scale converges tg, in L2(Q x Y1);
(vi) there existep® € L?(Q2; H(Y1)) such that (Ly, Lp) = V,¢%;
(vii) M(L3) is independent of, and for Dirichlet conditionsM (L3) = ¢.;
(viii) In the case of nonlocal mixed conditions((L;) € HYw) and
(VEM(L§(¢"))) two-scale converge t&; M (L3) in L2(Q2 x Yy).

Proof. Point (i) is a direct application of Lax—Milgram’s lemma. Point (ii) is
obtained with standard arguments by choosingy) = (U, ¢* — (9% + axsp?))
in the case of Dirichlet conditionsy, v) = (u’, ¢* — @), otherwise. Point (iii) is
a direct consequence of (ii).

Let us prove (iv). First, a“ (u”)) is bounded ir_?(Q), Korn’s inequality im-
plies that(u”) is bounded irH(£2). Then, from [1, Proposition 1.14], there exists
u e HY(Q) andu® = "(u1, u3, u3) € L3(Q2:; H{(Y)/R), such that (after extraction
of a subsequence, if necessafyj) converges weakly ta in H(R2), (V;u®) two-
scale converges t9;u + V,ul in L%(Q x Y), (d3u®) two-scale converges @u
in L2(2 x Y). Now, the sequencesk s (u?)) being bounded, in view of (14), the
sequencess;3(u?)) strongly tend to 0. As they also converggi@a(u)), this proves
ue VKL-

To complete the proof of (iv), it remains for us to show thatmay be taken
as equal to zero. We re-use the fact that the sequemnggs’)) strongly converge
to 0. Strong convergence implies two-scale convergence, andiibs,+d,, ui =
dy, 43 =0. Then, because} is defined up to the function of, we are free to choose
u% =0.

To prove (v) we note thaty®) is bounded inL2(Q5) (see (ii)). Thus,(¢?)
two-scale converges to some lingitin L2(2 x Y1). As (L4(¢?)) = (a1d3¢?) is
boundedy does not depend ory. Similarly, as the quantitie€ 2 (¢?)) = (9,¢")
are boundedy does not depend on Hencep € L?(w). Now, to computep, we
only need to pass to the limit in

f dap” (x3 — 1) dv = —/ "y dx +2f (¢n —agl)y di V¥ € HY(o).
Qf Qf f

The left-hand side tends to 0 becaué(¢?)) is bounded and therefore= ¢,,.
To prove (vi), we use the identity

b
/ Vigl - yfdx = _/ @’ (divgy)dy — / (p—(divyl//)adx
Q5 Q5 Q ¢
+/ "y -ndo® Yy e D(QxY),
ri
wherey* denotes the functiom — ¥ (x, X /¢). We choose) such that diyyy = 0
in Q2 x Yy andy - ny = 01inQ x 9Yq, and pass to the limit ds— 0. With (v), we

get

/ (‘(L1. L) — V) - ¥ dxdy = 0.
QXY]_



COMPOSITE PIEZOELECTRIC PLATES WITH ELECTRONIC 125

This proves that(L1, L,) — V;¢,, is a gradient with respect to. Remarking that
Viom = Vy(Y - Vipn), this proves thatt(L,, Ly) is a gradient with respect ta

The first part of (vii) is obtained by remarking that(L4%(¢”)) = a1 M (33¢?)
= a Y (¢« —¢r.) is constant on each inclusion (becaydes H}(29)). Hence,
its two-scale limit does not depend on

For Dirichlet conditions, (8) also implies that (L%(¢”)) = ¢”. Hence, passing
to the limit: M(L3) = ¢..

Let us prove (viii). Let¢é designate the two-scale limit QN;M(Lg(go”))).
Lety € D(Q x Yp). Fore small enoughyé(x) = ¥ (x, x/¢) vanishes in all
noninternal inclusions. Then, the following integration by parts formula holds:

et [ ML — ) W

1jel®

= [ S M) 0 Vi)

1iel®

for o = 1, 2. Passing to the limit, ag is regular, this yields
f E ¥ drdy = — M(L3)dp dx, o =12
QxY1 QxYq

This proves thatM (L3) € Hy(w) and&, = 0, M(L3). a

5. Main Result: Limit Models

This section is devoted to the presentation of the effective 2-dimensional plate
models. They are obtained by lettiag ¢, ¢/a tend simultaneously to 0 in (18).
As a unigue asymptotic situation arises here, we subsequently know that the same
models would be obtained by deriving the first 3-dimensional homogenized equa-
tions by lettinge tend to 0 ¢ fixed), and then applying the asymptotic method in
the plate theory ag — 0.

The derivation of limit models is made up of three steps. The first one, the
most difficult mathematically, consists in characterizing the lirtitsL) defined
in Lemma 4.1. The second step consists, as usual, in linear homogenization, in
eliminating the local variable. This is realized by computing the microscopic
fields (depending ory) with respect to the macroscopic fields (depending only
onx). The third step consists in eliminating (part of) the transverse components of
the fields (homogenized strains and the electric field) that we compute with respect
to the other components. This elimination differs from the classical plate theory
because of the nonstandard boundary conditions on the faces of inclusions.

The notation related to step 2 is presented in Section 5.1. The notation related
to step 3 is presented in Section 5.2. The effective models are then summarized by
Theorem 5.1, in Section 5.3. The proof of Theorem 5.1 is postponed to Section 6.
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Let us stress again that our approach allows a synthetic and readable presen-
tation of our results. Compare, for example, the notation of Section 5.2 below,
with the expanded expression presented in Section 7 for a transversally isotropic
material. Our notation is also practical: the calculations of Section 7 (based on the
general notation of Section 5) have been worked out using Mathematica.

5.1. NOTATION RELATED TO HOMOGENIZATION

Similarly to (2), let

1 1
Saﬁ(V) = E(ayav,g + ayﬁva), Sa3(V) = anavg, o, ,3 = 1, 2. (22)
Let us define
Z={11,(12,21,(22,(13),(273),(3,3),3}.

The local variablesu’, ¢') € (H}(Y))®x H'(Y1), needed to compute the homoge-
nized elasticity-piezoelectricity-permitivity tens®* , are defined, for eache Z,
as the solutions of the local problems:

RaﬁyS 2Raﬁy3 dyotﬂ SyS (ul)
/(Saﬁ (V)a SaS(US), ayo, W) 2Ra3y8 4Ra3y3 2dya3 Sy3(ul3) dy
Y —lays _2day3 Cay 3yy§0’

RaﬁyS 2Raﬁy3 Raﬁ33 dyozﬂ d3aﬂ
= / (Sap(V), Saz(V), 0y, ) | 2Ru3ys 4Ru3,3 2Ru333 2d,03 2d3,3 | (23)
Y —Uays _ZdonS _doz33 Cay Ca3
81’,)/8
0, .
x | 833 |dy Y(v.¥) e (H(Y))" x HY (Y1),
iy
i3

whereé; ; is the Kronecker symbol far, j € Z.
The tensott, stored in a format compatible witR, is defined as

(Saﬂ(uup))a,ﬂ,u,pzl,Z (Saﬂ(uﬂg’))a,ﬂ,u:l,Z (Saﬂ(u33))a,ﬁ:l,2 025 2x2 (Sotﬁ(u?’))a,ﬁ:l,Z
(a3 g =12 Sa3WN)g 12 Se3W)g12  O2x2  (Se3US)g=12

L= 0242 [0)) 0 07} 0
@y ")t p=1,2 By ") pi=1,2 Oy 9az12  02x2 0y 9dac12
02x2 0] 0 02 0

The homogenized stiffness-piezoelectricity-permitivity coefficients are then given
by

R = / (Id +"£)R(Id + £) dy. (24)
Y
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5.2. NOTATION RELATED TO PLATE THEORY

The notation is:

IT andI1, are the projections frori.2(£2))1° onto its subspaces of the form
'(O4, (Ki3)i=1,23and0z, L3), '(0g, L3), respectively IT, = IT — Iy,
Ty = —(TIRHT) "TIRY,
Ty= —(1‘[23%”1'[2)711‘[232” for Dirichlet and nonlocal conditions
Ty = —(TMIRAT + 2GT) MIR?  for local mixed conditions (25)
Ry = (1d+Ty)RA1d + Ty),
R = (Id + T ) (R +2GT1)(d + T ),
RN = IV1l(Tae = (1d + T ) (R? + 21| GT1y)
x (MMRHTI + 2|¥1|GTT;) ).

The notation in (25) is not completely correct. The inverted matrices are not in fact
invertible as applications fromZ?(£2))1° to (L?())°, but on the relevant sub-
spaces. For example, the inversioTbR “ IT is meant for the restricted application
IT(L%(Q)1° — TT(L?(2))X. In practice (ITR7TI1)~! is obtained by deleting the
zero lines and columns ¢t R 11, inverting the resulting matrix and incorporating
the results in the right place in a ¥010 matrix of format (16). A detailed example

is given in Section 7.

REMARK 5.1. MatricesR , Ry, and .Rj"jx have the same format (16) &&.
The corresponding submatrices are naturally denoted by

R, Aac, Cae, Ry, s G, RYX M andcMix,

Because of the projections, these matrices are sparse matrices. Only the coeffi-

CIeNtSR yapys: Ryapys: dmzaps Amzaps CM33 anddj"lg‘aﬁ are needed in the following
models.

5.3. MODELS
Let

Jo fividx + [y givi ds — 2/ Sap (VN d pyaappe dX
for Dirichlet conditions ¢
I(v) = fo,-v,»dx—i—fFN giv; ds+2/sa,3(\7)dmi§aﬁhd)€

for local mixed conditionsw

fQ fivi dx —i—er giv; ds
for nonlocal mixed conditions
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THEOREM 5.1. Assume that the hypothesis of Lemdribholds. Assume that,
g, andeg/a tend to zero. Then

() in the case of Dirichlet or local mixed electrical boundary conditions, the
sequenceéu®) converges tal = ' (ii1 — x301u3, ilo — X300u3, u3) € Vg Which
is the unique solution of

i} 2 .
25,8 (V) R papys8ys(0) + §83ﬁv3R.N'aﬁy5835u3 dx =1(v) WveVgy;

(i) in the case of nonlocal mixed electrical boundary conditions, the sequence
(u?, M(L%(¢"))) converges tau, LY € Vg, x H(w) which is the unique
solution ta

7 R papys dvzap Sra QD
<2(S“/3 . Ls) < emsys cm3zt+2|Y1|G L3

2 . ~ .
+ éagﬂngwaﬂy5355u3>dx + 4]V / G109, L30, L3 d%

w

=1(V) + 2/ Lshdf Y(v,Ls) € Vi x HYw).

5.3.1. Comments

¢ All the models are independent @f,. Only the difference of potential between
the upper and lower faces does influence the effective behaviour of the plate.

e In both cases, equations fof and i are uncoupled. This would, however, no
longer be the case for multilayered plates. See [4].

e For Dirichlet and local mixed conditions, the limit model has the standard form
of a two-dimensional elastic plate. The influence of inclusions only appears in
the definition of the effective coefficients, and as a source term on the right-hand
side.

e For nonlocal conditions, the situation is more interesting. The coupling arises
between the mechanical effects and the transverse electric field induced by the
inclusions. The form of the differential operator (here, a Laplace operator) acting
on L3 depends only of the choice of connections between inclusions. However,
given that in (i) the equations fars on the one hand, fofiis, iz, L3) on the
other hand, are uncoupled, the transverse displacement control would require
the consideration of multilayered plates, as in [4].

e Formulation (ii) is more general than formulation (i). First, for time dependent
problems, even for local mixed conditions, this formulation could be applied
because&s could be a combination of time derivatives which cannot be simply
inverted. Second, also for local conditions, when thinking in terms of control,
one may prefer to consider model (ii) (with, = 0) rather than model (i). The
role of G is more apparent in (ii): the local mixed conditions actually correspond
to the operator o3 without derivatives.
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6. Proof of Theorem 5.1

6.1. STEP1: CHARACTERIZATION OF THE LIMIT M

6.1.1. Some Notation

We give here some notation that allows a more elegant presentation of the results.
Let C°(Y) denote the subspace Bfperiodic functions ofe>(R?). For any

functionv € D(Q, C°(Y)), we systematically denote by € D () the function
x = v(x, X/¢). A similar convention is used for functions @ (2, C;°(Y1)).
In what follows, we consider in (18) two-scale admissible test functions in

Wi, = (V= (VL yY) € (D(Q e ()’ x D(Q, €(1));
vi=0o0nT), x Y},
and test functions in
W = {(v, ¥) € HY(Q) x ¥,4(Q); v=00nTp},

where

V. (2)=D(-1,1] xw) formixed conditions
V. (Q)=D(-1 1xw) for Dirichlet conditions

ForV € W!,, we introduce the key decomposition Mf' (V¢):
M¢(V¢) = (MOW))" + %(MlO(V))S + %(MOl(V))E
F L (MMW)) + (M)’ (26)
and we recall that fo¥ € W ,:
MEV) = MOV) + TMOHY) + M), (27)
where, with definition (2) folS,;, asV = (v, ¥):

MPV) = ((Sap(V))y p_1.2» 03+ (Bu¥)a=12, 0),

MOV) = "((Sup(V)),, 5_1.2» 03+ By, ¥)a=1.2, 0),

MOYV) = *(Ozx2, (523(V)) ,_y > Oa, a¥), (28)
MLV) = (02, (SaS(V))a:LT 04),

MO%(V) = (0242, 02, 533(V), O3).

Associated subspacd$, M2, M~ andMP° of (L2(2 x Y))” x (L?(Q2 x Y1) are
defined by
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M2 = {"(Ozx2, 0z, K33, 03); K33 € L*(Q)},
M = {"(O2x2. (kas/Da=1.2, O, L3) + M (V?); ko, L3 € LA(R),
vi € L*(Q; H}(Y)), with M(L3) = 0 for Dirichlet conditiong,
MO = {MOO(V, 0) + MlO(Vl);
Ve Vi, VEe L2 HI)? x (0)x € L2(Q; HY(Y)},
M=M7?2eM*'eM°.

REMARK 6.1. EachVl € M is associated wittv, V!, v) € Vg xL2(S2; Hg(Y))
x L2(Q; HY(Y1)), whereV! = (v1, v3, v3).

6.1.2. Three Preliminary Lemmas

The first two lemmas are density results that allow us to pass from admissible test
functions to test functions ikl, M—2, M1, andMP°. Lemma 6.1 deals with mixed
conditions. For Dirichlet conditions, each functionf,($2) is trivially identified

to a function of H}(Q25). This is no longer the case for mixed conditions (see
definition (17) of H}(Q%)). It is the aim of Lemma 6.1 to overcome this difficulty.

LEMMA 6.~1. For mixed conditions, fgr each € ¥,,(R2), there exists a sequence
(¥%) with wfgi € HX(Q) such that(d;y°) strongly converges tésy in L3(S).

Proof. Let o’ denote the mean section of the inclusion numbéfo obtain
Lemma 6.1, we simply need to choogé defined by

1
e = £|/vw(x)d£ in o Vi e I,

|w
LEMMA 6.2.
(i) The sefM%(V);V € W,,} is dense irM 2,
(i) The sefM% (V) + MLV vV e W4, VI e WL, v3 = 0} is dense i1,
(i) The sefM(V) + MOy V e Vi, x {0}, VI € WL} is dense iMP.

Proof. Point (i) follows, for instance, from the density @fsvs; v € D(wx
1—1, 1)} in L?(). Point (i) is similar. For Dirichlet conditions, we remark that
the density ofdsy; ¥ € D(wx] — 1, 1)} isin {Ls € L?(Q); M(L3) = 0} only.
Point (iii) is straightforward. a

LEMMA 6.3. Let (1°) be a bounded sequence (). Letu € H(Q) and
u' € L%(Q; H}(Y)) be functions such that) weakly converges to in H'(Q),
(Vu®) two-scale converges u + Vyul in L2(Q x Y). Then

&
lim [ Zo,vde= [ uld,vdedy YoeD(QCEY)).
e>0Jq € Qxy
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Proof. We simply need to pass to the limit in

/aausvsdx - —/ us(aav)adx—/ L (8,,v) cx.
Q Q Q €

The integration by parts of the first term on the right-hand side then yields the
result. O

6.1.3. Characterization o

Define¢. by ¢. = '(0q, ¢.) for Dirichlet conditions,p. = 09 for mixed condi-
tions.

LEMMA 6.4. Assume that assumptions of Lemdribhold. Assume that, ¢, and
¢/a tend to zero. ThetM“(U?)) two-scale converges to

1
M = t((saﬂ(u) + Sap (ul))a,ﬁ:l,Z’ E(ktﬁ + 8ya”§)a=1,2’ K33, (ayawl)azl.z’ L3)
€ ¢+ M
which is the unique solution of

/ ‘MRM dxdy + 2G M (L3)M(L3)dxdy
QxY

QXY]_

+2a/‘ 3o M (L3)du M (L3)dxdy = I,(V) +1,(Ls) VM e M, (29)
QxY1

where

Ly (V) Z/ﬁvidx+/ giv; dx,
Q ry
(30)
l(p(Lg) Z/ thdxdy = |Y1|/ thdx
QXY]_ Q

Proof. The proof is in two steps. We first establish thatsatisfies the weak
formulation (29). We then show th € ¢. + M. Uniqueness of the solution of
(29) is a simple consequence of Lax—Milgram’s lemma.

In the case of Dirichlet conditions, we chodges W, as a test function in the
weak formulation (18). We then multiply by, a, and 1 successively and pass to
the limit in each case. With definitions (26), (27), and (28) we, thus, get
Jory M2ZV)RM dxdy =0 WV € W,

Jaxy MOYV)RM dxdy + 2 [, ;. GM(Ls)M(339) dxdy
+2fg‘zxyl G104 M(L3)0u M () dxdy = 1,(d31)

YV e W,, with M%(V) =0,

Jowy MOV)RM dxdy =1,(v) VYV € W,y

with M%(V) = M%(V) = 0.

(31)
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For mixed conditions, (31) also holds, but we need to start in (18) yitkas in
Lemma 6.1 instead af .

Choose now*: x > V1(x, x/¢), whereV! € W as a test function in (18).
With definition (26), multiplication by:e ande yields

Jory ME(VHRM dxdy =0 vVie W,
Jory MIO(VH)RM dxdy =0 Ve W, (32)
with M(V) = M%(V) =0

Now, using Lemma 6.2, point (i), the first equation in (31) is equivalent to the weak
formulation (29) withM 2 instead ofM. Also, using Lemma 6.2 (ii), the second
equation in (31) (withvs = 0) and the first equation in (32) are equivalent to (29)
with M~! instead ofVI. Last, using Lemma 6.2 (iii), the third equation in (31) (with
v3 € VKL, that ensure#%?(V) = M%(V) = 0) and the second equation in (32)
(with v = 0) are equivalent to (29) withI® instead ofM. As (29) holds for any
M in M2, M, andMP, it holds inM = M~2¢ M~g MP. This ends the proof
of the flrst part of Lemma 6.4.

Now we prove thaM € ¢, + M, or in other words, thaM has the form as
announced in the lemma.

The form K,s = sqs(U) + Ses(ut) for o, B = 1,2 is a direct consequence of
Lemma 4.1, point (iv) and of definition (14K, (V") = sas(v"). The formL, =
0,9 is proved in Lemma 4.1, point (vi).

ConcerningK 3z, we simply need to show that it is independenyoTo do this,
we pass to the limit in the identity

1 &
;/ agug(s(aﬁayav) -1—(8y2 v ))dx

l

which holds fora, B € {1,2} andv € D(L; @;O(Y)) (recall that this implies that
dy, v is Y-periodic). The first term on the right-hand side tends to zero because
(Kg3(u®)) is bounded. Using Lemma 6.3, the second term on the right-hand side
also tends to zero. Hence,

/ Kggayﬁy vdrdy =0 Vv e D(Q; C(Y)).
QxY

This proves thaK 33 does not depend on
For (K13, K»3), first note, using a few integrations by parts, that

/ (8 uﬁ dgu,, )831} dx

—Za/ (av+1av)dx Za/K <aﬁv+la )dx

Vv € D(Q; C2(Y)). (33)
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By multiplying (33) bys/a and passing to the limit, one gets
/ (K p3dy,v — Ko30,,0) dxdy =0 Vv € D(Q2; C(Y)).
QxY

Hence, (K13, K»3) is curl-free with respect tg. Thus, there existk:s, k23) €
L(Q) andu3 € L*(Q2; H}(Y)) such that X,z = k3 + 9,,u3 (See [8, Section
3], if necessary for this well-known orthogonality result in the context of periodic
functions).

To complete the proof, it remains for us to examing Passing to the limit in

&

1
8/ L%((ﬂb)<(3a1/f)8 + —(ayal//)*’“)dx = —/ Li(wb)awsdx, a=12,
Qf & a o
as the quantitie£. (¢”) are bounded, one gets
/ Lzdy,ydxdy =0, a=12
Qf

This proves that.; does not depend onand thus completes the proof of Lemma 6.1
if the mixed conditions case. To conclude for Dirichlet conditions, it suffices to
remember that( (L3) = ¢° (see Lemma 4.1 (vii)). Hencey (L3 — ¢°) =0. O

6.2. STEP2: HOMOGENIZATION

The weak formulation (29) being established, the next step consists in eliminating
the local variablg . This requires the auxiliary functiorga”?, u”3, u33, u®) defined
in (23). We use the decomposition

M =M, + Mll(Ul) i MlO(Ul)
in (29), where
M, = ’((Saﬁ(U))a,ﬁ:Lz, (ka3/2)a=12, K33, 02, L3),
Ut =" (u, u3, u3, ¢*).
LEMMA 6.5. LetM be the solution of29). Then,
Mll(Ul) i MlO(Ul) — LM,
and (U, (ky3)a—1.2, K33, L3) € Vg1 x (L?())*is the unique solution of
/Q (MRIM, 4 2|Y1|GL3M(L3) + 2|Y1|G18, M (L3)dy L3)dx

=1,V) +1,(Ls) W eVkr, Y((kea)az2 Kaz, L) € LA(Q).  (34)
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The linear formg,, andi, are defined in (30). ~
Proof. In (29), we choose test functiond € M of the formM = M(v?) 4
M10v1), where

VE="(v1,v3,5, ') € L2(Q; HL(Y)) x L*(Q; H'(YD).
We obtain
/ l‘(M ll(Vl) + MlO(Vl)).R(M ll(Ul) + Mlo(ul))dy
Y

= —/ f(MEVH +MPVH)RdYM,
Y
YVt ="(vf, v, v3, ¥') € HI(Y) x H' (Y1), almost everywhere if.
Hence,U? is the unique solution (up to a function ©f to the above variational
problem. But asM, is independent of), one may choos&)! = u"’s,;(u) +
Uk, 3 + U%K33 + UPL3. Using the definition of£ (see Section 5.1), it follows
thatM**(U%) + M*°(U%) = LM, and, thereforeM = (Id+4£)M . Choosing now
in (29) test functions of the forrdd + L£)M, where
'\7] = t((sozﬁ (V))Ol,ﬁZl,Z’ (]Ea3/2)a=l,2a I’Z33a 02a Z3)a
~ ~ ~ 4
(V. (ka3) ,_y o» K33, L3) € Vi x (LA(Q))",

keeping definition (24)R"” = [,(Id +'£)R(Id + L£) dy in mind, we are led to
the weak formulation (34). This ends the proof. a

6.3. STEP3: PLATE THEORY

We complete the proof of Theorem 5.1 by eliminating, K33, NV (L3), and pos-
sibly, M(L3). The proof is based on the decompositidh= M° @ M~ @ M~
where ally-terms are killed because everything in (34) depends only. @iven

that there is no confusion possible, we keep the same notation as before for the

corresponding functional spaces. We also use againstead ofM,. In simpler
terms, in the sequé¥I®, M—*, M2, M designate

M2 = {!(Oz«2, 02, K33, 03); K33 € L*(Q)},
M = {"(O2x2, (ka3/2)a=12. 03, L3) With M (L3) =0
for Dirichlet conditiong, (35)
MO = {M%(v, 0); v € Vg, },
M ="(sqp (W, p=1.2> kas/2)a=1.2, K33, 02, Ls).
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6.3.1. Case of Dirichlet Conditions

Here, we eliminate the componerits, K33, L3, that is,ITM, wherell is defined
in (25). They are computed with respecito(recall thatM (L3) = ¢, for Dirichlet
conditions) andM, := M — IIM. As usual in the plate theory, we are led to distin-
guish M(M?) = ‘((s5(@)),, 5_1 > O) Which contains the terms ia, and & (M 0y
= ’((—x3855u3)y’521’2, 0s) Which contains the terms insz. Let us also recall the
definitiong. = ' (0g, ¢.).

As for Dirichlet conditionsG = G1 = h = 0, problem (34) simply becomes

/ 'MRIM dx = 1,(v) YM e M, (36)
Q

wherev is the vector ol ; associated with°. ChooseM € MM~1@® M~2) in
(36). Using thatr like R does not depend or, then

/’MﬂHde:/’MﬁHM(M)dx:O VM e MMt @ M™2).
Q Q

Hence, R M(M) € (MMt @ M~2))L. However, asR? M(M) = M(RYM)
evidently belongs to/ (M~1@M~2))*, this is equivalent teR” M(M) € (M1
M~2)L. This impliesIT,RM (M) = 0. Also, (36) implies thafTRN (M) = 0.
Using the decompositioM = ITM + M?, whereM?® € M°, we get

MM) = TIMM) + M(Mo) = TTaM(M) + M(Mo) + ¢,
N(M) = IINM) + N (Mo).

Multiplying by IT,R” andITR ¥, respectively, we thus obtain
MR MM) = 0= (TILR"TI) M(M) + IR (M(Mo) + ¢.),
NRIN M) = 0= (IIRYT)N (M) + TR N (M),
or equivalently,
MoMM) = —(M2RYTI,) TR (MMO) + 6,),
N M) = —(TIRT) " TR N (M),
Finally, using definition (25) ofr - andT 4 andM(L3) = ¢., we obtain
MM) = (Id + T ) (MM + ¢c),
NM) = (Id +T )N (MO).
Now, we choose in (36) test functios € M of the formM = (Id+T ) (M%) +
(d+ T4 ) M(MO), whereM® e MP. We get
/Q(W(MO)MM(MO) 1N (R0 Ry N (MO))

:lu(v)—/ "M(MO) Ry e ¥MO e MC.
91
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Noting that

M) = (505 @), -y 06). ¥ (W) = (= a0020), 400
‘M(M 0) = ((SV5(U))V,5=1.2’ 06)’ ‘N(M 0) = (( - x3855”3)y,5:1.2’ 06)v

this completes the proof of Theorem 5.1 for Dirichlet electrical boundary condi-
tions.

6.3.2. Case of Local Mixed Conditions

Here, as in the Dirichlet conditions case, we eliminatg K33, andL3z. We also
use notation (35).
The variational formulation (34) is here reduced to

/ (MRIM + 2|Y1|GLaM(L3))dx = I, (V) + L, (M(L3)) VM e M. (38)
Q
For test functions i~ @ M2 one gets
/ (N (M)RIN M)+ M(M)(R? + 2|Y1|GTT1) M(M))dx
Q
= vl [ esecrin) g (39)
Q
where
H :="(0, h).
Arguing as in the case of Dirichlet conditions, (39) impli@sRg M (M) = |Y1|FH
andTIRY N (M) = 0, whereRg = R + 2/Y4|GI1;1. Writng M = TIM + M°
with M% e MP, one gets thetv (ITM) = —(IMTRATH MTRH & (M) andM(TTM)

= — (MR (MR (M(M®) —|Y1|F). With definition (25) ofT , andT y this
is

{JV(M) = (Id + T )N (M9), (40)

MM) = (Id + T ) M(MO) + |Y1[(TTRGIT) 1 H¢.

ForM® e M, let us defineM € M by: & (M) = (Id + T )N (M?), M(M) =
(d 4 T 4) M(M%). Then from (38) and (40):

/(W(MO):RMM(MO) 1N (R9) Ry o (MO))dx = 1, (V).
Q
+ |Y1|/ CM(MO) (T 4 — (1d+'T ) Re (MR L) F dx VMO € M,
Q

wherev is the vector o/, associated with . With (37), this proves Theorem 5.1
for local mixed conditions.
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6.3.3. Case of Nonlocal Mixed Conditions

Here, onlyk,s, K33, and & (L3) are eliminated. Because of the nonlocal term
in G1, M(L3) cannot be eliminated. We also use notation (35). The variational
formulation of Lemma 6.5 is here

/ (MRM +2Y1|GLaM(Lg))dx + 2|Y1|Gy f 8 M(Lg)dy Ls dr
Q Q

= L,(V) +l,(M(L3)) VM € M. (41)
ForM e M~! @ M2, we thus obtain
/ (‘N (M)RN M) + " M(M) (R + 2|Y1|GTT1) M(M))dx
Q

+ 2|Y1|G1 / 3y M(L3)d, L3dx = 0. (42)
Q

With the decompositiorM = TIM + M?, we deduce as beforg/ (ITM) =
—(MRATH TN (MO). ConcerningM (M), we use the decompositidn = I1;M+
I1,M + MO, With test functiondvl € M (IT,M) in (42), we therefore gem (IToM)
= — (TR T) " HM(MO) + M(T1,M). This leads to
N (M) = (Id + T 4)N(MO),
{M(M) = (Id + T)M(M® + As).

With the appropriate choice of test functions in (41) the weak formulation of
Theorem 5.1 (ii) follows as in Sections 6.3.1 and 6.3.2.

(43)

7. Example

In this section, we propose quite explicit formulae for operators and effective coef-
ficients described in Section 5. We consider the particular case of a plate made up
of transversally isotropic material with Dirichlet electrical boundary conditions.

7.1. PRELIMINARIES

The projectiondT, 1, andII, are:

02x2x2x2 02x2x2 O2x2  O2x2x2 Oz
02,252 (B, ), pi=1,2 0> 02,2 0>
M= 02,2 0> 1 0> 0o 1,
02x2x2 0242 0, 0242 0,
052 0, 0 0, 1
O2xox2x2  Ooxox2 Oox2 Ooxowz Oy
0222 02,2 0, 02,2 0,
Hl = 02)(2 02 0 02 0 )
0222 02,2 0, 02,2 0,

02,2 0, 0 0, 1
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02x2x2x2 02y 2x2 O2x2 O2xox2 Ooy2
02x2x2 (B, ), u=1,2 0, 022 0,
I, = 052 0, 1 0, 0
02x2x2 022 0, 022 0,
052 0, 0 0, 0
Then,
0252x2x2 02,2x2 02,2
(Ru3ys)a,ys=12 (4Ru3y3)ay=12 (2R4333)a=12
IR = (R33y5)y.5=12  (2R33,3)y=12 R3333
02,2x2 02,2 0>
(—dzys)ys=12 (—2d3,3)3,-12 —d333
02y 2x2 0242
(2dya3)a,y=l,2 (2d3a3)a=l,2
(dy33)y=1,2 d333
0242 0,
(€3y)y=1,2 33
and
0252x2x2 02,252 02,2 02,2x2 02,2
O2x2x2  (ARu3y3)ay=12 (2Ru333)a=12 O2x2  (2d343)a=12
[MRIT = 022 (2R33,3) =12 R3333 0> d333
02x2x2 022 0, 0242 0,
022 (—2d3,3)3,=12 —d333 0> 33

The matrix (ITRI1)~! is computed by inverting the above matrix, omitting the
rows and columns of zeros, that is:

(4Ru3y3)a,y=12 (2R4333)0=12 (2d343)a=12
(2R33,3)y=1,2 R3333 d333
(—2d3y3)3,=12 —d333 33

The result of inversion is then replaced in ax4@0 matrix.

With this, the computation of y = —(ITRATT) IR is clear. The computa-
tion of T 4 is similar, and the effective coefficients follow. We go into detail about
these last computations in the next subsection.

7.2. EXPLICIT FORMULAE FOR A TRANSVERSALLY ISOTROPIC MATERIAL
WITH DIRICHLET CONDITIONS

The first step consists in computing the effective homogenized coefficiefits

This cannot be done analytically, but can be obtained by standard numerical com-
putation. Here, we assume th&t” is known and has the same form of isotropy

as R. We compute the stiffness tensor of the two-dimensional plate model. For
simplicity, the index” on the coefficient ofR” has been removed.
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For a transversally isotropic material, the global stiffness-piezoelectricity-permi-
tivity tensor

Ri111 Ri112 Ri121 Ri122  2R1113 2R1123
Ri211 Ri212 R1221 Ri222  2R1213  2R1223
Ro111 R2112 R2121 R2122  2R2113 2R2123

R2211 R2212 R2221 R2222 2R2213  2R2223
2R1311  2R1312  2R1321 2R1322 4R1313 4R1323

R = 2R7311  2R2312  2R2321  2R2320  4R2313  4R2323
R3311 R3312 R3321 R3322 R3313 R3323
—di1n —dip  —din —dizz  —2d113 —2dio3
—dy1n  —do1p —da1  —dyp  —2d213  —2d3
—d311  —d31p  —dz1  —dzp  —2d313  —2d3p3
Ri133  dina d11 d311
Ri2zz  di2 dp12 d312
Ro133  dina d21 d21
Roozz  di d22 d322
Rizsz  2d113  2dr13  2d313
Ro3sz  2d123  2drp3  2d323
R3zsz  dizz  dxzz  dss3
—d133 c11 c12 13
—dp33 21 €22 €23
—d3zz 31 31 33
reduces to
C11 0 0 Cio 0
0 (C11—C12)/2 0 0 0
0 0 (C11—C12)/2 0 0
Cio 0 0 C11 0
0 0 0 0 2Cu—Cr)
0 0 0 0 0
Cio 0 0 0 0
0 0 0 0 —2E15
0 0 0 0 0
—E31 0 0 —E3 0
0 Cio 0 0 E31
0 0 0 0 0
0 0 0 0 0
0 Cio 0 0 E3
0 0 2E 5 0 0
2(C11— C12) 0 0 24 O
0 C11 0 0 E33
0 0 €11 0 0
—2E24 0 0 €11 0
0 — E33 0 0 £22
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whereCq1, C12, Ez1, Ezs, E15, €11, ande;, are fixed positive constants. Application
of the formulas to Dirichlet conditions®R y = (Id+'T )R d+T ) andR =

(Id +'Th)RUd + Ty) gives the expression of the stiffness coefficients of the
two-dimensional model:

Ryi111 Rua11z Ruaizn Rz
Ruyi211 Ruaziz Ruazer Ruazz
Ryz111 Ruz112 Ru2121 Ru2122
Ruyz211 Ruze12 Ru2221 Ru2222

Ci1—C%/Cn 0 0 Ci2
_ 0 (C11—C12)/2 0 0
0 0 (Cuu—C2)/2 0 |
Ci12— C%/Cn 0 0 C1u1
and
Ry1111 Rwy1112 Rwy1121 Ryi1122
Ry1211 Rwyi1212 Ry1221 Ry1222
Ry2111 Ra2112 Ry2121  Ry2122
Ry2211 Rao2212  Ry2221  Ry2222
Ry1111 0 0 R 1122
_ 0 (C11—C12)/2 0 0
0 0 (C11—C12)/2 0 ’
R y2011 0 0 R y2222
where

Ryun = ((ChESe22 + Egie3, + CruEss(2CT,Ess + E5 Ess + Eg
— 2C12E31622) — 2C3)( — C12E31E33 + CEpe22 + Eds622)
+ 2C12E31 Es3( ES3 — £5,) + C11(Cho+ €25)) / (E3 — C11822)2v
Ru1122 = (E5.835, + C11E33(E% Eas — C12E31820 — 2C12E3362))
+ Cflclz(Eless + 832) + Clz( - E31E§3 + Egy— E31E338§2))
/(E?2,3 - C11822)2v
Ry2o11 = (E3183, + C11E33(C2,E3s + E4 E33 — 2C12(E31 + E39)€2))
+ C12(4E31E3; + E33 — E31E3365)) + CC12(E31E33
+ e20(—Cr2+ £22))) [ (E35 — C11822)2,
Ry2o22 = (— 2C3ESse00 + Cie3, + Cr1Es3(ES Ess + E3; — C12E31620)
+ E31(Cr2E3; + Ezi63,)) [ (E%; — C11822)2)-
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The piezoelectric coefficients for the 2-dimensional plate model are given by

du311 E31 — (C12E33)/C11

dyziz | _ 0

d 321 0

d 322 E31 — (C12E33)/C11
REMARK 7.1.

(i) As compared with the complexity of these formulae, the formulation of Sec-
tion 5 is very synthetic.
(i) The above computations have been carried out with Mathematica.
(i) For multilayered 2-dimensional plate models the results are much more com-
plicated. Using our approach, the complexity is the same.
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