
Diffusive Realization of a Lyapunov
Equation Solution, and its FPGA

Implementation

Y. Yakoubi ∗ M. Lenczner ∗∗ G. Goavec-Merou ∗∗
R. Couturier ∗∗∗ J.M. Friedt ∗∗

∗UPMC Univ Paris 06, Laboratoire Jacques-Louis Lions, F-75005,
Paris CEDEX, FRANCE, (e-mail: yyakoubi@ann.jussieu.fr)
∗∗ FEMTO-ST, Time-Frequency Department, 26, chemin de

l’Epitaphe, 25030 Besançon, FRANCE, (e-mail:
michel.lenczner@utbm.fr, gwenhael.goavec@femto-st.fr,

jean-michel.friedt@femto-st.fr)
∗∗∗University of Franche-Comte, LIFC, IUT Belfort-Montbéliard, rue

Engel Gros, 90000 Belfort, FRANCE, (e-mail:
raphael.couturier@iut-bm.univ-fcomte.fr)

Abstract: In Yakoubi [2010] and Lenczner et al. [2010] we developed a theoretical framework of
diffusive realization for state-realizations of some linear operators. Those are solutions to certain
operator linear differential equations in one-dimensional bounded domains. We also illustrated
the theory and developed a numerical method for a Lyapunov equation arising from optimal
control theory of the heat equation. However, the principles of our numerical methods were only
sketched, and now we provide more details. Then, we do not only provide validation results of
the method, but we also report our experience in its implementation on a Field Programmable
Gate Arrays (FPGA), for the purpose of promoting embedded real-time computation.

Keywords: Diffusive Realization; Lyapunov Equation; Distributed Control; FPGA.

1. INTRODUCTION

One of the main recognized advantages of the diffusive re-
alization of a linear operator is its very low computational
cost, see the papers of G. Montseny and of D. Matignon,
e.g. Laudebat et al. [2004], and Hélie et al. [2007], for repre-
sentations of various pseudodifferential operators, and for
their approximation. Those of C. Lubich and collaborators,
e.g. López-Fernández et al. [2005], apply a similar idea
to convolution operators, and they introduced optimized
adaptive numerical methods. Notice that fast operator
realization is essential for real-time control. Until now,
realization of a linear operator u 7→ z = Pu, by the
diffusive realization method, has been addressed to causal
operators when the kernel p of P is explicitely known,
and analytic in its second variable, see Montseny [2005].
Here, we cover the case where P is solution of an operator
equation, so p is not explicitly given nor analytic. Our
approach is presented and illustrated with the example of
P solution to the Lyapunov equation,

d2

dx2
Pu+ P

d2

dx2
u = Qu (1)

in ω = (0, 1), for all u vanishing at the boundary, and
where Q is another linear operator. This problem comes
from optimal filtering or control theory of the heat equa-
tion,

∂T

∂t
− ∂2T

∂x2
= q in ω

with Dirichlet boundary conditions. Our new method was
announced in Lenczner and Montseny [2005], it was fully
developed in Lenczner et al. [2010], and the theoritical part
with some numerical results were presented in Yakoubi
[2010]. The present paper focus mainly on the numerical
method which is not published yet. A second aim of this
paper, is implementation in view of embeded real-time
computation. Field Programmable Gate Arrays (FPGA)
is the best today choice for real-time, embeded, massive,
and low-cost computation. The main drawback of these
processors, compared to usual computers, is that they re-
quire a good expertise in digital electronics for application
implementation. Helpful dedicated software exist to help
FPGA implementation, but until today, due to FPGA
complexity, the solutions that they give are often not very
efficient. So, we have elaborated a solution from scratch
to execute our algorithm in a small FPGA, namely the
Spartan3A by Xilinx.

The paper is organized as follows. The diffusive realization
of P is recalled in Section 2, then in Section 3 and 4,
we propose a numerical method, and we present related
numerical results. Last, we discuss our FPGA implemen-
tation in Section 5.

2. DIFFUSIVE REPRESENTATION OF P

In this section we recall the diffusive realization of the
solution P to the Lyapunov equation (1) published in

Lenczner et al. [2010]. We consider the kernel formulation
of the operator P

Pu(x) =
∫ 1

0

p(x, y)u(y) dy,

and its unique decomposition (Pu) = z+ + z− into causal
and anti-causal parts,

z+ =
∫ x

0

p(x, y)u(y) dy and z− =
∫ 1

x

p(x, y)u(y) dy.

Throughout this paper, we shall use the superscripts +
or − to refer to causal or anti-causal operators, and the
convention ∓ = −(±).

We recall that the kernel p is the unique solution to the
boundary value problem{

−∆p = q in the square (0, 1)2,
and p = 0 on the square boundary (0, 1)2,

where q is the kernel of Q. The realization of z+ and of z−
may be formulated thanks to the diffusive representation,
see Lenczner and Montseny [2005] and Montseny [2005],
in the form

z+(x) =
∫

R
µ+(x, ξ)ψ+(x, ξ) dξ

and z−(x) =
∫

R
µ−(x, ξ)ψ−(x, ξ) dξ, (2)

where both ψ+ and ψ− store a part of the history of the
input data u. They are respectively solution to the forward
and backward ordinary differential equation in x,

∂xψ
+(x, ξ) + θ+(ξ)ψ+(x, ξ) = u(x)

with ψ+(0, ξ) = 0, (3)

and ∂xψ−(x, ξ)− θ−(ξ)ψ−(x, ξ) = u(x)

with ψ−(1, ξ) = 0, (4)

parametrized by ξ ∈ R. We notice that ψ+ and ψ− are
defined independently of P . Conversely, the coefficients µ+

and µ−, called diffusive symbols, depend on P but not on u.
The functions ξ 7→ θ+(ξ) and θ−(ξ) parametrize two closed
paths in the complex plane, satisfying the cone condition,
and enlacing the singularities of the Laplace transform P+

and P− defined hereafter. The diffusive symbol derivation
is achieved within several steps. First, the functions

y 7→ p(x, x− y) and y 7→ p(x, x+ y), (5)
corresponding to the causal part and the anti-causal part
of the impulse response, are analytically extended to R+.
Then, we assume that the Laplace transforms P+ and
P−, with respect to y, of the extended causal and anti-
causal parts of the impulse response, are well-defined in
C+, and that they admit holomorphic extensions vanishing
at infinity. Finally, we show that the diffusive symbols are
given by

µ±(x, ξ) = ∓θ
±′(ξ)
2iπ

P±
(
x,−θ±(ξ)

)
. (6)

3. DIFFUSIVE REALIZATION APPROXIMATION

The approximation presented in this section are formu-
lated in the particular case of Lyapunov Equation (1).

In Subsection 3.1, we recall a Petrov-Galerkin method to
approximate the symbols µ±. Then, computational algo-
rithms for history functions ψ± and for z± are derived in
Subsection 3.2 and 3.3.

3.1 Symbol Approximation

First, we choose the contours −θ± proposed by J.A.C.
Weideman and L.N. Trefethen in Weideman and Trefethen
[2007], in the context of inverse Laplace transform compu-
tation, namely a parabola

−θ± (ξ) = θP (iξ + 1)2 for ξ ∈ R, (7)
and a hyperbola

−θ± (ξ) = θH (1 + sin (iξ − α)) for ξ ∈ R, (8)
for some positive real numbers θP , θH , and α the hy-
perbola asymptotic angle. In Lenczner et al. [2010], we
have derived two Petrov-Galerkin formulations satisfied
by two symbols µN+ and µN− yielding approximations∫

R µ
N±ψ±(u) dξ of z±. Here we simply recall them without

repeating their justification. The symbols µN± are linear
combinations,

µN±(x, ξ) = ∓ (θ±(ξ))′

2iπ

N1,N2∑
k=0,`=0

ϕ1
k(x)ζ±` (x, ξ)µ±k`, (9)

of base functions which are products of polynomials in x,
ϕ1
k(x) = (1 − x)xk+1, satisfying the Dirichlet condition,

with rational fractions in ξ,

ζ±` (x, ξ) =
1

`+ 1− θ±(ξ)
− e−h

±(x)

`− θ±(ξ)
,

where h+(x) = x, h−(x) = 1− x. Then, the test functions
are linear combinations,

ṽN±(x, y) =
N1,N2∑
k=0,`=0

ϕ1
k(x)ϕ3±

` (x, y)v±k`, (10)

with ϕ3±
` (x, y) = (ey−eh±(x))e`y. The right-hand sides are

decomposed as linear combinations,

q(x, x∓ y) ≈
N2∑
`=0

ϕ2±
` (x, y)qN2

` (x), (11)

of exponential polynomials ϕ2±
` (x, y) = (e−y−e−h±(x))e−`y

in the y-variable. Finally, for the matrix K± =
(

1 ±1
0 ∓1

)
,

the linear operator L±(w) =
∫ h±(x)

0
w e−θ

±y dy, and the
differential operator Dλ = (∂x, λ) , the symbols µN± are
solutions to the weak formulation,∫

ω

∫
R
K±DT

−θ±µ
N±K±L±(∇ṽN±) dξdx

=
∫
ω

∫
R
νN±, L±(ṽN±) dξdx, (12)

for all ṽN±as in (10).

Remark 2 We have used a spectral method to discretize
both x- and y-directions. In the y-direction we actually
need to use global basis functions so that they can be
analytically extended. On the contrary, there is no particu-
lar restriction regarding approximations in the x-direction.
For instance a local basis as a finite element basis might
be used.

3.2 Discretization of ψ with respect to x

Two x-discretizations have been considered. They are
based on two different interpolations of discrete inputs
(un)n located at regularly spaced nodes (xn)n separated
by a distance h. In the interval [xn, xn+1), the first one is
piecewise constant u (x) = un, and the second one is piece-
wise linear and continuous, u (x) = un+ un+1−un

h (x− xn).
We detail the calculation for both causal and anti-causal
parts, since it is not so trivial to deduce from each other.
To proceed, we firstly consider the integral forms of (3-4),
i.e.

ψ+(x, ξ) =
∫ x

0

e−θ
+(ξ)(x−y)u(y) dy, (13)

ψ−(x, ξ) = −
∫ 1

x

eθ
−(ξ)(x−y)u(y) dy. (14)

In particular, at a point x = xn+1, we have

ψ+(xn+1, ξ) =
∫ xn+1

0

e−θ
+(ξ)(xn+1−y)u(y) dy

=
∫ xn

0

e−θ
+(ξ)(xn+1−y)u(y) dy

+
∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)u(y) dy,

and at a point x = xn,

ψ−(xn, ξ) = −
∫ 1

xn

eθ
−(ξ)(xn−y)u(y) dy

= −
∫ 1

xn+1

eθ
−(ξ)(xn−y)u(y) dy

−
∫ xn+1

xn

eθ
−(ξ)(xn−y)u(y) dy.

We deduce the recurrence relations
ψ+(xn+1, ξ) = e−θ

+(ξ)hψ+(xn, ξ)

+
∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)u(y) dy, ψ+(u)(0, ξ) = 0,

and ψ−(xn, ξ) = e−θ
−(ξ)hψ−(xn+1, ξ)

−
∫ xn+1

xn

eθ
−(ξ)(xn−y)u(y) dy, ψ−(u)(1, ξ) = 0.

I Piecewise constant interpolation of u Defining the pa-
rameters α±(ξ) = e−θ

±(ξ)h, and β±(ξ) = α±(ξ)−1
−θ±(ξ)

, the
integrals turns to be equal to:∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)u(y) dy ' β+(ξ)un,

and ∫ xn+1

xn

eθ
−(ξ)(xn−y)u(y) dy ' β−(ξ)un.

So, the recurrence relations yields

ψ+(xn+1, ξ)' α+(ξ)ψ+(xn, ξ) + β+(ξ)un,

ψ+(0, ξ) = 0,

and ψ−(xn, ξ)' α−(ξ)ψ−(xn+1, ξ)− β−(ξ)un,

ψ−(1, ξ) = 0. (15)
Notice that this recurence relation was already found by
Casenave [2009] for the causal part.

I Piecewise linear interpolation of u Here we pose η±(ξ) =
± α±(ξ)
−θ±(ξ)

− β±(ξ)
−θ±(ξ)h

, and δ±(ξ) = ∓ 1
−θ±(ξ)

+ β±(ξ)
−θ±(ξ)h

, so the
integrals are∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)u(y) dy ' η+(ξ)un + δ+(ξ)un+1,

and∫ xn+1

xn

eθ
−(ξ)(xn−y)u(y) dy ' δ−(ξ)un + η−(ξ)un+1,

so the recurrence relations are rewritten as

ψ+(xn+1, ξ) ' α+(ξ)ψ+(xn, ξ) + η+(ξ)un + δ+(ξ)un+1,

with ψ+(0, ξ) = 0,
ψ−(xn, ξ) ' α−(ξ)ψ−(xn+1, ξ) + δ−(ξ)un + η−(ξ)un+1,

with ψ−(1, ξ) = 0. (16)

López-Fernández et al. [2005] have developed a computa-
tion of ψ, in the linear interpolation case, which presents
similarities with ours.

3.3 Approximation of the integrals in z+ and z− in (2)

Using the above recurrence relations, we establish the final
approximations z+

n+1 and z−n of z+ and z− at the input
nodes. We notice that a direct application of the residu
theorem yields to eliminate the terms without exponential,∫

R

µN± (x, ξ)
θ±(ξ)

dξ =
∫

R

µN± (x, ξ)

θ±
2
(ξ)

dξ = 0. (17)

I Piecewise constant interpolation of u From the recur-
rence relation (15),

z+(xn+1) '
∫

R
µN+ (xn+1, ξ)ψ+ (xn+1, ξ) dξ

'
∫

R
µN+ (xn+1, ξ)

(
α+(ξ)ψ+ (xn, ξ) + β+(ξ)un

)
dξ

=
∫

R
µN+ (xn+1, ξ)

(
α+(ξ)ψ+ (xn, ξ) + γ+(ξ)un

)
dξ,

and similarly

z−(xn) '
∫

R
µN− (xn, ξ)

×
(
α−(ξ)ψ− (xn+1, ξ)− γ−(ξ)un

)
dξ

for the anti-causal part, whith γ±(ξ) = α±(ξ)
−θ±(ξ)

, γ±(ξ) =

± α±(ξ)
−θ±(ξ)

− γ±(ξ)
−θ±(ξ)h

, and δ
±

(ξ) = γ±(ξ)
−θ±(ξ)h

. Evaluating the
integrals thanks to the trapezoidale rule with 2M + 1
quadrature nodes regularly spaced at a distance hξ yields
the final aproximations,

z+
n+1 = hξ

M∑
k=−M

µN+
n+1,k

(
α+
k ψ

+
n,k + γ+

k un

)
,

z−n = hξ

M∑
k=−M

µN−n,k

(
α−k ψ

−
n+1,k − γ

−
k un

)
.

I Piecewise linear interpolation of u We follow the same
route to find

z+
n+1 = hξ

M∑
k=−M

µN+
n+1,k

(
α+
k ψ

+
n,k + γ+

k un + δ
+

k un+1

)
,

z−n = hξ

M∑
k=−M

µN−n,k

(
α−k ψ

−
n+1,k + δ

−
k un + γ−k un+1

)
,

with θ±k = θ±(ξk), α±k = α±(ξk), β
±
k = β

±
(ξk), γ±k =

γ±(ξk), and δ
±
k = δ

±
(ξk).

3.4 Balance of Error Estimates

We replace µ± (or P±) and ψ± by their approximations
µN± (or PN±) and the x-discretization of ψ± in the
integral (2). We establish that the approximation of z± the
realization in (2) can be written like a linear combination
of inverse Laplace transform L−1.

I In the piecewise linear interpolation case:

z±n ≈
∑
j∈J±n

L−1

[
F±1n(−θ±)uj + F±2n(−θ±)

uj+1 − uj
h

]
(±(xn − xj))

−
[
F±1n(−θ±)uj+1 + F±2n(−θ±)

uj+1 − uj
h

]
(±(xn − xj+1)) .

I In the piecewise constant interpolation case:

z±n ≈
∑
j∈J±n

ujL−1

[
F±1n

(
−θ±

)]
(±(xn − xj))−

[
F±1n

(
−θ±

)]
(±(xn − xj+1)) ,

for all n ∈ {0, 1...,N}, with N = 1/h − 1 the num-
ber of intervals in the x-variable, J+

n = {0, ..., n − 1},
J−n = {n, ...,N − 1}, xj = jh, uj = u(xj), z±n =

z±(xn), F±1n(−θ±) =
PN±(xn,−θ±(ξ))

−θ±(ξ)
and F±2n(−θ±) =

PN±(xn,−θ±(ξ))
θ±2(ξ)

. FollowingWeideman and Trefethen [2007],
we approximate the inverse Laplace transforms

L−1[F±1n(−θ±)](x±), L−1[F±2n(−θ±)](x±)
at x± = ±(xn − xj) and x± = ±(xn − xj+1) using a
numerical integration formula along the integration con-
tours (7-8). The optimization of these contours is founded
on a balance between the truncation error estimate and
the discretization error estimate for the numerical inte-
gration of the Laplace inversion at points x± ∈ I =
{h, 2h, .., 1} excluding the point 0. At x± = 0, we know
that L−1[F±1n(−θ±)](0) = L−1[F±2n(−θ±)](0) = 0 thanks
to the formula (17). The ratio between the upper and lower
bounds of the set I, i.e. Λ = 1

h is very large for a fine
mesh and the numerical inversion of Laplace transform is
relatively expensive. To avoid this problem, we observed
an improvement by changing the formulas obtained in
Weideman and Trefethen [2007] by fixing Λ = 6. The
minimum quadrature interval lengths are to be equal to

LP =
√

8Λ + 1 = 7, LH(α∗) = cosh−1 5π − 8α∗

(4α∗ − π) sinα∗
,

where α∗ is the unique argument of the maximization
problem,

α∗ = arg max
α∈(0,π2)

π(π − 2α)
LH(α)

= 1.0641.

Then, it is shown that for the optimal contour parameters,

θP =
πM

4LP
, α = α∗, θH =

π(4α∗ − π)M
LH(α∗)

,

the quadrature error estimate ePM and eHM , for parabolic
(P) and hyperbolic (H) paths, are exponentially decreasing
with respect to M the number of points of the integration
contours,

ePM = CP e
−AM and eHM = CHe

−BM .

The two constants CP and CH are uniform with respect to
M and the decay rates depends on the quadrature interval
length,

A =
2π
LP

= 0.8976, B =
π(π − 2α∗)
LH(α∗)

= 1.1846.

We notice that hyperbolic paths always yield faster com-
putation over parabolic ones. Moreover, the error eCh and
eLh , in the exact integral (2), for constant (C) and linear
(L) interpolations of u are linear and quadratic in h. So,
there exists two constants CC and CL such that,

eCh = CCh and eLh = CLh
2.

In each couple of approximation, the quadrature and
the interpolation errors can be balanced by equating the
related errors eXM and eYh . This yields the four relations
between h andM , stated in Table 1, where E(.) stands for
the integer part, that allows to parameterize the numerical
method by h only.

eC
h eL

h

eP
M M = E(− 1

A
log(CC

CP
h)) M = E(− 1

A
log(CL

CP
h2))

eH
M M = E(− 1

B
log(CC

CH
h) M = E(− 1

B
log(CL

CH
h2))

Table 1. Relations between M and h

4. NUMERICAL RESULTS

In our presentation of numerical experiments, we discuss
only causal parts. Similar results have been observed for
anti-causal parts. We have considered the kernel q (x, y) =
2(1 − 3x)(1 − y)y2 + 2(1 − x)x2(1 − 3y) and the input
variable u (x) = sin (jπx) with j ∈ N∗. The number of
base functions of the Petrov-Galerkin method are fixed at
sufficiently large values, N1 = N2 = 15, so that the error
on µ the diffusive symbols is negligible in comparison with
the other error sources. In Figure 1 we report the relative
errors in logarithmic scale between z+ an exact realization
and its approximations zh+, parameterized by h only,

eh+ =
||z+ − zh+||L2

h
(ω)

||z+||L2
h
(ω)

for u(x) = sin(πx). The error is measured in the discrete
L2(ω)-norm, and the discretization step h ranges from
0.005 to 0.25. The errors decay rate is proportional to h for
piecewise constant (C) interpolation, and proportional to
h2 for piecewise linear (L) interpolation. We notice that
balancing the errors eXM and eYh yields the same global
error for both the parabolic (P) and the hyperbolic (H)
path, this is the reason why both errors are plotted with
a same curve.

To speed up the computation, we take into account the
fact that for a real valued operator P , only half of the
integrals need to be computed, i.e.

z±(x) = 2<
∫

R+
µ±(x, ξ)ψ±(x, ξ) dξ,

which reduces, by a factor of 2, the number of quadrature
points. Figure 2 provides a comparison of computation
times between the direct (D) quadrature method,

Pu(xn) ≈ h
∑
j

p(xn, yj)u(yj) for all n,

and the diffusive realization methods with hyperbolic (H)
and parabolic (P) contours with piecewise constant inter-
polation of the input variable u (x) = sin (10πx) presenting
ten oscillations. The gain in using diffusive realization over
direct quadrature increases for finer spatial discretization
points. The implementation is done in Matlab version 7.9,
hence the timing-results have to be taken with caution.

50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

1/h

R
el

at
iv

e
E

rr
or

s

PHC
PHL

Fig. 1. Errors between z+ and zh+

10
−2

10
−1

10
−2

10
−1

10
0

Relative Errors

T
im

e
(s

)

P
H
D

Fig. 2. Computation time in seconds versus relative error
Eh+

5. FPGA IMPLEMENTATION

In this section we describe our implementation in a FPGA
of the algorithms established for the history functions

ψ+, and for the diffusive realizations z+ when the input
u(x) = sin (πx) is interpolated with a piecewise constant
functions For the sake of clarity, we synthetize them in
Algorithm 1.

Algorithm 1 Diffusive Realization of z+(x)

1: Offline Computation of diffusive symbol µN+(x, ξ)
2: Online Computation
3: for n = 0, ...,N do
4: for k = 1, ...,M do

5: ψ+
n+1,k = α+

k ψ
+
n,k + β+

k un, ψ+
0,k = 0,

6: end for

7: z+
n+1 = 2hξ<

(∑M
k=1 µ

N+
n+1,k

(
α+
k ψ

+
n,k + γ+

k un

))
8: end for

Note that the implementation of the anti-causal part
is done in a similar way, and will not be described.
Consequently, we will drop all upper indices "+” without
any risk of confusion.

In order to process the highest number of operations
in parallel, quantization of numbers must be optimized.
To do so, we first require that all variables belong to a
neighborhood of 1. This is achieved by scaling β, γ, µ,
u, ψ, and z by a factor corresponding to an estimate
of their larger value β∗ = β/γmax, γ∗ = γ/γmax, µ∗ =
µ/µmax, u∗ = u/umax, ψ

∗ = ψ/(βmaxumax), and z∗ =
z/(umaxβmaxµmax). We notice that α does not require any
scaling, and that β has been scaled by γmax since the
latter is larger than βmax. Then, Algorithm 1 has been
rewritten based on the scaled variables, and the impact
of quantization has been evaluated. In Table 2, we report
absolute and relative errors, in the maximum norm, on the
output z for quantizations varying between 11 bits to 16
bits.

Number of bits Maximum error Relative error
16 9.21e-5 1.05%
15 2.08e-4 2.51%
14 1.38e-4 1.51%
13 4.82e-4 6.79%
12 6.87e-4 9.23%
11 1.4e-3 18.69%

Table 2. Error with respect to the quantization

Regarding FPGA hardware implementations, three vari-
ants have been studied, namely a sequential, a parallel,
plus a pipelined architecture. The parallel and the pipeline
solution have been implemented. Before to discuss them,
we underline some features of our Algorithm. We ob-
serve that each couple (πn,k, νn,k) = (αkψn+1,k + βkun,
αkψn+1,k + γkun) of complex numbers can be computed
independently, and that the same real number un is used
for their evaluation. The dependency flow, related to the
computation of the vector (ψn+1,k)k, is depicted in Figure
3.

We do not discuss further the sequential implementations
since they are not exploiting the specific FPGA resources.
In our parallel implementation, all (πn,k, νn,k) are com-
puted independently using the same inputs (un)n. For

...

...

...

...

M

...

u1

ξ3

ξ1

ξ2

ξ0

u0 u(0..N)
u2

ψ2,0

ψ2,1

ψ2,2

ψ2,3ψ1,3

ψ1,2

ψ1,1

ψ1,0ψ0,0

ψ0,1

ψ0,2

ψ0,3

Fig. 3. Dependency flow for the computation of ψ

given un and ψn,k, eleven multiplications are required to
determine a ψn+1,k. Due to the limited number of multipli-
ers available in a FPGA, for large N and M a full parallel
implementation is not always possible and the limited
resources must be shared. To optimize resource sharing,
a finite state machine was used. To design it, we deduce
from the algorithm a number of states depending on the
number of multipliers in a branch and on the number of
required multiplications in a step. In our implementation
of a state, the output of each multiplier is affected to a
register before to be entered as an input of a subsequent
addition or substraction, and the multiplier inputs are
refreshed with new data. Finally, the state machine is
designed to control all state evolution and the RAM, to
load data in multipliers, and to store the results. Assuming
infinite resources, the necessary time to build a complete
vector (zn)n is N ×nz× tclock where nz = 4 is the number
of time steps necessary to compute a new occurence zn,
and tclock is the clock period.

Our implementation of a pipeline architecture takes ad-
vantage of the already underlined independence of the
(πn,k, νn,k). For a given input un, the computation of
a sequence of couples (πn,k, νn,k)k, and the updating of
zn are executed through the pipeline. Thus, in regular
functioning (i.e. except initial and final periods), the com-
putation of a couple takes one clock period. When the
computation of ψn+1,k is complete, un+1 is taken as a
new input parameter. Finally, the time required to build
a realization (zn)n is N ×M × tclock.

We have successfully implemented the parallel and the
pipeline architectures in a Xilinx Spartan3A XILINX
[2010] comprising 200 kgates, 16 multipliers with 18-bit
input data and 36-bit output data, 16 RAM blocks of
16 kbits each, and a 100 MHz clock. For a vector of
data (un)n with N = 8 components, for a quadrature
formula withM = 4 nodes, and for 9-bit encoded integers,
the parallel computation (with nz = 9) and the pipeline
computation (with nz = 4) of a vector (zn)n takes 0.72µs
and 0.32µs respectively, which fit with the theoritical
values. The same computation with a C program on a
laptop computer with a x86 1.6 GHz processor takes about
60µs. This yields a speed-up of about 102.

6. CONCLUSION

Until now, the diffusive realization of operators has been
applied to operators with analytically known kernels. From
the references in the field, it is known to be a very efficient

method requiring little computation for real time realiza-
tions since smallM (compared to N) are generally enough
to yield good approximations. In Lenczner et al. [2010]
we have introduced a mathematical framework allowing
for its derivation when an operator is a solution to a
linear operator partial differential equation. A complete
justification of the numerical method was not included, so
it constitutes the main focus of the present paper. Here,
our general approach is presented through the example of
a Lyapunov equation arising in optimal control theory of
the one-dimensional heat equation. In view of real-time
applications, we have also implemented this method in
a FPGA with a parallel and with a pipeline architec-
ture. The theoretical (optimal) computation time for the
pipeline implementation is found to be N ∗M ∗ tcloc and
is confirmed by our experiment. Further extensions of this
method are now in development: we study how to encom-
pass Riccati equations coming from more general partial
differential equations in higher dimensional domains.

ACKNOWLEDGEMENTS

This work is partially supported by the European Terri-
torial Cooperation Programme INTERREG IV A France-
Switzerland 2007-2013.

REFERENCES

C. Casenave. Représentation diffusive et inversion opéra-
torielle pour l’analyse et la résolution de problèmes dy-
namiques non locaux. PhD thesis, Université Toulouse
III - Paul Sabatier, 2009.

T. Hélie, D. Matignon, and R. Mignot. Criterion de-
sign for optimizing low-cost approximations of infinite-
dimensional systems: towards efficient real-time simula-
tion. Int. J. Tomogr. Stat., 7(F07):13–18, 2007.

L. Laudebat, P. Bidan, and G. Montseny. Modeling
and optimal identification of pseudodifferential electrical
dynamics by means of diffusive representation - Part 1:
Modeling. IEEE Transactions on Circuits and Systems
I-Regular Papers, 51(9):1801–1813, 2004.

M. Lenczner and G. Montseny. Diffusive realization of
operator solutions of certain operational partial differ-
ential equations. C. R. Math. Acad. Sci. Paris, 341(12):
737–740, 2005.

M. Lenczner, G. Montseny, and Y. Yakoubi. Diffusive
realizations for solutions of some operator equations.
Accepted in Math. of Comp., 2010.

M. López-Fernández, C. Lubich, C. Palencia, and A. Schä-
dle. Fast Runge-Kutta approximation of inhomogeneous
parabolic equations. Numer. Math., 102(2):277–291,
2005.

G. Montseny. Représentation diffusive. Hermès-Sciences,
2005.

J. A. C. Weideman and L. N. Trefethen. Parabolic
and hyperbolic contours for computing the Bromwich
integral. Math. Comp., 76(259):1341–1356, 2007.

XILINX. Spartan-3a fpga family: Data sheet, 2010.
http://www.xilinx.com/support/documentation/
data_sheets/ds529.pdf.

Y. Yakoubi. Deux Méthodes d’Approximation pour un
Contrôle Optimal Semi-Décentralisé pour des Systèmes
Distribués. PhD thesis, Université de Franche-Comté,
2010.

