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Abstract: We apply the method of semi-decentralized approximation, introduced in Lenczner
and Yakoubi [2009] and Yakoubi [2010], to the linear quadratic regulation of a one-dimensional
array of cantilevers with regularly spaced actuators and sensors. It is based on two mathematical
concepts, namely on functions of operators, and on the Cauchy integral formula. We evaluate its
performances and the errors of approximation. We also propose its implementation in terms of
an analog processor, namely a periodic network of resistors. The presented application is based
on a two-scale model representing an array of cantilevers. We shortly explain its genesis before
to state it in details, and to show validation results.
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1. INTRODUCTION

In the past decade, a number of papers have been focused
on semi-decentralized distributed optimal control for sys-
tems with distributed actuators and sensors. Most of them
deal with infinite length systems, see Bamieh et al. [2002]
and Paganini and Bamieh [1998] for systems governed by
partial differential equations, and D’Andrea and Dullerud
[2003] for discrete systems. In the papers Kader et al.
[2000] and Kader et al. [2003] the authors have introduced
an approximation of an optimal control to a finite length
beam endowed with a periodic distribution of piezoelectric
sensors and actuators. Even if it gives satisfactory results,
it suffers from some limitations. In Lenczner and Yakoubi
[2009] and Yakoubi [2010], a complete framework has been
introduced so that to extend it, to cover a larger range of
systems, and to increase its precision and robustness. The
new method does not require that all operators involved
are functions of a self-adjoint bounded operator Λ. They
only need to be functions of Λ up to some change of vari-
ables. Regarding precision of our method, the Taylor series
approximating a function of an operator has been replaced
using the functional calculus followed by a quadrature rule
for the contour integral.

In this paper, we apply this theory to approximate an
optimal control of cantilever arrays, see Fig. 1. The calcula-

Fig. 1. One-dimensional arrays of AFM. Courtesy of André
Meister and of Thomas Overstolz, CSEM Neuchatel
Switzerland.

tions have been carried out using a simple optimal control
strategy, namely a Linear Quadratic Regulator (LQR), for
the purpose of cancelling vibrations. Here, we are focused
on the quality of our approximation method, so we study
its precision and its cost. As in Kader et al. [2003], we
also provide a realization of the semi-decentralized control
scheme through a Periodic Network of Resistors (PNR).
The latter implements a finite difference scheme for the
partial differential operator Λ−1 in the Cauchy integral for-
mula of the functional calculus. Finally, we notice that the



entire approach can be extended to other linear optimal
control problems, e.g. LQG or H∞ controls. It will apply
to any system including a cantilever array, for instance to
parallel Atomic Force Microscopes (AFM) or to storage
devices, like the millipede, see Eleftheriou et al. [2002].

The simplified model used in the control loop, was an-
nounced in Lenczner [2007], and its derivation is detailed
in a submitted paper. It is rigorously justified thanks to
an adaptation of the two-scale approximation 1 method
introduced in Lenczner [1997], and to further results in
Lenczner and Smith [2007]. Its main advantage is that it
requires little computing effort and it is reasonably precise
for large arrays. In this paper, we report validation results
of the model in static and dynamic regimes.

The paper is organized as follows. In Section 2, we describe
the array geometry, the two-scale approximation method,
and our model, which we reformulate, in Section 3, in
a way suitable for our semi-decentralized approximation.
The LQR control problem and the semi-decentralized
approximation method are described in Section 4 and 5
respectively. In Section 6, we detail the implementation of
the approximate optimal control with analog distributed
electronic circuits. Numerical validations are reported in
Section 7. Finally, two-scale model validation results are
detailed in Appendix A.

2. A TWO-SCALE MODEL OF CANTILEVER
ARRAYS

We consider a one-dimensional cantilever array comprised
of an elastic base, and a number of clamped elastic can-
tilevers with free end, see Fig. 2. Assuming that the num-
ber of cantilevers is sufficiently large, a homogenized model
was derived using a two-scale approximation method. This
principle is exploited in the detailed paper Lenczner and
Smith [2007] devoted to static regime. The corresponding
model extended to dynamic regime is introduced in the
letter Lenczner [2007]. Both papers were written in view
of AFM application.

Fig. 2. Array of Cantilevers

The two-scale model derivation steps are illustrated in
Fig. 3. First, (a) the two-scale transform (also called
the unfolding operator) and the two-scale approximation
are successively applied to map a thin plate model in
bending from the physical domain to a two-scale domain
comprised of a reference cell and the macroscopic domains.
Then, (b) the displacement variation in the width direction
of cantilevers is neglected. In (c), base displacements in
the reference cell are explicitly calculated and eliminated
to yield the model in the so-called two-scale domain
where the optimal control is implemented. Finally, (d) an
inverse two-scale transform technique is applied to map the
solutions in two-scale domain back to the physical domain.
1 The approximation is in the sense of small ratio of a cell size to
the whole array size.

Fig. 3. Two-scale transform and inverse two-scale trans-
form in two-scale domain

The approximate homogenized model is expressed in the
minimal two-scale domain which is a rectangle Ω =
(0, LB) × (0, L∗C), see Fig. 3. The parameters LB and L∗C
represent respectively the base length in the macroscale
x1−direction and the scaled cantilever length in the mi-
croscale y2−direction. For the sake of simplicity, in the
following we denote x1 and y2 by x and y. The base is
modeled by the line Γ = {(x, y) | x ∈ (0, LB) and y = 0},
and the rectangle Ω is filled by an infinite number of
cantilevers. So, the base is governed by an Euler-Bernoulli
beam equation with two kinds of distributed forces, one
exerted by the attached cantilevers and the other, denoted
by u(t, x, 0), originating from an actuator distribution.
The bending displacement, the mass per unit length, the
bending coefficient of base and of cantilevers, and the
scaled cantilever width being denoted by w(t, x, 0), ρB ,
RB , RC and `∗C , the base governing equation states in Γ

ρB∂2
ttw + RB∂4

x···xw + `∗CRC∂3
yyyw = u. (1)

The base is assumed to be clamped, so the boundary
conditions are

w = ∂xw = 0, (2)
at its ends. Each cantilever is oriented in the y-direction,
and its motion is governed by the Euler-Bernoulli equation
distributed along the y-direction. It is subjected to a con-
trol force u(t, x, y) taken as distributed along each whole
cantilever. It can be replaced by any other realistic force
distribution. Denoting by w(t, x, y) and ρC the bending
displacements and the mass per unit length, the governing
equation in (x, y) ∈ Ω is

ρC∂2
ttw + RC∂4

y···yw = u, (3)
endowed with the boundary conditions{

∂yw = 0 at y = 0,
∂2

yyw = ∂3
yyyw = 0 at y = L∗C ,

(4)

representing an end clamped in the base, and a free end.
The weak formulation associated to (1-4) states as

∫ LB

0

(ρB∂2
ttw v + RB∂2

xxw∂2
xxv)|Γ dx

+`∗C

∫

Ω

ρC∂2
ttw v + RC∂2

yyw∂2
yyv dydx

=
∫ LB

0

(u v)|Γ dx + `∗C

∫

Ω

u v dydx,

(5)



for any regular function v, satisfying in particular the
conditions: v = ∂xv = 0 at both end of the base and
∂yv = 0 at y = 0 at base-cantilever junction.

3. MODEL REFORMULATION

To simplify the model, but keeping its distributed fea-
ture, we discretize in the y-direction projecting on a
basis Kn(y) =

∫ y

0
yT ′n(y)dy, where Tn(y) is the basis

of Chebyshev polynomial. We define the approximations
of the displacement and of the control by w(t, x, y) ≈
N∑

n=1
wn(t, x)Kn(y) and u(t, x, y) ≈

N∑
n=1

un(t, x)Kn(y),

where wn(t, x) and un(t, x) are the polynomial coeffi-
cients in the approximation of w and u respectively.

We also choose v ≈
N∑

m=1
vm(t, x)Km(y), so we find that

(wn(t, x))n=1,2,··· ,N are the solutions to a set of equations
posed on Γ,

N∑
n,m=1

Mm,n∂2
ttwn + KB

m,n∂4
x···xwn+

KC
m,nwn =

N∑
n,m=1

B̃m,nun in [0,∞)× Γ.

(6)

The boundary conditions are w(t, 0, 0) = ∂xw(t, 0, 0) = 0,
and w(t, LB , 0) = ∂xw(t, LB , 0) = 0. In (6), we use the
notations for the matrices M, KB , KC and B̃,

Mm,n = ρB(KmKn)|Γ + `∗CρC

∫ L∗C

0

KmKn dy,

KB
m,n = RB(KmKn)|Γ,

KC
m,n = `∗CRC

∫ L∗C

0

∂2
yyKm∂2

yyKn dy,

B̃m,n = (KmKn)|Γ + `∗C

∫ L∗C

0

KmKn dy.

The LQR problem is set for control variables (un)n=1,··· ,N
∈ L2(Γ)N and for the cost functional

J =
∫ +∞

0

N∑
n=1

∥∥∂2
xxwn(t, x)

∥∥2

L2(Γ)
dt.

+ ‖un(t, x)‖2L2(Γ) dt.

(7)

Notice that this functional is appropriate to vibration
suppression.

4. FORMULATION OF THE LQR PROBLEM

Now, we write the above LQR problem in an ab-
stract setting, see Curtain and Zwart [1995], even if
we do not detail the functional framework. We set
zT = (wn ∂twn)n=1,2,··· ,N the state variable, uT =
(un)n=1,2,··· ,N the control variable,

A =
(

0N×N IN×N

−(M−1(KB∂4
x···x + KC))N×N 0N×N

)

the state operator, B =
(

0N×N

(M−1B̃)N×N

)
the control op-

erator, C =
(

∂2
xxIN×N 0N×N

0N×N 0N×N

)
the observation operator,

and S = IN×N the weight operator. Consequently, the

LQR problem, consisting in minimizing the functional
under the constraint (6), may be written under its usual
form as

∂tz (t, x) = Az (t) + Bu (t)
for t > 0 and z (0) = z0,

(8)

with the minimized cost functional (7). Here, A is the
infinitesimal generator of a continuous semigroup on the
separable Hilbert space Z = (H2

0 (Γ))N × (L2 (Γ))N with
dense domain D (A) = (H4 (Γ) ∩ H2

0 (Γ))N × (H2
0 (Γ))N .

It is known that the control operator B ∈ L (U,Z), the
observation operator C ∈ L (Z, Y ) , and S ∈ L (U,U),
where Y = L2 (Γ)2N and U = L2 (Γ)N . We also know
that (A,B) is stabilizable and that (A,C) is detectable,
in the sense that there exist G ∈ L (Z,U) and F ∈
L (Y,Z) such that A − BG and that A − FC are the
infinitesimal generators of two uniformly exponentially
stable continuous semigroups. It follows that for each
z0 ∈ Z, the LQR problem (8) admits a unique solution

u∗ = −Kz (9)
where K = S−1B∗Pz, and P ∈ L (Z) is the unique self-
adjoint nonnegative solution of the operational Riccati
equation(

A∗P + PA− PBS−1B∗P + C∗C
)
z = 0, (10)

for all z ∈ D (A). The adjoint A∗ of the unbounded
operator A is defined from D (A∗) ⊂ Z to Z by the
equality (A∗z, z′)Z = (z, Az′)Z for all z ∈ D (A∗) and
z′ ∈ D (A). The adjoint B∗ ∈ L (Z,U) of the bounded
operator B is defined by (B∗z, u)U = (z, Bu)Z , the adjoint
C∗ ∈ L (Y, Z) being defined similarly.

5. SEMI-DECENTRALIZED APPROXIMATION

This section is devoted to formulate the approximation
method. The mathematical derivation has been introduced
in a paper Lenczner and Yakoubi [2009] and in a thesis
Yakoubi [2010]. We denote by Λ, the mapping: Λ : f −→ w,
where w is the unique solution of ∂4

x···xw = f in Γ
with the boundary conditions w = ∂xw = 0 for x =
{0, LB}. The spectrum σ (Λ) is discrete and made up of
real eigenvalues λk. They are solutions to the eigenvalue
problem Λφk = λkφk with ||φk||L2(Γ) = 1. In the sequel,
Iσ = (σmin, σmax) refers to an open interval that includes
the complete spectrum. For a given real valued function g,
continuous on Iσ, g(Λ) is the linear self-adjoint operator

on space L2(Γ) defined by g(Λ)z =
∞∑

k=1

g(λk)zkφk, where

zk =
∫
Γ

zφk dx.

5.1 Factorization of K by a Matrix of Functions of Λ

In this part, we introduce the factorization of the
controller K under the form of a product of a ma-
trix of functions of Λ. To do so, we introduce the

change of variable operators ΦZ =
(

Λ
1
2 IN×N 0N×N

0N×N IN×N

)
∈

L
(
L2 (Γ)2N

, Z
)

, ΦU = IN×N ∈ L
(
L2 (Γ)N

, U
)

and

ΦY =
(

∂2
xxΛ

1
2 IN×N 0N×N

0N×N IN×N

)
∈ L

(
L2 (Γ)2N

, Y
)

, from

which we introduce the matrices of functions of Λ, a (Λ) =
Φ−1

Z AΦZ , b (Λ) = Φ−1
Z BΦU , c (Λ) = Φ−1

Y CΦZ and s (Λ) =



Φ−1
U SΦU , simple to implement on a semi-decentralized

architecture. A straightforward calculation yield

a (λ) =
(

0N×N IN×N

M̃ 0N×N

)
, b (λ) =

(
0N×N

(M−1B̃)N×N

)
,

c (λ) =
(

IN×N 0N×N

0N×N 0N×N

)
, and s (λ) = IN×N ,

where M̃ = −(M−1(KBλ−1/2 + KCλ1/2))N×N . Endow-
ing Z, U and Y with the inner products (z, z′)Z =(
Φ−1

Z z, Φ−1
Z z′

)
(L2(Γ))2N , (u, u′)U =

(
Φ−1

U u, Φ−1
U u′

)
(L2(Γ))N ,

and (y, y′)Y =
(
Φ−1

Y y, Φ−1
Y y′

)
(L2(Γ))2N , we find the subse-

quent factorization of the controller K in (9) which plays
a central role in the approximation.
Proposition 1. The controller K admits the factorization

K = ΦUq (Λ)Φ−1
Z ,

where q (λ) = s−1 (λ) bT (λ) p (λ) , and where for all λ ∈ σ,
p(λ) is the unique self-adjoint nonnegative matrix solving
the algebraic Riccati equation

aT (λ) p + pa (λ)− pb (λ) s−1 (λ) bT (λ) p
+cT (λ) c (λ) = 0.

(11)

Proof. The algebraic Riccati equation can be found after
replacing A, B, C and S by their decomposition in the
Riccatti equation (10).

In the sequel, we require that the algebraic Riccati equa-
tion (11) admits a unique solution for all λ ∈ Iσ which is
checked numerically.
Remark 2. In this example, ΦU and ΦZ are some matrices
of functions of Λ, and so is K,

K = k(Λ). (12)
Thus, the approximation is developed directly on k(Λ), but
we emphasize that in more generic situations it is pursued
on q(Λ).
Remark 3. Introducing the isomorphisms ΦZ , ΦY , and
ΦU allows to consider a broad class of problems where
the operators A, B, C and S are not strictly functions
of a same operator. In this particular application, the
observation operator C is composed with the operator ∂2

xx.
This is taken into account in ΦY in a manner in which
Φ−1

Y CΦZ is a function of Λ only.
Remark 4. We indicate how the isomorphisms ΦZ , ΦY ,
and ΦU have been chosen. The choice of ΦZ comes di-
rectly from the expression of the inner product (z, z′)Z =(
Φ−1

Z z, Φ−1
Z z′

)
(L2(Γ))2N and from

(zn , z ′n)H 2
0 (Γ) =

((
∆2

) 1
2 zn,

(
∆2

) 1
2 z′n

)
L2 (Γ)

with n = 1, .., N . For ΦY , we start from C = ΦY c (Λ) Φ−1
Z

and from the relation
(y , y ′)Y =

(
Φ−1

Y y ,Φ−1
Y y ′

)
(L2 (Γ))2N

which implies that ∂2
xx = (ΦY )i,i ci,i (Λ)Λ−

1
2 and 0 =

(ΦY )j,j cj,jΛ with i = 1, .., N and j = N + 1, .., 2N . The
expression of ΦY follows. Choosing ΦU is straightforward.

5.2 Approximation of Functions of Λ

Our approximation method is based on the Cauchy inte-
gral formula of the functional calculus, see Yosida [1980]

representing a function of an operator. We build the ap-
proximation in two steps. Since the function k(Λ) is not
known, the spectrum σ (Λ) cannot be easily determined, so
firstly, the function is approximated by a highly accurate
rational approximation. We notice that k(λ) may be a very
singular function, see Fig. 4, so for each component kij(λ),
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Fig. 4. One component of the function k(λ)

we introduce a rational approximation componentwise,
based on the logarithm of λ,

kR (λ) =
∑RN

m=0 dm(lnλ)m

∑RD

m′=0 d′m′(lnλ)m′
, (13)

where dm, d′m′ are two coefficient matrices, and R =(
RN , RD

)
is a couple of matrices of polynomial degrees.

Then, we approximate it by another function kR,M (λ)
which is simple to discretize, and which yields an accurate
approximation. To do so, we use the Cauchy integral
formula,

kR (Λ) =
1

2iπ

∫

C
kR (ζ) (ζI − Λ)−1

dζ,

because it involves only the resolvent (ζI − Λ)−1
, which

may be simply and accurately approximated. We apply it
to the rational approximation with a path C tracing out
an ellipse including Iσ but no poles. It is chosen to be an
ellipse parameterized by ζ(θ) = ζ1(θ) + iζ2(θ), with θ ∈
[0, 2π]. The parametrization is used as a change of variable,
so the integral can be approximated by a quadrature
formula involving M nodes (θl)l=1,..,M ∈ [0, 2π], and M

weights (ωl)l=1,..,M , IM (g) =
M∑
l=1

g (θl) ωl, see Fig. 5.

Fig. 5. The contour in the Cauchy integral formula

In the following equations, we state that the matrices
kR (ζ) associated to the rational approximation of the



couple
(
RN , RD

)
. So, for each z ∈ L2(Γ)2N and ζ ∈ C,

we introduce the 2N -dimensional vector field
vζ = −iζ ′kR (ζ) (ζI − Λ)−1

z.

Decomposing vζ into its real part vζ
1 and its imaginary

part vζ
2 , the couple (vζ

1 , vζ
2) is solution of the system

{
ζ1v

ζ
1 − ζ2v

ζ
2 − Λvζ

1 = Re
(−iζ ′kR (ζ)

)
z,

ζ2v
ζ
1 + ζ1v

ζ
2 − Λvζ

2 = Im
(−iζ ′kR (ζ)

)
z.

(14)

Thus, combining the rational approximation kR and the
quadrature formula yields an approximate realization
kR,M (Λ) of k (Λ) ,

kR,M (Λ) z =
1
2π

M∑

l=1

v
ζ(θl)
1 ωl. (15)

This formula is central in the method, so it is the center of
our attention in the simulations. A fundamental remark is
that, a ”real-time” realization, kR,M (Λ) z, requires solving
M systems like (14) corresponding to the M quadrature
nodes ζ(θl). The matrices kR (ζ(θl)) could be computed
”off-line” once and for all, and stored in memory, so
their determination would not penalize a rapid real-time
computation. In total, the ultimate parameter responsible
of accuracy in a real-time computation, apart from spatial
discretization discussed in next Section, is M the number
of quadrature points.

6. SPATIAL DISCRETIZATION

The final step in the approximation consists in a spatial
discretization and synthesis of Equation (14). The interval
Γ is meshed with regularly spaced nodes separated by
a distance h, we introduce Λ−1

h the finite difference dis-
cretization of Λ−1, associated with the clamping boundary
condition. In practice, the discretization length h is chosen
small compared to the distance between cantilevers. Then,
zh denoting the vector of nodal values of z, for each ζ we
introduce (vζ

1,h, vζ
2,h), a discrete approximation of (vζ

1 , vζ
2),

solution of the discrete set of equations,

ζ1v
ζ
1,h − ζ2v

ζ
2,h − Λhvζ

1,h = Re
(−iζ ′kR (ζ)

)
zh, (16)

ζ2v
ζ
1,h + ζ1v

ζ
2,h − Λhvζ

2,h = Im
(−iζ ′kR (ζ)

)
zh. (17)

Finally, an approximate optimal control, intended to be
implemented in a set of spatially distributed actuators,
could be estimated from the nodal values,

kR,M,hzh =
1
2π

M∑

l=1

v
ζl

1,hωl,

estimated at mesh nodes in the following. We shall pro-
pose a synthesization of (16–17) by a distributed elec-
tronic circuit that could be integrated in the mechanical
structure. For this purpose, the system is rewritten under
the manageable form (18–19). For the sake of simpli-
fication, we use the notations α = Re

(−iζ ′kR (ζ)
)
zh,

β = Im
(−iζ ′kR (ζ)

)
zh, v1 = vζ

1,h, and v2 = vζ
2,h.

v1 =
ζ1

ζ2
1 + ζ2

2

(α + Λhv1) +
ζ2

ζ2
1 + ζ2

2

(β + Λhv2) , (18)

v2 =
ζ1

ζ2
1 + ζ2

2

(β + Λhv2)− ζ2

ζ2
1 + ζ2

2

(α + Λhv1) . (19)

6.1 Analog computation of Λhv1 and Λhv2

The analog computation of Λhv1 and Λhv2 are made by
Periodic Network of Resistances (PNR) circuits Ratier
[2009]. These electronic circuits have been developed to
solve a large class of PDEs by analog computation. More
exactly, PNR circuits compute the finite difference solution
of a PDE. PNR circuits are gathering of cells (Fig. 6),
the interior cells are indexed by k = 1, . . . , N − 1, while
the boundary cells correspond to k = −1, 0, N and N +
1. We will show that the circuits solve the equations
Au1 = i1. If the current sources i1 are replaced by voltage
controlled current sources defined by i1 = gv1 (with g
is a real number), the voltage outputs of the circuits u1

solve g(Λhv1) and so Λhv1. The computation of Λhv2 is
done in the same way. The interior cell k which computes
(Λhv1)k is represented on Fig. 7 with its two adjacent
cells on each side. We call ρ1 the resistance value between
the potentials u

(k)
1 and u

(k±2)
1 , and ρ2 the resistance value

between the potentials u
(k)
1 and u

(k±1)
1 . By applying the

Kirchhoff Current Law (KCL) at node u
(k)
1 , rearranging

some terms and dividing by h4, the equation of the cell k
can be written under the form:

1
h4
− 1

ρ1

u
(k−2)
1 − 1

ρ2

u
(k−1)
1 + 2u

(k)
1

(
1
ρ1

+
1
ρ2

)

− 1
ρ2

u
(k+1)
1 − 1

ρ1

u
(k+2)
1 =

1
h4

i
(k)
1 .

If one choose the negative potential ρ1 = −h4ρ0 and the
positive potential ρ2 = h4ρ0/4, then the potential at node
u

(k)
1 is expressed as a function of its neighbor voltages as
1
h4

u
(k−2)
1 − 4u

(k−1)
1 + 6u

(k)
1 − 4u

(k+1)
1 + u

(k+2)
1 = ρ0i

(k)
1 ,

which is the stencil of the differential operation Λ−1.
Consequently, the whole electronic circuit composed of
N − 1 cells computes the finite differences approximation
u1 = Λhi1 = g (Λhv1). The numerical value of ρ0 only
changes the magnitude of the voltages u

(k)
1 . The values of

the resistances inside a cell depend only on the circuit
topology and are easily expressed as a function of ρ1
or ρ2. Here the resistances of the cells can be taken as
r1 = r3 = r4 = r6 = ρ1/4 and r2 = r5 = ρ2/2.

The VCCS (Voltage Controlled Current Source) i
(k)
1 of Fig.

7 is controlled by the voltage v
(k)
1 through the equation

i
(k)
1 = gv

(k)
1 . The four boundary cells are represented on

Fig. 8. The imposed values of the voltages correspond
to the clamping boundary condition. Remark that the
terminals denoted by a cross are not connected, so the
resistances which are linked by one side at them can be
removed without changing the behavior of the circuits.
They are saved to show clearly the real difference between
interior cells and boundary cells.

6.2 Analog computation of equation (18)

The analog computation of Equation (18) can be made by
an array of classical non inverting summing amplifiers of
Fig. 9. Notice that there is no current exchange between
these circuits and PNR inputs and outputs, see buffers in
Fig. 7. Analysis of the circuit of Fig. 9 leads to (20). With



i
(k−1)
1 i

(k)
1

Cell
k − 2 k − 1

Cell
k

Cell
k + 1

Cell
k + 2

Cell
1

Cell
0

Cell
−1

Cell
N − 1

Cell
N

Cell
N + 1

Cell
i
(N−1)
1i

(k+2)
1i

(k+1)
1i

(k−2)
1i

(1)
1

= vB= 0= vA = 0

· · · · · ·

u
(1)
1 u

(k−2)
1 u

(k−1)
1 u

(k)
1 u

(k+1)
1 u

(k+2)
1 u

(N−1)
1

(Λhi1)1 (Λhi1)k−2 (Λhi1)k−1 (Λhi1)k (Λhi1)k+1 (Λhi1)k+2 (Λhi1)N−1

Fig. 6. Analog computation of Λhv1.

1

22

1

r1

r2

r3

r4

r5

r6

i
(k)
1i

(k−2)
1 i

(k−1)
1 i

(k+1)
1 i

(k+2)
1

i
(k−2)
1 = gv

(k−2)
1 i

(k−1)
1 = gv

(k−1)
1 i

(k)
1 = gv

(k)
1 i

(k+1)
1 = gv

(k+1)
1 i

(k+2)
1 = gv

(k+2)
1

k − 2 k − 1 k k + 1 k + 2

g(Λhv1)k−2 g(Λhv1)k−1 g(Λhv1)k g(Λhv1)k+1 g(Λhv1)k+2

u
(k−2)
1 u

(k−1)
1 u

(k)
1 u

(k+1)
1 u

(k+2)
1

Fig. 7. Five adjacent interior cells.

vB

0 N N + 1−1

vA

g(Λhv1)0 = 0 g(Λhv1)N = 0

vB = g(Λhv1)N−1vA = g(Λhv1)1

g(Λhv1)N+1 = vBg(Λhv1)
−1 = vA

Fig. 8. Four boundary cells.

Ra

Rb

R2

Rc

Rd

R1

v
(k)
1

g(Λhv2)k

g(Λhv1)k

α

β

Fig. 9. Analog computation of the k-th equation (18).

a proper choice of resistances, Fig. 9 solves (18),

v
(k)
1 =

R1 + R2

R1

Ru

Ra
α +

Ru

Rb
g (Λhv1)k +

Ru

Rc
β

+
Ru

Rd
g (Λhv2)k ,

(20)

where 1
Ru

= 1
Ra

+ 1
Rb

+ 1
Rc

+ 1
Rd

.

6.3 Analog computation of equation (19)

In a very similar way, the analog computation of Equation
19 can made by an array of classical difference summing
amplifiers of Fig. 10.
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Fig. 10. Analog computation of the k-th equation (19).

Analysis of the circuit of Fig. 10 leads to (21). With a
proper choice of resistances, Fig. 10 solves (19),

v
(k)
2 =

Rv

Rw

R′2
R′a

β +
Rv

Rw

R′2
R′b

g (Λhv2)k −
R′2
R′c

α

−R′2
R′d

g (Λhv1)k ,
(21)

where 1
Rv

= 1
R′a

+ 1
R′

b
+ 1

R′1
and 1

Rw
= 1

R′c
+ 1

R′
d

+ 1
R′2

.

7. NUMERICAL SIMULATION

In this section, we validate the approximation method,
established in Section 5, by a numerical simulation. We
consider a silicon array of 10 cantilevers, with base di-
mensions 500µm × 16.7µm × 10µm, and one cantilever
dimensions 25µm × 10µm × 1.25µm,. The model param-
eters of base and cantilever are: the bending coefficient



RB = 1.09 × 10−5N/m, RC = 2.13 × 10−4N/m the mass
per unit length ρB = 0.0233kg/m, ρC = 0.00291kg/m.
In the rational approximation, the numerator polynomial
degrees RN and the denominator polynomial degrees RD

can be chosen sufficiently large (namely RN = RD = 20)
so that the relative errors

ER =
||kR − k||L2(Iσ)

||k||L2(Iσ)
,

between the exact solution k and its rational approxima-
tion kR, can be in the order of 10−8. The large RN and
RD has no effect on the real-time computation.

Numerical integrations have been performed with a stan-
dard trapezoidal quadrature rule. The relative errors,

ER,M =
||kR,M − k||L2(Iσ)

||k||L2(Iσ)
,

between the exact functions and final approximations are
shown in Fig. 11, for M the number of quadrature nodes
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Fig. 11. Relative error between the exact solution k and
kR,M

varying from 5 to 20. We found that the relation between
M and ER,M is almost linear. It may be easily tuned
without changing spatial complexity associated with the
finite difference discretization of Λ−1.

The approximation error,

ER,M,h =
||kN,M,hzh − k(Λ)z||`2(Iσ)

||k(Λ)z||`2(Iσ)
,

in the two-scale domain with respect to M and h the spa-
tial mesh size in the finite difference scheme is represented
in Table 1.

Table 1. Relative errors with respect to M and
h

M \ h LB/10 LB/20 LB/30 LB/40 LB/50

10 1.45e-1 1.17e-1 1.08e-1 1.06e-1 1.05e-1

20 8.38e-2 4.08e-2 2.08e-2 1.30e-2 9.09e-3

50 8.47e-2 4.06e-2 2.10e-2 1.28e-2 8.57e-3

For different spatial mesh size, the error ER,M,h is well
controlled with a relatively small number M = 20 of
quadrature points. Fig. 12, represents evolution of can-
tilever displacement w at the center of the fifth cantilever
for different M number of quadrature nodes when only
one array mode is excited. Notice that the reference curve
has been computed with M = 20 quadrature nodes. We

observe that the displacement evolution for M = 6 is
already close to the reference.
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Fig. 12. Displacement evolution of the first cantilever mode

8. CONCLUSION

Our semi-decentralized approximation method has been
applied to a linear quadratic regulation of a cantilever
array. The system was represented through a two-scale
model which validation has been carefully carried out and
presented. We have proposed a possible implementation
of the semi-decentralized controller as a set of distributed
electronic circuits. The method has been validated, and
all sources of errors have been quantified. We arrive to
the conclusion that the main limitation comes from the
spatial mesh size h which need to be quite small to reach a
good resolution. Conversely, the number M of quadrature
nodes is not needed to be large. This may be interpreted
in terms of analog circuit implementation by saying that
a large number of resistors is needed in the circuit, and a
relatively small number of global analog computations is
required to get accurate results. Further applications are
now possible, for instance to more complex systems, as
two-dimensional arrays, and to more sophisticated optimal
control laws involving Riccati equations or inequalities.
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Appendix A. MODEL VALIDATION

The two-scale model (a simplified model) is compared to
a Finite Element Model (FEM) build from the system of
elasticity equations in the three-dimensional domain. Here,
we refine sufficiently the discretization of both models
so that to evaluate the two-scale model itself but not
its discretization. The solution of the FEM model is
denoted by uFEM.. Excepted when it is explicitly said,
all computations are carried out for a 10-cantilever array.

A.1 Validation in static regime

The vertical displacement shown on Fig. A.1 are obtained
after applying a 10µN concentrated force at the middle
point of the free end of the fifth and sixth cantilevers. To

(a) (b)

Fig. A.1. Displacement of a 10-cantilever array under a
static load of (a) Two-scale Model (b) FEM model

better estimate the model quality, four loading conditions
have been tested: A- Same load on all cantilevers, B- Only
the fifth cantilever is loaded, C- The fifth and the sixth
cantilevers are equally loaded, and D- Opposite loads on
even and odd cantilevers. In table A.1, the related L2-norm
errors,

E =

(∫
ω
|w − uFEM |2 dx∫
ω
|uFEM |2 dx

)1/2

,

have been summarized. The error of the model are small
enough to use it in a model based control loop. Deeper
investigations show that the largest errors comes when all

Table A.1. L2-norm error for different loads

Loads A B C D

Errors (%) 5.12 4.49 2.42 1.36

loads are operating in the same direction and therefore
when the base is subjected to a large deformation. Then,
Fig. A.2 represents displacements in a single cantilever,
namely the fifth cantilever, in the loading case A. We
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Fig. A.2. Displacement comparison of static analysis of
10-cantilever array at fifth cantilever

noticed that the error originate from the clamping zone,
and after a careful inspection we have conclude that it
could have been corrected if torsion effects have been taken
into account in the base. Next, we report results of a study
on static cross-talk effect. The load is this of case C. The
ten ratio of the displacements at the free end of cantilevers
to this of loaded cantilevers are reported in Table A.2, they
show a good agreement between the two models in terms
of static cross-talk.

Table A.2. Ratios of the displacements at the
free end of cantilevers to this of a loaded one

in static regime

Free ends
Two-scale FEM Absolute
model (%) model (%) errors

1 0.6 0.9 0.3

2 4.9 5.9 1

3 11.3 13 1.7

4 17.7 20 2.3

5 100 100 0

6 100 100 0

7 17.7 20.1 2.4

8 11.3 13 1.7

9 4.9 5.9 1

10 0.6 0.9 0.3

A.2 Validation in dynamic regime

To study the dynamic regime, the fifth cantilever free
end is excited with a load oscillating to the first base
eigenfrequency (303kHz). Fig. A.3 shows the sixth and
ninth cantilever end motion for both models.

We conclude to a good fit between the models in terms
of phase shift but a noticeable difference regarding ampli-
tudes. In the same experiment, dynamic cross-talk is char-
acterized through the ratios of maximum displacements at
the cantilever free ends to this of a the loaded one. They
are reported in Table A.3 where the maximum displace-
ments are taken over the time interval [0, 15µs]. In that



0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(µs)

z−
D

is
pl

ac
em

en
t(µ

m
)

(a)

 

 

Two−scale model
FEM model

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(µs)

z−
D

is
pl

ac
em

en
t(µ

m
)

(b)

 

 

Two−scale model
FEM model

Fig. A.3. Displacement at (a) sixth cantilever end, and (b)
ninth cantilever end in dynamic regime

Table A.3. Ratios of maximum displacements
at the free end of cantilevers to this of a loaded
one under first base eigenfrequency excitation

Free ends
Two-scale FEM
model (%) model (%)

1 3.1 2.4

2 23.2 21.5

3 51.6 47.9

4 77.2 71.5

5 100 100

6 92.5 86.8

7 77.5 73.7

8 51.6 49.9

9 23.3 22.5

10 3.1 2.5

case (first base eigenfrequency), the observations show that
the energy originated from an exited cantilever propagates
more than in the static operating regime. Finally, Table
A.4 reports results of dynamic cross-talk effect when the
fifth cantilever is excited at the first cantilever frequency
(2.34MHz). In this case, the simulation have been carried
out in the time interval [0, 2µs]. As expected, the dynamic
cross-talk effect, at this frequency, is smaller than this at
the first base frequency.

Table A.4. Ratios of maximum displacements
at the free end of cantilevers to this of a loaded
one under first cantilever eigenfrequency exci-

tation

Free ends
Two-scale FEM
model (%) model (%)

1 1.2 3.6

2 4.9 9.3

3 2.6 18.3

4 5.4 31.2

5 100 100

6 12.6 24.5

7 6.2 18.3

8 6.0 22.8

9 10.4 21.1

10 2.5 5.7


