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54600 Villers-ĺes-Nancy, France

Abstract
We introduce a framework for computer-aided deriva-

tion of multi-scale models dedicated to arrays of microsys-
tems. It relies on a combination of a asymptotic methods
used in the field of partial differential equations with term
rewriting techniques coming from computer science. In
our approach, a multi-scale model derivation is character-
ized by the features taken into account in the asymptotic
analyses. Its formulation consists in a derivation of a ref-
erence model associated to an elementary nominal model,
and in a set of transformations to apply to this proof un-
til it takes into account the wanted features. In addition
to the reference model proof, the framework includes first
order rewriting principles designed for asymptotic model
derivations, and second order rewriting principles dedi-
cated to transformations of model derivations. We apply
the method to generate a family of homogenized models for
second order elliptic equations with periodic coefficients
that could be posed in multi-dimensional domains, with
possibly multi-domains and/or thin domains. The transfer
of asymptotic models into a finite element software pack-
age is illustrated through an example of a model of periodic
cantilever arrays.

KEY WORDS: Multi-scale modeling, Rewriting, Homog-
enization, Symbolic computation

1. Introduction
We are currently developing MEMSALab a software pack-
age dedicated to asymptotic multiphysic model derivation
applied to arrays of microsystems. It is based on asymp-
totic methods for systems governed by partial differential
equations. Asymptotic analyses are applied for instance to
large periodic structures, with small ratio of their cell size
to their global size, or to thin structures, with small ratioof
their thickness to their global size. Generally, the asymp-
totic models are computed much faster than the original
ones. In this field, a lot of techniques have been devel-
oped. However, none of them have been implemented in
a systematical approach to render it available to engineers
as a design tool. In fact, most published paper focus on an
asymptotic model for given geometry and physics and very
few cover general cases. Considering the constant need for
faster and more reliable simulations, as well as the variety
of geometrical and physical features of microsystems, it be-
comes essential to find a general and systematic approach.
Ours starts from a reference model derivation, and then ex-
tend it to adapt new features and physics. The reference
model is a simple second order boundary value problem

posed on an interval and with periodic coefficients. The
derivation of a complex model involving complex geome-
tries and physics is generated by a process of generaliza-
tion. The techniques of model derivation are using the
mathematical tool called the Two-Scale Transform or un-
folding method, see [11], [4], [5]. The manner to express
them and their generalization comes from formal specifica-
tion techniques in computer science, namely term rewriting
and rewriting strategies [1, 6]. The software is written in
the symbolic computation language MapleTM and it is in-
tended to be connected to the finite element software pack-
ages FreeFEM++ [8] and COMSOLTM for numerical sim-
ulation. In this paper we overview the mathematical and
computer science principles of our method in its current
state. First results of combination of elementary features
are reported. A link with a finite element method software
is illustrated on the multi-scale model of cantilever arrays
derived in [11] and studied in [9].

The methodology used for the software package design is
described in [13] and is now outlined. Its kernel is the
rewriting based languageSymbtrans[2]. A multi-scale
model derivation is characterized by the features taken into
account in the asymptotic analyses. Its formulation con-
sists in a derivation of an elementary reference model and
in a set of transformations to apply to this proof until it
takes into accounts the wanted features. In addition to the
reference model proof, the framework includes first order
rewriting strategies designed for its derivation, and second
order rewriting strategies, operating on first order strate-
gies, for its transformations. Rewriting operates on ex-
pressions whose level of abstraction accurately reflects the
mathematical framework. Their description follows a well
defined grammar in order that they carry enough informa-
tion allowing for the design of the rewriting rules and the
strategies. Put together all these concepts can express and
build proofs as first order strategies, and therefore provide
a framework of symbolic computation.

2. Mathematical Formulation
The mathematical statement of the reference model and the
corresponding asymptotic models are briefly recalled. We

consider an intervalΩ =
N(ε)
⋃

c=1
Ω1,ε

c ⊂ R divided intoN(ε)

periodic cells (or intervals)Ω1,ε
c , of size ε > 0 a small

number tending to zero in the asymptotic analysis, indexed
by c, and with centerxc. The translation and magnification
Ω1 = (Ω1,ε

c −xc)/ε is theunit cell. The variables inΩ and



in Ω1 are denoted byxε andx1. The two-scale transform
T is an operator mapping functions defined in the physi-
cal domainΩ to functions defined in the two-scale domain
Ω♯ × Ω1 where for thereference modelΩ♯ = Ω. It is de-
fined by

(Tu)(xc, x
1) = u(xc + εx1) (1)

and then by extensionT (u)(x♯, x1) = u(xc + εx1) for all
x♯ ∈ Ω1,ε

c and eachc in 1, .., N(ε). We consideruε the
solution of a linear boundary value problem posed inΩ,

{

−
d

dx
(aε(x)

duε(x)

dx
) = f in Ω

uε = 0 onΓ,
(2)

where the coefficientaε is εΩ1-periodic. The weak for-
mulation is obtained by multiplication of the differential
equation by a test functionv vanishing on the boundary
and application of the Green formula,

∫

Ω

aε(x)
duε

dx

dv

dx
dx =

∫

Ω

f(x)v(x) dx. (3)

We assume that for some functionsa0(x1) andf0(x♯),

T (aε) = a0 andT (f) = f0(x♯) +Ow(ε). (4)

The next proposition states the homogenized model and is
the main result of thereference proof. For θ a solution to
the microscopic problem

∫

Ω1

a0
∂θ

∂x1
∂w

∂x1
dx1 = −

∫

Ω1

a0
∂w

∂x1
dx1

for all w Ω1-periodic,

the homogenized coefficient and right-hand side are de-
fined by

aH =

∫

Ω1

a0
(

1 +
∂θ

∂x1

)2

dx1 andfH =

∫

Ω1

f0 dx1.

(5)

Proposition 1 The limitu0 of Tuε is solution to the weak
formulation

∫

Ω♯

aH
du0

dx♯
dv0

dx♯
dx♯ =

∫

Ω♯

fHv0 dx♯ (6)

for all test functionv0 sufficiently regular onΩ♯ and van-
ishing on its boundary.

3. Rewriting strategies
In this section we recall the rudiments of rewriting, namely,
the definitions of terms over a signature, of substitution and
of rewriting rules. We introduce a strategy language that
will allow to express all the useful rewriting strategies.

3.1 Term, substitution and rewriting rule.
We start with an example of rewriting rule. We define a
set of rewriting variablesX = {x, y} and a set of func-
tion symbolsΣ = {f, g, a, b, c}. A term is a combina-
tion of elements ofX ∪ Σ, for instancef(x), f(a) or
g(g(a, x), f(y)). We denoted byT (Σ,X ) the set of all

terms. The rewriting rulef(x)  g(x) applied to a term
f(a) is a two-step operation. First, it consists in matching
the left termf(x) with the input termf(a) by matching the
two occurences of the symbol of functionf, and by match-
ing the rewriting variablex with the symbol of functiona.
Then, the resultg(a) of the rewriting operation is obtained
by replacing the rewriting variablex occuring in the right
hand sideg(x) by the subterma that have been associated
tox. In case where any substitution is possible, as in the ap-
plication off(b) → g(x) to f(a), we say that the rewriting
rule fails.
We denote byΣn the subset ofΣ of the function symbols
of arity n. For instance in the examplef andg belong to
Σ1 while a andb belong toΣ0. Two other common exam-
ples of terms are the expressionIntegral(Ω, f(x), x) and
diff (f(x), x) which represent the expressions

∫

Ω
f(x) dx

and
df(x)

dx
. Notice thatIntegral ∈ Σ3, diff∈ Σ2, f ∈ Σ1

andx,Ω ∈ Σ0. For the sake of simplicity we often keep
the symbolic mathematical notation to express the rewrit-
ing rules. In the following we see a term as an oriented,
ranked and rooted tree as it is usual in symbolic compu-
tation. We recall that in a ranked tree the child order is
important. For instance the tree associated to the term
Integral(Ω, f(x), x) hasIntegral as its root which has
three children in the orderΩ, f, x andf has one childx.

A substitutionis a functionσ : X → T (Σ,X ). The
applicationof a substitutionσ to a termt, denoted byσ(t),
simultaneously replaces all occurrences of variables int by
theirσ-images.
A rewriting rule, is a pair(l, r) wherel andr are terms in
T (Σ,X ); it will also be denoted byl r. We observe that
for any two termss, t, there exists at most one substitution
σ such thatσ(s) = t. We mention that a rewriting rule
stands for the rule application at the top position. It is more
useful to be able to apply a rule at arbitrary position, and
more generally to specify the way rules are applied. For
this purpose we next present a strategy language that allows
to built strategies out of basic constructors. To this end, we
introduce strategy constructor symbols; , ,⊕, µ, etc that
do not belong toΣ ∪ X . Informally, the constructor”; ”
stands for the composition,”⊕ ” for the left choice,Some
for the application of a strategy to the immediate subterms
of the input term,η(x) for the fail as identity constructor,
Child(j, s) applies the strategys to thejth immediate sub-
term,X is a fixed-point variable, andµ is the fixed-point
or the iterator constructor, its purpose is to define recursive
strategies. For example, the strategyµX.(s;X) stands for
s; s; . . ., that is, it is the iteration of the application ofs until
a fixed-point is reached.

Definition 2 (Strategy) A strategy is inductively defined by
the following grammar:

s ::= l r | s; s | s⊕ s | η(s) | Some(s) (7)

| Child(j, s) | X | µX.s

wherej ∈ N. The set of strategies defined from a set of
rewriting rules inT × T is denoted byST .



Example 3 Out of the basic constructors of strategies
given in Definition 2, we built up some useful strategies.
The strategyTopDown(s) applies the strategys to an in-
put termt in a top down way starting from the root, it stops
when it succeeds. That is, if the strategys succeeds on some
subtermt′ of t, then it is not applied to the proper subterms
of t′. The strategyOuterMost(s) behaves exactly like
TopDown(s) apart that if the strategys succeeds on some
subtermt′ of t, then it is also applied to the proper subterms
of t′. The strategyBottomUp(s) (resp. InnerMost(s))
behaves likeBottomUp(s) (resp. InnerMost(s)) but in
the opposite direction, i.e. it traverses a termt starting
from the leafs. The strategyNormalizer(s) iterates the
application ofs until a fixed-point is reached.

3.2 Conditional rewriting
Rewriting with conditional rules, also known as conditional
rewriting, extends the basic rewriting with the notion of
condition. A conditional rewrite rule is a triplet:

(l, r, c)

wherec is a logical formula expressed in some logic. The
set of strategies defined over rewriting rules(l, r, c) ∈ T ×
T × Tc is denoted byST ,Tc

.

4. A Symbolic Computation Framework for Model
Derivation

In this section we propose a framework for the two-scale
model proofs where the latter are formulated as rewriting
strategies. We notice that the following framework allows
for the complete representation of the data. It does not rely
on external structures such as hash tables. To this end, we
define the syntax of the mathematical expressions by means
of a grammarG.

4.1 A Grammar for Mathematical Expressions
The grammar includes four rules to built terms for math-
ematical functionsF, regionsR, mathematical variables
V, and boundary conditionsC. It involvesΣReg, ΣV ar,
ΣFun, ΣOper, andΣCons which are sets of names of re-
gions, variables, functions, operators, and constants so sub-
sets ofΣ0. Empty expressions inΣReg andΣFun are de-
noted by⊥R and⊥F. The set of usual algebraic operations
ΣOp = {+,−,×, /, ˆ} is a subset ofΣ2. The elements of
ΣType = {Unknown, Test, Known, ⊥Type} ⊂ Σ0, ⊥Type

denoting the empty expression, are to specify the nature of
a function, namely an unknown function (asuε, u0, u1 in
the proof), a test function (asv, v0, v1) in a weak formula-
tion or another known function (asaε, fε, a0, f0 or nΓ1 ).
The boundary conditions satisfied by a function are speci-
fied by the elements ofΣBC = {d, n, pd, apd, t} ⊂ Σ0 to
express that it satisfies Dirichlet, Neuman, periodic, anti-
periodic or transmission conditions. The grammar also in-
volve the symbols of functionsReg, Fun, IndexedFun,
IndexedReg, IndexedVar, Oper, Var, andBC that define
regions, mathematical functions, indexed functions or re-
gions or variables, operators, mathematical variables and

boundary conditions. The grammar reads as

F ::= ⊛ (F,F) | d | V |

Fun(f, [V, . . . ,V], [C, . . . ,C],K) |

IndexedFun(F,V) |

Oper(A, [F, . . . ,F], [V, . . . ,V], [V, . . . ,V], [d, . . . , d]) |

⊥F,

R ::= Reg(Ω, [d, . . . , d], {R, . . . ,R},R,F) |

IndexedReg(F,V) |

⊥R,

V ::= Var(x,R) | IndexedVar(V,V),

C ::= BC(c,R,F),

where the symbolsΩ, d, ⊛, f, K, A, x and c hold for
any function symbols inΣReg, ΣCons, ΣOp, ΣFun, ΣType,
ΣOper, ΣV ar, andΣBC . The arguments of a region term
are its region name, the list of its space directions (e.g. [1,3]
for a plane in the variables(x1, x3)), the (possibly empty)
set of subregions, the boundary and the outward unit nor-
mal. Those of a function term are its function name, the
list of the mathematical variables that range over its do-
main, its list of boundary conditions, and its nature. Those
for an indexed region or variable or function term are its
function or variable term and its index (which should be
discrete). For an operator term these are its name, the list
of its arguments, the list of mathematical variable terms
that it depends, the list of mathematical variable terms of
its co-domain (useful e.g. forT when the image cannot be
deduced from the initial set), and a list of parameters. Fi-
nally, the arguments of a boundary condition term are its
type, the boundary where it applies and an imposed func-
tion if there is one. For example, the imposed function is
set to0 for an homogeneous Dirichlet condition and there
is no imposed function in a periodicity condition. We shall
denote byTR(Σ, ∅), TF(Σ, ∅), TV(Σ, ∅), andTC(Σ, ∅) the
set of terms generated by the grammar starting from the
non-terminalR, F, V, andC. The set of all terms generated
by the grammar (i.e. starting fromR, F, V, or C) is de-
noted byTG(Σ, ∅). Finally, we also define the set of terms
TG(Σ,X ) where each non-terminalR, F, V, andC can be
replaced by a rewriting variable inX . Equivalently, it can
be generated by the extension ofG obtained by adding ”|
x” with x ∈ X in the definition of each non-terminal term.
Or, by addingN ::= x, with x ∈ X for each non-terminal
N .

4.2 Short-cut Terms
For the sake of conciseness, we introduce shortcut terms
that are constantly used in the end of the paper:Ω ∈
TR(Σ,X ), x ∈ TV(Σ,X ) defined inΩ, I ∈ TR(Σ,X )
used for (discrete) indices,i ∈ TV(Σ,X ) used as an index
defined inI, u ∈ TF(Σ,X ) oru(x) ∈ TF(Σ,X ) to express
that it depends on the variablex andui the indexed-term
of the functionu indexed byi. Similar definitions can be
given for the other notations used in the proof asΩ♯, x♯,
Ω1, x1, Ω′, x′, v(x♯, x1) etc.

Example 4 For instance,Ω = Reg(Ω, [2], ∅, Γ, n), where
Γ = Reg(Γ, [], ∅, ⊥R, ⊥F), n = Fun(n, [x′], [], Known),



x′ = Var(x, Ω′) andΩ′ = Reg(Ω, [2], ∅, Γ, ⊥F) refers
to a region-term representing a one-dimensional domain
namedΩ, oriented in the directionx2, with boundaryΓ
and with outward unit normaln. The shortcutΓ refers to
a region term representing the boundary namedΓ. An un-
known functionu(x) defined onΩ satisfying homogeneous
Dirichlet boundary conditionu(x) = 0 onΓ is represented
by the function-term,u(x) = Fun(u, [x], Cond(d, Γ, 0),
Unknown) wherex = Var(x, Ω).

The operators necessary for the proof are the integral, the
derivative, the restriction operatortr (restricting a function
defined on a region to the boundary), the two-scale trans-
form T and other detailed in [13]. In addition, for most
of the extensions of the reference proof we shall use the
discrete sum operator. Instead of writing operator-terms as
defined in the grammar, we prefer to use the usual math-
ematical expressions. The table below establish the corre-
spondance between them,

∫

u dx ≡ Oper(Integral, u, [x], [], []),

∂u

∂x
≡ Oper(Partial, u, [x], [x], []),

tr(u, x)(x′) ≡ Oper(Restriction, u, [x], [x′], []),

T (u, x)(x♯, x1) ≡ Oper(T, u, [x], [x♯, x1], [ε]),
∑

i
ui ≡ Oper(Sum, ui, [i], [], []).

The multiplication and exponentiation involving two terms
f and g are writtenfg and fg as usual in mathematics.
All these conventions has been introduced for terms in
T (Σ, ∅). For terms inT (Σ, X) as those encoutered in
rewriting rules, the rewriting variables can replace any of
the above short cut terms.

Example 5 The rewriting rule associated to the Green rule
reads

∫

∂u

∂x
v dx −

∫

u
∂v

∂x
dx+

∫

tr(u) tr(v) n dx′.

with the short-cutsΓ = Reg(Γ, d1, ∅, ⊥R, ⊥F), Ω =
Reg(Ω, d2, ∅, Γ, n), x = Var(x, Ω) andx′ = Var(x, Γ).
The other symbolsu, v, x, Ω, Γ, d1, d2, n are rewriting
variables, and for instance

∂u

∂x
≡ Oper(Partial, u, x, [], []).

Applying this rule according to an appropriate strategy, say
the top down strategy, to a term inT (Σ, ∅) like

Ψ =

∫

∂f(z)

∂z
g(z) dz,

for a given variable termz and function termsf, g. As
expected, the result is

−

∫

f
∂g

∂z
dz +

∫

f g n dz′

with evident notations forn andz′.

4.3 A Variable Dependency Analyzer
The variable dependency analyzerΘ is related toeffect
systems in computer science [12]. It is a function from
TF(Σ, ∅) to the setP(TV(Σ, ∅)) of the parts ofTV(Σ, ∅).
When applied to a termt ∈ TF(Σ, ∅), it returns the set of
mathematical variables on whicht depends.

Example 6 For

Ψ =

∫

Ω♯

∫

Ω1

T (u(x), x)(x♯, x1)
∂v(x♯, x1)

∂x1
dx1dx♯

in TF(Σ, ∅), the setΘ(Ψ) of mathematical variables on
whichΨ depends is hence inductively computed as follows:

Θ(u(x)) = {x}, Θ(T (u(x), x)(x♯, x1)) = {x♯, x1},

Θ(v(x♯, x1)) = {x♯, x1}, Θ(
∂v(x♯, x1)

∂x1
) = {x♯, x1},

Θ(T (u(x), x)(x♯, x1)
∂v(x♯, x1)

∂x1
) = {x♯, x1},

Θ(

∫

Ω1

T (u(x), x)(x♯, x1)
∂v(x♯, x1)

∂x1
dx1) = {x♯},

andΘ(Ψ) = ∅.

4.4 Formulation of the Symbolic Framework for
Model Derivation

Now we are ready to define the framework for two-scale
model derivation by rewriting. To do so, the rewrit-
ing rules are restricted to left and right terms(l, r) ∈
TG(Σ,X ) × TG(Σ,X ). Their conditionsc are formu-
las generated by a grammar, not explicited here, combin-
ing terms inTG(Σ,X ) with the usual logical operators in
Λ = {∨,∧, ⌉,∈}. It also involves operations with the de-
pendency analyzerΘ. The set of terms generated by this
grammar is denoted byTL(Σ,X ,G,Θ,Λ).
A model derivation is divided into several intermediary
lemmas. Each of them is intended to produce a new prop-
erty that can be expressed as one or few rewriting rules
to be applied in another part of the derivation. Since dy-
namical creation of rules is not allowed, a strategy is cov-
ering one lemma only and is operating with a fixed set of
rewriting rules. The conversion of a result of a strategy to
a new set of rewriting rules is done by an elementary ex-
ternal operation that is not a limitation for generalizations
of proofs. The following definition summarizes the frame-
work of symbolic computation developed in this paper.

Definition 7 The components of the quintupletΞ = 〈Σ,X ,
E, G,Θ〉 provide a framework for symbolic computation to
derive multi-scale models. A two-scale model derivation is
expressed as a strategyπ ∈ STG(Σ,X ),TL(Σ,X ,G,Θ,Λ) which
is applicable to an initial expressionΨ ∈ T (Σ, ∅).

In the end of this section we argue that this framework is
in the same time relatively simple, it covers thereference
modelderivation and it allows for the extensions presented
in the next section.
The grammar of terms is designed to cover all mathemati-
cal expressions occuring in the proof of thereference model



as well as of their generalizations. A term produced by
the grammar includes locally all useful information. This
avoids the use of external tables and facilitates design of
rewriting rules, in particular to take into account the con-
text of subterms to be transformed. It allows also for local
definitions, for instance a same name of variablex can be
used in different parts of a same term with different mean-
ing, which is useful for instance in integrals.
Each step in the proof consists in replacing parts of an ex-
pression according to a known mathematical property. This
is well done, possibly recursively, using rewriting rules to-
gether with strategies allowing for precise localization.

5. Transformation of Strategies as Second Order
Strategies

For a given rewriting strategy representing a model proof,
one would like to transform it to obtain a derivation of more
complex models. Transforming a strategyπ ∈ ST (Σ,X )

is achieved by applying strategies to the strategyπ itself.
For this purpose, we consider two levels of strategies: the
first order onesST (Σ,X ) as defined in Definition 2, and the
strategies of second order in such a way that second or-
der strategies can be applied to first order ones. That is,
the second order strategies are considered as terms in a set
T (Σ,X ) of terms whereΣ stands for the set of second or-
der function symbols andX stands for the set second or-
der rewriting variables. We notice that the (first order) rule
l  r can be viewed as the term (l, r) with the symbol
 at the root, and the (first order) strategyµX.s viewed as
the termµ(X, s). The set of second order strategies will
be denoted byS

T (Σ,X ); it is built up out of the second

order strategy constructors: , ;,⊕, Some,Child, η, . . ..
The behavior of the strategies inS

T (Σ,X ) is similar to the
one of first order strategies. In addition, we assume that
second order strategies transform first order strategies, to
which they are applied, into first order strategies.
In the following example, based on a mathematical prop-
erty of T stated in [13], we illustrate the extension of an
elementary strategy which is a rewriting rule.

Example 8 For the setX = {i, j, x, x♯, x1, u, ε} we define
s1, s2, s3, ands23 four rewriting rules,

s1 := T (
∂u

∂x
, x)(x♯, x1) 

1

ε

∂T (u, x)(x♯, x1)

∂x1

for x ∈ Ω and(x♯, x1) ∈ Ω♯ × Ω1,

s2 := T (
∂u

∂xi
, x)(x♯, x1) 

1

ε

∂T (u, x)(x♯, x1)

∂x1i

for x ∈ Ω and(x♯, x1) ∈ Ω♯ × Ω1,

s3 := T (
∂u

∂x
, x)(x♯, x1) 

1

ε

∂T (u, x)(x♯, x1)

∂x1

for x ∈ Ωj and(x♯, x1) ∈ Ω♯
j × Ω1

j ,

s23 := T (
∂u

∂xi
, x)(x♯, x1) 

1

ε

∂T (u, x)(x♯, x1)

∂x1i

for x ∈ Ωj and(x♯, x1) ∈ Ω♯
j × Ω1

j .

The rules1 is encountered in the reference proof,s2 is a
(trivial) generalization ofs1 in the sense that it applies to

multi-dimensional regionsΩ1 referenced by a set of vari-
ables(x1i )i, ands3 is a second (trivial) generalization of
s1 on the number of sub-regions(Ωj)j , (Ω

♯
j)j and (Ω1

j )j
in Ω, Ω♯ and Ω1. The rules23 is a generalization com-
bining the two previous generalizations. First, we aim at
transforming the strategys1 into the strategys2 or the
strategys3. To this end, we introduce two second order
strategies withX = {v, z} and Σ ⊃ {i, j, Ω, Ω♯, Ω1,
Partial, IndexedFun, IndexedV ar, IndexedReg},

Π̄1 := OuterMost(
∂v

∂z
 ̄
∂v

∂zi
)

Π̄2 := OuterMost(Ω ̄Ωj);OuterMost(Ω♯
 ̄Ω♯

j);

OuterMost(Ω1
 ̄Ω1

j ).

Notice thatΠ̄1 (resp.Π̄2) applies the rule
∂v

∂z
 ̄
∂v

∂zi
(resp.

Ω ̄Ωj , Ω
♯
 ̄Ω♯

j , andΩ1
 ̄Ω1

j ) at all of the positions1 of
the input first order strategy so that

Π̄1(s1) = s2 andΠ̄2(s1) = s3.

OnceΠ̄1 andΠ̄2 have been defined, they can be composed
to produces23 :

Π̄2Π̄1(s1) = s23 or Π̄1Π̄2(s1) = s23.

6. Implementation and Experiments
The framework presented in Section 4.4 has been imple-
mented in MapleTM. The derivation of the reference model
has been implemented using the languageSymbtransof
strategies presented in [2]. It starts from an input term
which is the weak formulation (3) of the physical problem,

∫

a
∂u

∂x

∂v

∂x
dx =

∫

f v dx, (8)

where a = Fun(a, [Ω], [ ],Known), u = Fun(u, [Ω],
[Dirichlet], Unknown), v = Fun(u, [Ω], [Dirichlet],
T est), Ω = Reg(Ω, [1], ∅, Γ, nΩ), Γ = Reg(Γ, [ ], ∅,
⊥R, ⊥F), Dirichlet = BC(Dirichlet, Γ, 0) and where
the short-cuts of the operators are those of Section 4.2.
The proof is divided into strategies corresponding to blocks
of the proof, each ending by some results transformed into
rewriting rules used in the following blocks. The rewriting
rules used in the strategies are FO-rules and can be classi-
fied into the three categories.

• Usual mathematical rules:that represents the proper-
ties of the derivation and integration operators, such
as the linearity, the chain rule, the Green rule, etc,

• Specialized rules:for the properties of the two-scale
calculus,

• Auxiliary tools: for transformations of expressions
format that are not related to operator properties such
as the rule which transformsψ = ϕ intoψ − ϕ = 0.

1Notice the difference withTopDown which could not apply these
rules at any position.



Table 1 summarizes the number of first order (FO) rules,
used in the reference model, by categories.
The reference model has been extended to cover three dif-
ferent kinds of configurations. To proceed to an extension,
the new model derivation is established in a form that is
as close as possible of thereference proof.The grammar
and the dependency analyzer should be completed. Then,
the initial data is determined, and second order (SO) strate-
gies yielding the generalized model derivation are found
and optimized. As it has been already mentioned,G andΘ
have already been designed to cover the three extensions.
The first generalization is to cover multi-dimensional re-
gions, i.e.Ω ⊂ R

n with n ≥ 1. Whenn = 2, the initial
term is

n
∑

i=1

n
∑

j=1

∫

aij
∂u

∂xi

∂v

∂xj
dx =

∫

f v dx,

whereΩ = Reg(Ω, [1, 2], ∅, Γ, nΩ), aij = Indexed(

Indexed(a, j), i), i = Var(i, I), I = Reg(I, [1, 2], ∅,
⊥R, ⊥F) and the choice of the test function is trivially de-
duced. Then, the model derivation is very similar to this
of the reference model, see [11], so much so it is obtained
simply by applying the SO strategȳΠ1 defined in Example
8.
The second generalization transforms thereference model
into a model with several adjacent one-dimensional re-
gions (or intervals)(Ωk)k=1,..,m so thatΩ is still an in-
terval i.e. Ω ⊂ R. For m = 2, the initial term is the
same as (8) but withΩ = Reg(Ω, [1], {Ω1,Ω2}, Γ, nΩ),
Ω1 = Reg(Ω1, [1], ∅, Γ1, nΩ1

), andΩ2 = Reg(Ω2, [1], ∅,
Γ2, nΩ2

). The two-scale geometries, all variables, all kind
of functions and also the two-scale operators are defined
subregion by subregion. All definitions and properties ap-
ply for each subregion, and the proof steps are the same
after spliting the integrals over the complete regionΩ into
integrals over the subregions. The only major change is in
the fourth step where the equalityu01 = u02 at the inter-
face betweenΩ1 andΩ2 which is encoded as transmission
conditions in the boundary conditions ofu01 andu02.
The third extension transforms the multi-dimensional
model obtained from the first generalization to a model re-
lated to thin cylindrical regions, in the sense that the dimen-
sion ofΩ is in the order ofε in some directionsi ∈ I♮ and
of the order1 in the othersi ∈ I♯ e.g.Ω = (0, 1) × (0, ε)
whereI♮ = {2} andI♯ = {1}. The boundaryΓ is split
in two parts, the lateral partΓlat and the other partsΓother

where the Dirichlet boundary conditions are replaced by
homogeneous Neuman boundary conditions i.e.duε

dx
= 0.

In this special case the integrals of the initial term are over a
region which size is of the order ofε so it is required to mul-
tiply each side of the equality by the factor1/ε to work with
expressions of the order of1. Moreover, the macroscopic
region differs fromΩ, it is equal toΩ♯ = (0, 1) when the
microscopic region remains unchanged. With these main
changes in the definitions and the preliminary properties,
the proof steps may be kept unchanged.
The mathematical formulation of the second and third ex-
tensions has been derived. This allows for the determina-
tion of the necessary SO-strategies, but they have not been

Usual Rules Special Rules Aux. Tools
Skeleton 53 14 28

Table 1: The number of first order rules used in the refer-
ence model.

Usual Rules Special Rules Aux. Tools
Multi-Dim 6 0 4
Thin-Reg 2 0 0
Multi-Reg 3 0 0

Table 2: The number of first order rules used in the three
extensions.

Usual Rules Special Rules Aux. Tools
Multi-Dim 9 2 3
Thin-Reg 0 0 0
Multi-Reg 1 0 0

Table 3: The number of second order strategies used in the
extension of proofs.

implemented nor tested. To summarize the results about
the principle of extension of strategies, we show its benefit
through some statistics. In particular the main concerned
is the reusability and the extensibility of existing strategies.
Table 2 shows an estimate of the number of new FO-rules
for the three extensions in each category and for the first
four blocks.
Table 3 shows the number of SO-strategies used in each
extension. Finally, Table 4 shows, the ratio of the modified
FO-rules and the ratio of the modified FO-strategies. The
reusability ratio is high since most of the FO-strategies de-
fined in the skeleton model are reused. Besides very little
number of SO-strategies is used in the extensions. This sys-
tematic way of the generation of proofs is a promising path
that will be further validated within more complex config-
urations for which the proofs can not obtained by hand. In
the future, we plan to introduce dedicated tools to aid in the
design of composition of several extensions.

7. Connection to FEM Software through an Example
In [11], a model of the mechanical behavior of elas-

tic periodic cantilever arrays was established and studied
in [9], [10], [7]. Its derivation follows the same steps as
in the reference proof but in addition, it takes into account
several features: multi-dimensional regions, thin regions,
vector valued solutions, asymptotic scaling of the solution
and strongly heterogeneous coefficients. So, it can be de-
rived by composing those elementary extensions. Its com-
plete composition have not yet been build in MEMSALab,
so here we only present its transfer into a finite element



Input model Resulting mod. % FO-rules % FO-strateg.
Reference Multi-Dim. 16.6% 5%
Multi-Dim. Thin 0 0

Thin Multi-Reg. 0 2.5%

Table 4: The ratio of modified FO-rules and FO-strategies.

software in a manner that will be generalized in the future.
We adopt the formulation of Section 2 in [7], that is posed
in a rectangle(x♯1, x

1
2) ∈ (0, LB) × (0, L∗

C) where the pa-
rametersLB andL∗

C represent respectively the base length
in the macroscale directionx♯1 and the cantilever scaled
length in the microscale variablex12. For simplicity, we
denote the coordinatesx♯1 andx12 by x andy. The base
is modeled by the linex ∈ (0, LB) located aty = 0. At
eachx corresponds a clamped cantilever oriented in the di-
rection y ∈ (0, L∗

C). Only the bending displacement is
considered in the system motion. The base is governed by
an Euler-Bernoulli beam equation with two kinds of dis-
tributed forces. One is exerted by the attached cantilevers
and the other is an external force denoted byfB . The bend-
ing displacement, the bending coefficient and the width be-
ing denoted bywB , R

B andℓC , the base governing equa-
tion states as

RB∂4xw + ℓCR
C∂3ywC = fB . (9)

The base is assumed to be clamped, i.e. with boundary
conditions,

wB = ∂xwB = 0 (10)

at both ends. The motion of the cantilevers is governed by
an infinite number of Euler-Bernoulli equations distributed
along thex-direction,

RC∂4y···ywC = fC (11)

wherewC , fC andRC represent the bending displacement,
the distributed force and the bending coefficient. The can-
tilevers are clamped in their base and free at their other end,
so the boundary conditions are

{

wC = wB and∂ywC = 0 aty = 0
∂2yywC = ∂3yyywC = 0 aty = L∗

C . (12)

In total, the model is governed by (9-12). In the follow-
ing, we describe its implementation, forN cantilevers, in
a FEM software package using a two-dimensional geom-
etry, see Figure 1. To do so, the fieldswB andwC are
taken independent ofy andx respectively, and the problem
(11, 12) is solved for theN cantilevers. The contribution
∂3ywC in the base equation is therefore added as an inter-
nal term. The implementation is described for a software
package as COMSOLTM which is based on a mixed finite
element method with lagrangians on the form

L(u, µ) =
1

2
a(u, u)− l(u) + b(u, µ).

We refer to [3] for a presentation of this method built with
two bilinear formsa(u, u), b(u, µ) and a linear forml(u)
defined foru ∈ U andµ ∈ M whereU andM are two
functional spaces. Here, they are restricted to the form
necessary for the above model posed on a bidimensional
domainΩ with boundaryΓ,

a(u, u) =

∫

Ω

L.∇u dx, l(u) =
∫

Ω

F u dx

andb(u, µ) =

∫

Ω

RΩ µΩ dx+

∫

Γ

RΓ µΓ dx (13)

but for broad possible choices of vector valued functionals
L(∇u, u), constraintsRΩ(∇u, u), RΓ(∇u, u) and right-
hand sidesF (∇u, u). The functionsµΩ, µΓ are lagrange
multipliers associated to the constraints. The associated
equations are

− div(L(u)) + (∂uRΩ(u))
∗(µ) = F in Ω

andL(u).n = 0 orRΓ(∇u, u) = 0 in Γ (14)

wheren is the outward unit normal toΓ.

Fig. 1: Geometry of an array of cantilevers

Fig. 2: Simulation results for an array of cantilevers

Here, the domainΩ is split into three piecesΩB ∪ ΩBC ∪
ΩC , see Figure 1. The fourth order equations (9, 11) can-
not be directly written in the above framework. They are
implemented as a system of first order equations

∂xwB = m1, ∂xm1 = m2, ∂xm2 = m3,

and∂xm3 + ℓCR
Cn3 = fB in ΩB ∪ ΩBC ,

∂ywC = n1, ∂yn1 = n2, ∂yn2 = n3, ∂yn3 = fC in ΩC ,

and∂yn3 = 0 in ΩBC .



The fieldswB , wC are defined inΩ, m1,m2,m3 are de-
fined inΩB ∪ΩBC , n3 is defined inΩC ∪ΩBC andn1, n2
are defined inΩC . The corresponding equations areL = 0
in all parts and for all fields. PosingΓB = {(x, y) ∈ Ω |
x ∈ {0, LB}} × (0, L∗

C), ΓBC = {(x, y) ∈ Ω | y = 0},
ΓC = {(x, y) ∈ ΩC | y = L∗

C}, and removing the in-
dicesΩ andΓ of R since there is no ambiguity, the related
equations are

FwB ,wC
=

(

∂xwB −m1

wC

)

, RwB
= ∂ywB in ΩB ∪ ΩBC ,

FwB ,wC
=

(

∂ywB

∂ywC − n1

)

,RwC
= ∂xwC in ΩC ,

RwB
= wB atΓB ,RwC

= wC atΓBC ,

Fm1,m2,m3
=





∂xm1 −m2

∂xm2 −m3

∂xm3 + ℓCR
Cn3 − fB



 ,

Rm1,m2,m3
=





∂ym1

∂ym2

∂ym3



 in ΩB ∪ ΩBC ,

Rm1
= m1 atΓB ,

Fn1,n2
=

(

∂yn1 − n2
∂yn2 − n3

)

,Rn1,n2
=

(

∂xn1
∂xn2

)

in ΩC ,

Rn1
= n1 atΓBC ,Rn2

= n2 atΓC ,

Fn3
= ∂yn3 − fC ,Rn3

= ∂xn3 in ΩC , Rn3
= n3 onΓC ,

Fn3
= ∂yn3,Rn3

= ∂xn3 in ΩBC .

Figure 2 illustrates this implementation for forces applied
to lines closed to the cantilever ends. It is noticed that this
model simulation dramatically reduces computation time
and memory use compared to direct three-dimensional sim-
ulations.
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