
A cost effective AFM setup, combining
interferometry and FPGA

Raphaël Couturier∗, Stéphane Domas∗, Gwenhaël Goavec-Merou�,
Mélanie Favre�, Michel Lenczner� and André Meister�

∗FEMTO-ST, DISC
University of Franche-Comté, Belfort, France

{raphael.couturier,stephane.domas}@univ-fcomte.fr
�FEMTO-ST, Time-Frequency

University of Franche-Comté, Besançon, France
michel.lenczner@utbm.fr,gwenhael.goavec@trabucayre.com

�CSEM
Neuchatel, Switzerland

{melanie.favre,andre.meister}@csem.ch

Abstract
Atomic force microscopes (AFM) provide high

resolution images of surfaces. In this paper, we focus our
attention on an interferometry method for the deflection
estimation of cantilever arrays in quasi-static regime.
Here, we propose a novel complete solution with a
least square based algorithm to determine interference
fringe phase and its optimized FPGA implementation.
Simulations and real tests show very good results and
open perspectives for real-time estimation and control of
cantilever arrays in the dynamic regime.

1. Introduction
Cantilevers are used in atomic force microscopes

(AFM) which provide high resolution surface images.
Several techniques have been reported in literature for
cantilever displacement measurement. In [1], authors have
shown how a piezoresistor can be integrated into a
cantilever for deflection measurement. Nevertheless this
approach suffers from the complexity of the microfabri-
cation process needed to implement the sensor. In [2],
authors have presented a cantilever mechanism based on
capacitive sensing. These techniques require cantilever in-
strumentation resulting in complex fabrication processes.

In this paper our attention is focused on a method based
on interferometry for cantilever displacement measure-
ment in quasi-static regime. Cantilevers are illuminated
by an optical source. Interferometry produces fringes en-
abling cantilever displacement computation. A high speed
camera is used to analyze the fringes. In view of real
time applications, images need to be processed quickly
and then a fast estimation method is required to determine
the displacement of each cantilever. In [3], an algorithm
based on spline has been introduced for cantilever position
estimation. The overall process gives accurate results but
computations are performed on a standard computer using
LabView ®. Consequently, the main drawback of this

implementation is that the computer is a bottleneck. In this
paper we pose the problem of real-time cantilever position
estimation and bring a hardware/software solution. It
decomposes into two parts: a calibration phase that uses
the algorithm based on splines presented in [3], and an
acquisition loop that relies on a fast method based on
least squares and its FPGA implementation.

The remainder of the paper is organized as follows.
Section 2 describes the goals we chose for our setup.
Our solution based on the FPGA implementation of a
least square method is presented in Section 3. Numerical
experimentations are described in Section 4. Finally a
conclusion and some perspectives are drawn.

2. Design goals and choices

In order to build simple, cost effective and user-friendly
cantilever arrays, we use a system based on interferometry.
The experimental setup is described in [4]. It is based
on a Linnick interferometer [5] to produce interferomet-
ric fringes on the sample surface. The sample is itself
placed on a nano-positioning table. A CMOS camera takes
images of the surface, that are analyzed to recover the
cantilever deflections.

Current experiments operate on arrays with up to
17×4 = 68 levers but it should increase in a near future.
Thus, we chose a goal which consists in designing a
computing unit able to estimate the deflections of at least
100 cantilevers, for an image rate of 1KHz. The geometry
of the array of cantilevers is not fixed but our solution
should manage a grid, for example 10×10, 7×15, 4×25,
. . .

In addition, the result accuracy must be close to 1nm,
the maximum precision reached in [3]. Finally, the latency
between the entrance of the first pixel of an image and the
end of deflection computation must be as small as possi-
ble. All these requirements are stated in the perspective of

implementing real-time active control for each cantilever
(see [6], [7]).

If we put aside other hardware issues like the speed of
the link between the camera and the computation unit, the
time to deserialize pixels and to store them in memory, the
phase computation is the bottleneck of the whole process.
For 100 cantilevers, our method implies to compute the
phase of interferometric fringes located on 201 segments
of pixels (i.e. profiles, see Section 3). Supposing the
camera is able to pick images every milliseconds, each
phase calculation (including the time to extract pixels)
should take no more than 5µs.

In fact, this timing is a very hard constraint. A very sim-
ple test-bench that does cumulated sums on 20 values (the
average profile size in our experiments) reaches an average
of 155Mflops on an Intel Core 2 Duo E6650 at 2.33GHz.
Obviously, some cache effects and optimizations on huge
amount of computations can drastically increase these
performances: peak efficiency is about 2.5Gflops for the
considered CPU. But this is not the case for phase
computation that is using only a few tenth of values. This
test-bench implies that the phase computation algorithm
should do less than 775 floating point instructions, which
is very small.

However, the most important point is the latency of the
whole computation. Supposing that each profile must be
treated one after the other in 5µs, the deflection of 100
cantilevers would take 1ms. It is totally inadequate for
real-time requirements as for individual cantilever active
control. An obvious solution is to parallelize the compu-
tations, for example on a GPU. Nevertheless, the cost of
transferring profiles in GPU memory and of taking back
results would be prohibitive compared to computation
time. It is far more efficient to pipeline the computation.
For example, supposing that 200 profiles of 20 pixels
could be pushed sequentially in a pipelined unit clocked
at a 100MHz (i.e. a pixel enters in the unit each 10ns), all
profiles would be treated in 200× 20× 10.10−9 = 40µs
plus the latency of the pipeline. Such a solution would
be meeting our requirements and would be accurate for
real-time control. FPGAs are appropriate for such an
implementation, so they turn out to be the computation
units of choice to reach our goals.

3. Interferometric based cantilever deflection estima-
tion

As shown in Figure 1, each cantilever is covered by
several interferometric fringes. The fringes distort when
cantilevers are deflected. For each cantilever, the method
uses three segments of pixels, parallel to its section, to
determine phase shifts. The first one (reference profile) is
on the base of the array. It is common to all levers and
provides a reference for noise suppression. The second is
located just above the AFM tip (tip profile), it provides the
phase shift modulo 2π. The third one is close to the base
junction (base profile). It is used to determine the “real”

tip profile

base profile

reference profile

Figure 1. Portion of a camera image showing moving interferometric
fringes on a 17×4 array of cantilevers

tip phase through an operation called unwrapping where
it is assumed that the average deflections along the base
and tip profiles are linearly dependent. Finally, deflections
are simply derived from this unwrapped phase.

The pixel gray-level intensity I of each profile is mod-
eled by

I(x) = A cos(2π f x+θ)+ax+b. (1)

where x denotes the position of a pixel in a segment, A, f
and θ are the amplitude, the frequency and the phase of the
light signal when the affine function ax+ b corresponds
to the cantilever array surface tilt with respect to the light
source.

Our method consists in two main sequences: calibration
and acquisition loop. The calibration does not require real-
time computations. First, an image of the whole array is
taken, without any forces applied to levers. From profile
locations, we determine the frequency f of each profile
using a spline interpolation, described in Section 3-A.
Then, we take several images for different locations of
the nano-positioning table in order to compute, for each
lever, the coefficients of the linear relation between base
and tip phases. And finally, we find the slope of the array
compared to the horizontal plane.

The acquisition loop consists in moving the nano-
positioning table and taking images at regular time steps.
For each image, the phase θ of each profile is computed
to obtain, after unwrapping, the cantilever deflection. The
phase determination is achieved on the FGPA, with the
least square method described in Section 3-B.

A. Frequency determination

As mentioned above, the phase needs to be computed
for each image but f is computed only once during

calibration. This is why the frequency determination can
be done on a CPU with a time consuming method based
on spline interpolation.

We denote by M the number of pixels in a segment (i.e.
a profile) used for phase computation. For the sake of the
simplicity of the notations, we consider the light intensity
I a function on the interval [0,M− 1] which itself is the
range of a one-to-one mapping defined on the physical
segment. The pixels are assumed to be regularly spaced
and centered at coordinates xp ∈ {0,1, . . . ,M−1}. We use
the simplest definition of a pixel, namely the value of I
at its center. The pixel intensities are considered as pre-
normalized so that their minimum and maximum have
been resized to −1 and 1.

The first step consists in computing the cubic spline
interpolation of the intensities. This allows interpolating I
at a larger number L = 1+k×(M−1) of points (typically
k = 4 is sufficient) in the interval [0,M− 1]. We denote
these points xs

i with i = 0,1, . . . ,L−1.
The second step is to determine the affine part ax+ b

of I. It is found with an ordinary least square method,
taking into account the L points. Values of I in xs

i are
used to compute its intersections with ax+b. The period
of I (and thus its frequency) is deduced from the number
of intersections and the distance between the first and the
last.

The frequency could also be obtained using the deriva-
tive of spline functions, which only requires to solve
quadratic equations but yields higher errors.

B. Phase determination

Since f and x are already known, Equation (1) has only
4 parameters: a,b,A, and θ. A least square method based
on a Gauss-Newton algorithm can be used to determine
these four parameters. This kind of iterative process ends
with a convergence criterion, so it is not suited to our
design goals. Fortunately, it is quite simple to reduce the
number of parameters to θ only. Firstly, the affine part
ax+b is estimated from the M values I(xp) to determine
the corrected intensities,

Icorr(xp)≈ I(xp)−a.xp−b. (2)

To find a and b we apply the least square method (as in
SPL but on M points). Let X p be a vector containing the
values of xp, then

a =
covar(X p, I(X p))

var(X p)
and b = I(X p)−a.X p. (3)

where overlined symbols represent the average. Then the
amplitude A is approximated by

A≈ max(Icorr)−min(Icorr)

2
.

Finally, the problem of approximating θ is reduced to
minimizing

min
θ∈[−π,π]

M−1

∑
i=0

[
cos(2π f i+θ)− Icorr(i)

A

]2

.

An optimal value θ∗ of the minimization problem is a zero
of the first derivative of the above argument,

2

[
cosθ

∗
M−1

∑
i=0

Icorr(i) sin(2π f i)

+sinθ
∗

M−1

∑
i=0

Icorr(i) cos(2π f i)

]
−

A

[
cos2θ

∗
M−1

∑
i=0

sin(4π f i)+ sin2θ
∗

M−1

∑
i=0

cos(4π f i)

]
= 0.

(4)
Several points can be noticed:

• If all profiles have the same fixed size, then X p and
var(X p) are constants.

• The terms ∑
M−1
i=0 sin(4π f i) and ∑

M−1
i=0 cos(4π f i) are

independent of θ, they can be precomputed.
• Lookup tables can be set with the 2.M values

sin(2π f i) and cos(2π f i).
• A simple method to find a zero θ∗ of the optimality

condition is to discretize the range [−π,π] with a
large number nbs of points and to find which one is
a minimizer in the absolute value sense. Hence, three
other lookup tables can be set with the 3×nbs values
sinθ, cosθ, and[

cos2θ

M−1

∑
i=0

sin(4π f i)+ sin2θ

M−1

∑
i=0

cos(4π f i)

]
.

• The search algorithm can be very fast using a di-
chotomous process namely in log2(nbs).

Taking into account all these remarks, we obtain an
algorithm (called LSQ in the following) that uses no
complex operations (division, trigonometric functions, . . .)
which is mandatory to be ported efficiently on an FPGA.
Nevertheless, it should also be proved that it fits with our
goals.

C. LSQ evaluation

We evaluated the algorithm over three criteria:

• precision of results on a cosines profile distorted by
noise,

• number of operations,
• complexity of FPGA implementation.

For the first item, we produced a Matlab® version,
running in double precision. The profile was generated for
about 34,000 different quadruplets of periods (∈ [3.1,6.1],
step = 0.1), phases (∈ [−3.1,3.1], steps = 0.062) and
slopes (∈ [−2,2], step = 0.4). Obviously, the discretization
of [−π,π] introduces an error in the phase estimation. It is
at most equal to π

nbs
. In our last experiments on a 17×4

array, we noticed an average ratio of 50 between phase
variation in radians and lever end position in nanometers.
Assuming such a ratio and nbs = 1024, the maximum lever

deflection error would be 0.15nm which is smaller than
1nm, the precision to reach.

Moreover, pixels have been paired and the paired in-
tensities have been perturbed by addition of a random
number uniformly picked in [−N,N]. Notice that we have
observed that perturbing each pixel independently yields
too weak profile distortions. We report percentages of
errors between the reference and the computed phases out
of 2π,

err = 100×
|θre f −θcomp|

2π
.

Table 1 gives the maximum and the average errors for
both algorithms and for increasing values of N the noise
parameter.

LSQ
noise (N) max. err. aver. err.

0 0.49 0.1
2.5 1.16 0.22
5 2.47 0.41

7.5 3.33 0.62
10 4.29 0.81
15 6.35 1.21
30 13.94 2.45

Table 1. Error (in %) for cosines profiles, with noise.

The results show that the algorithm behave very well
against noise. Assuming an average ratio of 50 (see
above), an error of 1 percent on the phase corresponds
to an error of 0.5nm on the lever deflection, which is still
under the precision to reach.

It is very hard to predict which level of noise will be
present in real experiments and how it will distort the
profiles. Results on the 17× 4 array mentioned above
allowed us to compare experimental profiles to simulated
ones. We can see on figure 2 the profile with N = 10
that leads to the biggest error. It is a bit distorted, with
pikes and straight/rounded portions. In fact, it is very
close to some of the worst experimental profiles. Figure
3 shows a sample of worst profile for N = 30. It is
completely distorted, largely beyond any experimental
ones. Obviously, these comparisons are a bit subjective
and experimental profiles could also be more distorted on
other experiments. Nevertheless, they give an idea of the
possible error.

The second criterion is relatively easy to estimate. The
number of operation is proportional to M the number of
pixels. It also depends on nbs. We assume that M = 20,
nbs = 1024 and k = 4, that all possible parts are already
in lookup tables and that a limited set of operations (+,
-, *, /, <, >) is taken into account. Translating LSQ
algorithm in C code, we obtain about 430 operations,
which is largely under the limit of 775 (see section2).
Nevertheless, considering the total number of operations
is not fully relevant for FPGA implementation for which
time and space consumption depends not only on the

Figure 2. Sample of worst profile for N=10

Figure 3. Sample of worst profile for N=30

type of operations but also on their ordering. The final
evaluation is thus very much driven by the third criterion.

The Spartan 6 used in our architecture has a hard
constraint since it has no built-in floating point units.
Obviously, it is possible to use some existing "black-
boxes" for double precision operations. But they require
a lot of clock cycles to complete. It is much simpler to
exclusively use integers, with a quantization of all double
precision values. It should be chosen in a manner that does
not alter result precision. Furthermore, it should not lead
to a design with a huge latency because of operations that
could not complete during a single or few clock cycles.
Divisions fall into that category and, moreover, they need
a varying number of clock cycles to complete. Even
multiplications can be a problem since a DSP48 takes
inputs of 18 bits maximum. So, for larger multiplications,
several DSP must be combined which increases the overall
latency.

Nevertheless, the hardest constraint does not come from
the FPGA characteristics but from the algorithm itself.
Its VHDL implementation can be efficient only if it can
be fully (or near) pipelined. We observe that it is not a

problem with LSQ since all parts, except the dichotomic
search, work on the same data with a constant size: the
profile.

4. VHDL implementation and experimental tests

A. The FPGA board

The architecture we use is designed by the Armadeus
Systems company. It consists in a development board
called APF27 ®, hosting a i.MX27 ARM processor (from
Freescale) and a Spartan3A (from Xilinx). This board
includes all classical connectors as USB and Ethernet for
instance. A Flash memory contains a Linux kernel that
can be launched after booting the board via u-Boot. The
processor is directly connected to the Spartan3A via its
special interface called WEIM. The Spartan3A is itself
connected to an extension board called SP Vision ®, that
hosts a Spartan6 FPGA. Thus, it is possible to develop
programs that communicate between i.MX and Spartan6,
using Spartan3 as a tunnel. A clock signal at 100MHz
(by default) is delivered to dedicated FPGA pins. The
Spartan6 of our board is an LX100 version. It has 15,822
slices, each slice containing 4 LUTs and 8 flip/flops. It is
equivalent to 101,261 logic cells. There are 268 internal
block RAM of 18Kbits, and 180 dedicated multiply-adders
(named DSP48), which is largely enough for our project.
Some I/O pins of Spartan6 are connected to two 2× 17
headers that can be used for any purpose. In our setup,
they are connected to an interface board that is bound to
the camera and the nano-positioning table controller.

B. VHDL implementation

From the LSQ algorithm, we have written a C program
that uses only integer values. We used a very simple
quantization which consists in multiplying each double
precision value by a factor power of two and by keeping
the integer part. For an accurate evaluation of the division
in the computation of a the slope coefficient, we also
scaled the pixel intensities by another power of two. The
main problem was to determine these factors. Most of the
time, they are chosen to minimize the error induced by the
quantization. But in our case, we also have some hardware
constraints, for example the width and depth of RAMs or
the input size of DSPs. Thus, having a maximum of values
that fit in these sizes is a very important criterion to choose
the scaling factors.

Consequently, we determined the maximum value of
each variable as a function of the scale factors and the
profile size involved in the algorithm. It gave us the
maximum number of bits necessary to code them. We
chose the scale factors so that any variable (except the
covariance) fits in 18 bits, which is the maximum input
size of DSPs. In this way, all multiplications (except one
with covariance) could be done with a single DSP, in a
single clock cycle. Moreover, assuming that nbs = 1024,
all LUTs could fit in the 18Kbits RAMs. Finally, we

compared the double and integer versions of LSQ and
found a nearly perfect agreement between their results.

As mentioned above, some operations like divisions
must be avoided. When the divisor is fixed, a division can
be replaced by its multiplication/shift counterpart. This is
always the case in LSQ. For example, assuming that M
is fixed, var(X p) is known and fixed. Thus, covar(X p,I(X p))

var(X p)
can be replaced by

(covar(X p, I(X p))×
⌊

2n

var(X p)

⌋
)� n

where� is a right bit-shift and n depends on the desired
precision (in our case n = 24).

Obviously, multiplications and divisions by a power of
two can be replaced by left or right bit shifts. Finally,
the code only contains shifts, additions, subtractions and
multiplications of signed integers, which are perfectly
adapted to FPGAs.

We built two versions of VHDL codes, namely one
directly by hand coding and the other with Matlab us-
ing the Simulink HDL coder feature [8]. Although the
approaches are completely different we obtained quite
comparable VHDL codes. Each approach has advantages
and drawbacks. Roughly speaking, hand coding provides
beautiful and much better structured code while Simulink
HDL coder allows fast code production. In terms of
throughput and latency, simulations show that the two
approaches yield close results with a slight advantage for
hand coding.

C. Simulation

Before experimental tests on the FPGA board, we sim-
ulated our two VHDL codes with GHDL and GTKWave
(two free tools with Linux). We built a test-bench based on
experimental profiles and compared the results to values
given by the C implementation. Both versions lead to
correct results. Our first codes were highly optimized,
indeed the pipeline could compute a new phase each 33
cycles and its latency was equal to 95 cycles. Since the
Spartan6 is clocked at 100MHz, estimating the deflection
of 100 cantilevers would take about (95+200×33).10 =
66.95µS, i.e. nearly 15,000 estimations by second.

D. Complete design

Figure 4 shows the complete processing chain, includ-
ing FPGA components, the i.MX processor, and external
devices. The main interface between the i.MX and the
FPGA is a VHDL component called interconnector, that
implements the wishbone protocol. It is in charge of
relaying data from/to i.MX to/from other components.
It is mainly used before the acquisition loop to fill the
precomputed values LUTs, to send profile positions and
identifiers to the profile extractor component, and to setup
the sweep parameters to Table move. It also relays orders
like to begin profile extraction.

CPU

Frame
grabber

Table
move

Interconnector

FPGA

pre-computed
values
LUTs

Phase
computer

cos x, sin x,
cos 2x, sin 2x,

LUTs

Profile
extractor

px_a px_b

prof_pix

prof_id

Phase
store

prof_phase

prof_id

prof_id values

clock 100MHz

camera nPoint
controller

CSI
bus

Figure 4. Overall design

The table move component is directly connected to the
nPoint controller that drives the nano-positioning table.
It can be programmed to achieve two types of scan: a
sequence of round trips in the x-y dimension or a simple
round trip in the z dimension. The first one is mainly used
to obtain topographic informations and the second one a
force curve. For each type, the user can specify the size
of the steps in space and time and their number.

The phase store component is connected to a specific
bus on the board, called CSI bus. Usually, this bus is used
to grab video frames from little CMOS camera at high
rate (up to 60 MHz). We use it to flush the phases of all
profiles, each time an incoming image has been totally
processed. It is the most efficient way to send the phases
to the CPU.

It should be noticed that unwrapping the tip phase is
done on the CPU since it is not time consuming and quite
complex to implement on the FPGA.

The whole source code represents 9,300 lines of VHDL
(without comments) but nearly 3,800 were generated by
ISE CoreGen® to implement wrappers for RAMs and
DSPs. The phase computer which is the heart of the
design consists in 2,200 lines of code, highly optimized.
It perfectly illustrates the complexity to transpose the 150
lines of LSQ written in C into VHDL.

E. Bitstream creation and tests

Unfortunately, the version of phase computer used
during simulations led to a design that could not be placed
and routed with ISE on the Spartan6 with a 100MHz
clock. The main problems were encountered with series
of arithmetic operations and more especially with RAM
outputs used in DSPs. The distance between some RAMs
and DSPs, combined to the time needed to achieve the
multiplication led to a signal propagation that lasts longer
than the clock cycle. We solve the problem by inserting a
delay after the RAMs that were in this case.

Finally, we obtained a phase computer with a latency
of 128 cycles and that can compute a new phase every 60

cycles. For 100 cantilevers, it would take (128+ 201×
60)× 10ns = 121.88µs to compute their deflection. It
corresponds to about 8,200 estimations per second, which
is largely beyond our camera capacities and the possibility
to extract a new profile from an image every 60 cycles.
Nevertheless, it also largely fits our design goals.

5. Conclusion and perspectives

In this paper we have presented a full hardware and
software solution for real-time cantilever deflection com-
putation from interferometry images. Phases are computed
thanks to a new algorithm based on the least square
method. It has been quantized and pipelined to be mapped
into a FPGA, the heart of our solution. Performances have
been analyzed through simulations and real experiments
on a Spartan6 FPGA. The results meet our initial re-
quirements in terms of throughput (at least 100 deflection
estimations every millisecond) and precision (1nm). The
next step is to finalize the setup, integrating the camera
and the nano-positioning table for the hardware part, and
implementing components to drive them for the software
part.

Future works will also address more general problems
such as algorithm quantization and real-time filtering or
control for AFM arrays in dynamic regime.

6. Acknowledgements

This work is partially supported by the European Terri-
torial Cooperation Programme INTERREG IV A France-
Switzerland 2007-2013 and by the French National Pro-
gramme LABEX ACTION.

References

[1] N. Abedinov, P. Grabiec, T. Gotszalk, T. Ivanov, J. Voigt, and
I. W. Rangelow. Micromachined piezoresistive cantilever array with
integrated resistive microheater for calorimetry and mass detection.
Journal of Vacuum Science and Technology A, 19(6):2884–2888,
Nov 2001.

[2] D. R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L.
Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack.
Design and performance of a microcantilever-based hydrogen sen-
sor. Sensors and Actuators B: Chemical, 88(2):120–131, Jan 2003.

[3] M. Favre, J. Polesel-Maris, T. Overstolz, P. Niedermann, S. Dasen,
G. Gruener, R. Ischer, P. Vettiger, M. Liley, H. Heinzelmann, and
A. Meister. Parallel afm imaging and force spectroscopy using two-
dimensional probe arrays for applications in cell biology. Journal
of Molecular Recognition, 24(3):446–452, 2011.

[4] A. Meister, Gruner G., and J. Polesel-Maris. Brevet ep2336789 (a1)
: Parallel cantilever deflection measurment. 2012.

[5] M. B. Sinclair, M. P. de Boer, and A. D. Corwin. Long-working-
distance incoherent-light interference microscope. Applied Optics,
44(36):7714–7721, Dec 2005.

[6] M. Lenczner, N. Ratier N, E. Pillet, S. Cogan S, H. Hui, and
Y. Yakoubi. NanoSystems & Systems on Chips, Modeling, Control
and Estimation, chapter Modelling, Identification and Control of a
Micro-cantilever Array. John Wiley & Sons, 2010.

[7] H. Hui, Y. Yakoubi, M. Lenczner, and N. Ratier. Semi-decentralized
approximation of a lqr-based controller for a one-dimensional can-
tilever array. In 18th World Congress of the International Federation
of Automatic Control (IFAC), 2011.

[8] Simulink HDL coder 2.1. Matworks datasheet, 2011.

	Introduction
	Design goals and choices
	Interferometric based cantilever deflection estimation
	Frequency determination
	Phase determination
	LSQ evaluation

	VHDL implementation and experimental tests
	The FPGA board
	VHDL implementation
	Simulation
	Complete design
	Bitstream creation and tests

	Conclusion and perspectives
	Acknowledgements
	References

