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Abstract
We present a multi-scale model of a probe for scanning

thermal microscopy. The probe is built by microfabrication
techniques. In active mode, it is supplied by a source of har-
monic and/or continuous current and the tip temperature is
measured after a lock-in amplifier. The model distinguishes
two time scales and two space scales. Simulation results
show the potential of the model in terms of accuracy and
computation speed and they are compared to experimental
results. Finally, a temperature control law constructed from
this model is stated.

Keywords. Scanning Thermal Microscopy, Multiscale
Modeling, Temperature Control

Scanning thermal microscopy (SThM) is a kind of scan-
ning probe microscopy that allows mapping thermal trans-
port and temperatures in nanoscale devices, see [6, 10, 12]
for general references on SThM. It is becoming a key ap-
proach that may help to resolve heat dissipation problems
at the nanoscale in various devices as for instance highly
integrated electronics. Unfortunately, performance of cur-
rent SThM implementations in measurement of high ther-
mal conductivity materials continues to be limited for a
number of reasons. Regarding modeling, the limitations
are ranging from nanoscale phenomena at the tip-sample
interface, where ballistic-diffusion models should be taken
into account, to scales in the range of diffusion that ac-
tivate thermo-mechanical effects. Some implementation,
as those based on micro-fabricated probes, are highly sen-
sitive to bimetallic effect resulting in unwanted change
of tip-sample interface contact force and so of the inter-
face resistance. This motivates a relatively precise mod-
eling of heat diffusion, possibly in real-time. Limitations
also come from temperature regulation loops, not correctly
tracking temperature changes, mainly due to the system
non-linearities. In particular, the latter are not well taken
into account in the use of real time analog Proportional In-
tegral Derivative controllers, see e.g. [15], and prevent to
reach the required accuracy.

In the literature, the modeling of SThM is done by resis-
tances in series representing the sample, the tip-sample in-
terface, the tip and the probe body or by black boxes repre-
senting the relationships between input current, tip temper-
ature, resistors and voltages as in [14]. The present paper
adopts an alternate approach consisting in modeling the full
probe and in designing a control law based on such a de-

Fig. 1: A novel SThM nanoprobe.

tailed model. Our approach is presented on a novel SThM
nanoprobe, comprised of an AFM probe combined with a
resistive tip, see Figure 1. It also includes a piezo-resistive
detection sensor for topography imaging [9].

Fig. 2: The SThM probe in contact with a sample.

In this paper, the modeling is based on electro-thermal
equations including the Joule effect in the conductor and on
the heat equation in the rest of the probe. The latter is possi-
bly in contact with a sample made of an heated copper line
embedded in a low-k material, see Figure 2 and also 3. We
explain why the direct simulation of the above equations
is not viable when the frequency ω is large and so moti-
vate the introduction of a new time-space two-scale model
which computation time is independent of the frequency ω.
This model is stated and its simulation results are compared
to a direct simulation and to experimental results. Finally,
a theoretical formulation of a model based control law of
the tip temperature is stated. It is derived from a Lyapunov
function and uses a state observer. We expect that, after a
step of model reduction, it will be applicable for real-time
application.



Fig. 3: Sample configuration: a heated copper line embed-
ded in a low-k material.

1. Setup description
The novel type of nano-sensor, described in this paper,

will be equipped with sharp, conductive tip, an integrated
deflection sensor, and an actuation system. A modifica-
tion of a double sided silicon micro-machining process de-
veloped for manufacturing of piezo-resistive AFM micro-
probes has been adapted to fabricate SThM sensors [8, 7].

The SThM/ECM probes on the market are based on
bulky and complicated optical deflection sensors. There-
fore, their application in small SEM chambers is difficult.
The proposed nano-probes are integrated with piezoresis-
tive deflection detection, which will significantly improve
the system versatility and will enable new applications also
in narrow environments as vacuum chambers.

The new SThM nano-probes are designed to operate in
two modes, namely they act as a passive thermo-sensing
element or as an active heat flux meter. In the latter case,
a larger AC current in the range of 1-10 KHz is passed
through the resistive tip probe leading to heat dissipation
and a heat flow through the tip sample contact into the
sample. The power that is required to maintain a constant
temperature difference between the tip and the sample (at
ambient temperature) depends (among others) on the local
thermal conductivity of the sample. During active measure-
ments temperature of the tip is increased by 20-30 K above
room temperature. According to the applications, devel-
oped SThM nanoprobe will enable surface contact mea-
surements at load force ranging from 10 nN up to 1µN. The
load force will be detected with the resolution of 10 pN in
the bandwidth of 100 Hz. The low load forces as well as
sub-nanometer vertical spatial resolution will be needed in
investigations of graphene and molecular samples, whereas
the high force will be applied in investigations of high-k in-
sulators.

Going more in details, the body of the probe is made
of silicon (Si) covered by an electric insulator layer in sili-
con dioxide (SiO2), and then by a platinum (Pt) conductor
layer. The latter consists of four legs ending to the tip. In
active measurement mode, the two middle legs conduct a
controlled heating current with the aim to keep the thermo-
resistive tip at a constant temperature. The two outer legs
are for sensing the tip temperature. The heating current
is harmonic at a frequency ω with amplitude modulation
and the tip temperature is evaluated from lock-in ampli-
fications which reference signals are multiples of ω. An
extensive study of this SThM probe, taking into account
the full electro-thermo-mechanical behavior in the static

regime, has been carried out and reported in [16]. Detailed
sensitivity analysis and optimization were investigated.

2. Multi-scale modeling
The equations governing the electrothermal behavior of

the probe are described. The discussion of the simulation
results motivates the interest for a multiscale model which
is stated and its results are reported in the rest of the section.

2.1 Governing equations
The heat diffusion in the probe and in the sample is

governed by the heat equation ρc∂tθ̂ + divq = r with
unknown θ̂ = θ − θref the difference between the abso-
lute temperature and the ambient temperature. The coef-
ficients ρ, c and r are the volume mass, the specific heat
capacity, a radiative source and q is the heat flux defined
from the Fourier law q = −kth∇θ̂ with the thermal con-
ductivity matrix kth. At the location Γth

0 , representing
the probe clamping and the sample part far from the tip-
sample interaction vicinity, the relative temperature θ̂ is as-
sumed to vanish. These conditions are used as boundary
conditions. The other boundaries are assumed to be insu-
lated. The tip-sample interface condition is a resistance
interface condition where the heat flux is continuous and
−kth∇θ̂ = G[[θ̂]] with interface resistivity G and the tem-
perature discontinuity [[θ̂]]. The absence of tip-sample con-
tact is modeled by posing G = 0. The interface resistivity
depends on the temperature, the mechanical stress at the
interface and of the contact surface. Its determination is a
key issue but is not discussed in this paper where it is con-
sidered as a known parameter. In absence of volume source
of charges, the current density J is governed by div J = 0
and in a conductor or a semi-conductor it satisfies the Ohm
law E = ρelJ where E = (Ei)i=1,..,3 = −∇φ is the
electric field, φ the electric potential and ρel the resistivity
tensor. These equations are considered in ΩPt the elec-
tric conductor (ie the platinum) layer only and are com-
pleted by imposing a controlled AC/DC current source in
the heating branch

∫
Γel
1
J.n ds = jd at Γel

1 where n repre-
sents the outward unit normal to the boundary. Moreover, a
zero current source is imposed in the measurement branch.
The AC heating current is at a frequency ω and is modu-
lated in amplitude. The volume heat source generated by a
current density in a conductor or a semi-conductor is given
by the Joule’s law r = E.J = ρel(θ̂)|J|2. The electrical
resistivity of most materials changes with temperature. If
the temperature does not vary too much, a linear approx-
imation is typically used ρel(θ̂) = ρel

0 (1 + αθ̂) where α
is the temperature coefficient of resistivity (TCR), and ρel

0

the resistivity at ambient temperature. The TCR is an em-
pirical parameter fitted from measurement data. The above
equations are rewritten under the form of a weak formula-
tion posed on the domains Ωth and Ωel, where the thermal
and electrical phenomena occur: find the pair (θ̂, φ) ∈ V ,
the set of fields satisfying the boundary condition θ̂ = 0 on
Γth
0 , φ = 0 on Γel

0 the grounded nodes, φ constant in the
space variable along Γel

1 and possibly discontinuous at the



tip-sample interface, solution to∫
Ωth

ρc
∂θ̂

∂t
v + kth∇θ̂.∇v dx+

∫
Γtip

G[[θ̂]]× [[v]] ds(x)

(1)

=

∫
Ωel

ρel(θ̂)|J|2 v dx∫
Ωel

1

ρel(θ̂)
∇φ.∇w dx = (jdw)|Γel

1

for all pairs (v, w) ∈ V . With the purpose of control-
ling the tip temperature, the voltage between the ends of
the measurement branch is measured. For noise cancela-
tion, it is amplified by lock-in amplifiers at various possi-
ble frequencies nω for n = 0, 1, 2, 3, ... yielding the pos-
sible measurements ycn = 1

h

∫ t

t−h
φ(s) cos(nωs) ds and

ysn = 1
h

∫ t

t−h
φ(s) sin(nωs) ds. For instance the classical

3ω-measurements method [3] consists in measuring yc,s3 . It
generates a delay in the observation, so in view of fast op-
erations, the frequency ω should be chosen relatively high.

A direct simulation of the probe in contact with the
sample represented on Figure 3 has been implemented. The

Fig. 4: Zoom at the tip-sample contact.

metal line is heated by an electric current imposed on the
top surface of the left pad. This structure is surrounded by
low-k material above an SiO2 insulator layer. The bulk sil-
icon below supports the structure. The width and length of
the metal line are 45 nm and 4 µm respectively. The probe
is in contact with the sample surface through a small tip of
20 nm hight and 10 nm diameter. The temperature evolu-
tion of the point of the sample under the tip, see Figure 4, is
shown on Figure 5 for a 10 Hz and 1 mA amplitude heating
current in the sample, a 1 mA DC current in the probe and
a duration of 0.2s.

As expected, the temperature frequency is 20Hz which
is twice the current frequency. The sensing voltage is at the
same frequency and is well described by this simulation.
The conclusion of this simulation is that the above electro-
thermal equations can be implemented successfully for low
frequency heating current. However, increasing signifi-
cantly the heating frequency yields prohibitive computa-
tion time, and a decrease of the amplitude of the harmonic
thermal response requiring higher computation precision.
In other words, the simulation cannot be achieved anymore
and another model is required.

Fig. 5: Tip temperature evolution under a 10 Hz heating
current source in the sample and a DC current source in the
probe.

Let us detail the problems met in this simulation
for higher frequency ω. Whatever the frequency ω, the
quadratic term |J|2 produces a DC term and a 2ω-harmonic
term in the heating source and therefore in the temperature
field as well as a 3ω-harmonic in the measured voltage.
So, a higher frequency requires a smaller time step to cal-
culate the 2ω and 3ω-harmonic components over a fixed
time interval since it is imposed by the DC time scale. An-
other difficulty comes from the dramatic amplitude decay
of the harmonic components when the frequency increases
so they are rapidly hidden in the numerical error if a high
accuracy computation is not used.

2.2 Time and space scales
The above discussion shows that this system has two

time scales TM and Tm, namely the time scales of the
DC component and of the harmonic components that we
also refer as the macro- and micro-time-scales as usual in
multi-scale modeling methods. As it can be seen on Fig-
ures 6 and 7 the temperature field is spread out in the full
probe or concentrated near the heating part depending on
the regime. So, two space scales LM and Lm correspond
to the two time scales. In the heat diffusion process, the
time and space scales are related as ρc/T = kth/L2. We
denote by εt = Tm

TM
and εx = Lm

LM
the time and space

scale ratios. They satisfy the relation εt = ε2x, so εt is
taken as the single small parameter of this problem which
will be used to derive the model by an asymptotic method
also called a perturbation method. The macroscopic length
scale LM is equal to the probe length and the microscopic
time scale Tm = 2π/ω. The two other scales follow

Lm =
√

Tmkth

ρc and TM =
ρcL2

M

kth . In total, the small

parameter of the asymptotic problem is εt = 2π/(L2
Mω).

In the silicon probe into consideration with an AC-current
source at 10KHz, ρSi = 2.3 × 103 kg/m3, cSi = 7 × 102

J/kgK, kth,Si = 1.6 × 102 W/mK, LSi
M = 5 × 10−4 m,

T Si
m = 10−4 s so LSi

m = 10−4 m and T Si
M = 2.5 × 10−3

s. Similar time and space scales are obtained for the plat-
inum (Pt) layer so they are adopted for the complete probe.
Next, we scale the geometry, the time and space variables
and the electric potential φ := φV 0, we multiply the
two equations (1) by TM/(L3

MρSicSi) and ρel,Pt
0 /LMV 0

respectively, we pose m0 = ρc
ρSicSi , k

th,0 = TMkth

ρSicSiL2
M

,



G0 = εxTMG
ρSicSiLM

, b0 =
V 2
0 TM

ρSicSiL2
Mρel

0
, κ0 =

ρel,Pt
0

ρel
0

and

j0d =
LMρel,Pt

0 jd
V 0 to find∫

Ω0,th

m0 ∂θ

∂t
v + k0∇θ.∇v dx

+

∫
Γtip,0

ε−1
x G0[[θ]] [[v]] ds(x)

=

∫
Ω0,el

b0
|∇φ|2

(1 + αθ)
v dx∫

Ω0,el

b0

(1 + αθ)
∇φ.∇w dxdt = (j0dw)|Γ0,cur .

For the sake of illustration, we observe that for V 0 = 10−2

and a current source of 10−3A the scaled coefficients are
k0 = 0.43 in the silicon part b0 = 5.4 in platinum, G0 =
61 and j0d = 6.

2.3 A time space two-scale model
The method used for the model derivation is taken from

the field of periodic homogenization for composite me-
dia but applied to the time variable instead of the space
variable, see [2] for a comprehensive historical presenta-
tion of the method. Here we apply the unfolding method,
[4, 5, 11] an improvement of the two-scale convergence
[1, 13]. For simplicity, we use the notation ε instead of εt
when no risk of confusion may occur. The time interval
[0, T ] is split into subintervals (ti, ti+1) where ti = i × ε
for i = 0, ..., T/ε − 1 and the two-scale transform of any
function f(t) is the function T (f)(t, τ) = f(ti + ετ) for
any t ∈ (ti, ti+1) and τ ∈ (0, 1). We apply this transforma-
tion to θ and φ and assume that T (θ)(t, τ , x) = θ0 +O(ε)
and T (φ)(t, τ , x) = φ0 + εφ1 + εO(ε). The section of
the conducting platinum track is minimum at the end of the
probe tip yielding a concentration of electrical field and so
of heat source. Therefore, in the harmonic regime the high-
est temperature is localized in a vicinity Y ε ⊂ {x ∈ R3

| |x − xh| ≤ γ
√
ε} of the heating source centered at

xh, so we introduce the space scaling of functions g(x)
defined for x ∈ Y ε: Sg(y) = g(x/

√
ε) and assume

the expansion S(T (θ) − θ0)(t, τ , y) = εθ1 + εO(ε) and
ST (φ) = φ00 + O(ε). Here, γ is simply a sufficiently
large parameter. For the sake of conciseness the following
results are given without justification. The electric poten-
tial φ0 is solution to

− div(
b0

1 + αθ0
∇φ0) = 0

with the controlled current source
∫
Γ0,cur

b0

1+αθ0∇φ0.n

ds(x) = j0d and the same other boundary conditions as φ.
The temperature field θ0 is independent of τ , meaning that
it corresponds to the DC-component, and is solution to the
heat equation

m0 ∂θ
0

∂t
− div(k0∇θ0) =

b0

(1 + αθ0)

∫ 1

0

|∇φ0|2 dτ

which source term is an average in the microscopic time
variable avoiding oscillations. We observe that to the
first order the tip-sample interface resistance term vanishes

from this part of the model. However, due to the relatively
large value of G0 it is not negligible and we take it into
account in the simulations. The next temperature term θ1

in the expansion of T (θ) is solution of a heat equation in
microscopic variables with an oscillating source term

m0 ∂θ
1

∂τ
− divy(k

0∇yθ
1)

=
b0

(1 + αθ0)
(|∇yφ

00|2 −
∫ 1

0

|∇yφ
00|2 dτ).

It also satisfies the tip-sample transmission condition
k0∇yθ

1.ny = G0[[θ1]] and the heat flux continuity at the
tip-sample interface and thermal insulation boundary con-
dition at the boundaries except at the boundary created by
the localization procedure where a vanishing temperature
condition holds. Finally, the equation of the corrector φ1

of the electrical potential is fed by oscillations produced by
the product of those in φ0 and θ1,

− div(
b0

(1 + αθ0)
∇φ1.∇w dx

= −α div(
θ1

(1 + αθ0)2
∇φ0)

when its other boundary conditions are of the same kind as
those of φ0 but vanishing. Notice that the approximation in
the physical time-space of the temperature and the electric
potential fields are θ ≈ θ0(t, t/ε, x) + εθ1(t, t/ε, x/

√
ε)

and φ ≈ φ0(t, t/ε, x) + εφ1(t, t/ε, x). The lock-in ampli-
fier measurements of the voltage φ on a time interval Nε
is restated as a discrete measurement using the two-scale
transform T (φ) = φ0 + εφ1,

y(tk) ≈
V 0

N

k−1∑
i=k−N

∫ 1

0

(φ0 + εφ1)(ti, τ , x)w(τ) dτ

for k ≥ N , where w(τ) is a 1-periodic function as ϕn
c (τ) =

cos(2πnτ) and ϕn
s (τ) = sin(2πnτ).

3. Simulation results
Our current implementation is in the case of a small

temperature, so that (1+αθ0) ≈ 1−αθ0, and we keep only
the first significant terms of the Fourier series θ0(t, x) ≈
c0(t, x), θ1(t, τ , x/

√
ε) = c2(t, x)ϕ

2
c(τ) + s2(t, x)ϕ

2
s(τ),

φ0(t, x) ≈ a1(t, x)ϕ
1
c(τ)+b1(t, x)ϕ

1
s(τ) and φ1(t, τ , x) ≈

a3(t, x)ϕ
1
c(τ)+b3(t, x)ϕ

1
s(τ), so that only the related func-

tions cn, sn, an and bn need to be computed. Thus, the
computation time is independent of the current source fre-
quency. Figures 6 and 7 report simulations results for c0
and c2 in the steady state regime at a frequency of 1KHz
and without tip-sample contact. As assumed, the field c0 is
spread out the full probe when c2 is concentrated near the
heating source.

The two-scale model simulations have been compared
with a direct simulation. For a 1KHz frequency source, the
ratio between their computation time is in the range of 15−
20 and increases with the frequency. The error between
the two simulation results is generally in the range of few
percents on the DC-temperature θ0 and the harmonic part
θ1 if the accuracy of the direct simulation is sufficient. It is



Fig. 6: DC part of the temperature distribution for a 1 KHz
frequency and 0.01 A amplitude heating current source.

Fig. 7: Zoom near the tip on the harmonic temperature dis-
tribution for a 1 KHz frequency and 0.01 A amplitude heat-
ing current source.

worthwhile to mention that in the direct simulation we did
not yet obtained a visible electrical field φ1 preventing the
simulation of the 3ω-measurement method. A comparison
of the averaged temperatures in a small volume in the tip is
reported in Figure 8 for a source amplitude switched on at
the initial time.

For a current source cos(ωt), the comparison between
the simulation and the experiment of the variation of the
amplitude V3ω and the phase ϕ3ω of the 3ω-voltage com-
ponent with respect to the frequency are reported in Fig-
ure 10 and 11. The experiment was carried out in vac-
uum and the probe has been supplied with an AC cur-
rent (Keithley 6221). For the harmonics component mea-
surement, the probe was connected to a lock-in amplifier
(SR850) directly referenced to the current source. The cur-
rent source was connected on the external probe connector
and the AC voltage was extracted on an internal probe con-
nector, see Figure 9. The coefficients used in the simula-
tion were not identified from experiments except the TCR
α = 1.8×10−3 K−1 established by measuring the probe re-
sistance in an oven with varying temperature. It results that
at low frequency, the correlation is very good but for higher
frequencies the curves do not match well appealing for fur-
ther parameter identification. However, both results exhibit

0 0.005 0.01 0.015
0

50

100

150

200

250

300

350

time(s)

ti
p

 

 

Model simulation
Direct simulation

Fig. 8: Comparison of the time variations of the tip tem-
perature computed by a direct simulation and by the time-
space two-scale model for a 1 KHz frequency and 0.01 A
amplitude heating current source.

Fig. 9: Experimental setup for measurement of harmonic
components of the output voltage.

the expected characteristics, a plateau at low frequencies
with a phase shift of about π

2 and an asymptotic decay at
large frequency. The experimental cut-off frequency is ap-
proximatively 50 Hz.
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Fig. 10: Comparison between simulation and experiment
of the 3ω-voltage amplitude.

In summary, the time space two-scale model yields a
viable solution for simulation of an SThM probe fed by
a sum of a DC and a modulated harmonic heating cur-
rent. Compared to classical harmonic decomposition de-
rived with a single time scale, both models can represent
amplitude modulations of the harmonic temperature part,
but only our model takes into account unsteady evolutions
of the DC-temperature component and keeps only the most
significant terms in the Fourier series expansions. Figure
12 shows the comparison between the direct simulation and
the classical harmonic model exhibiting the lack of model-
ing of the DC-temperature transient.
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Fig. 11: Comparison between simulation and experiment
of the 3ω-voltage phase-shift.
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Fig. 12: harmonic model for a 1 KHz heating current
source with amplitude 0.01 A.

To conclude this section, the results reported in Fig-
ures 13 and 14 show the importance of taking into account
the full probe and not only the conductor part both for the
DC and the harmonic parts of the temperature respectively.
These results are in the absence of tip-sample contact, the
difference being reduced in case of an active contact.
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Fig. 13: Comparison of the temperature distribution along
the conductor in the simulations of the full probe and of the
conducting track only.

4. Control of the tip-temperature
As explained before, the response of the harmonic part

θ1 of the temperature field to a current change is almost in-
stantaneous. Its history has not to be taken into account and
its regulation is straightforward provided that a model is
available and that a meaningful measurement is available.
Thus, the tip temperature regulation should be focused on
the regulation of the DC component and on deriving an ob-
server of the system. The simplest approach is to operate
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Fig. 14: Comparison between the V3ω voltages in the sim-
ulations of the full probe and of the conducting track only.

the regulation in the stationary regime only. For this pur-
pose, we use the model to build a mapping from the input
current and the voltage measurements to the other quanti-
ties of interest as the tip temperature and the sample tem-
perature. Such table can be introduced as a look-up table in
a real-time processor to achieve a real time regulation.

To control the tip temperature in the transient regime,
we propose a controller based on the two-scale model
governing (φ0, θ0) and under the condition of small tem-
perature variations so that a linearized model is valid.
We denote (θ∗, φ∗, u∗

d) an objective state which is so-
lution to the two-scale model and that is to be reached
by stabilization. The solution to the linearized model in
the vicinity of the objective state (θ∗, φ∗, u∗

d) is denoted
(θ, φ, ud) ≈ (θ0, φ0, u0

d)− (θ∗, φ∗, u∗
d). Defining the state

feedback ud := −λφ with λ ≥ −(
∫
Ω0,el −b0|∇φ|2 −

αb0φ/(1 + αθ∗)∇φ.∇θ∗ + α2b0θ/(1 + αθ∗)2∇φ∗.∇θ∗

dx)/(|Γ0,cur|φ2
|Γ0,cur ) guaranty the decay of |θ| to zero

since ∂
∂t

∫
Ω0,th m

0θ
2

dx ≤ −2
∫
Ω0,th k

0|∇θ|2 dx +∫
Ω0,el

αb0θ
(1+αθ0)2

∫ 1

0
|∇φ0|2 dτ dx and the only stationary

state is (θ, φ) = 0. For a sufficiently small TCR α,
the condition can be simplified as λ ≥

∫
Ω0,el b

0|∇φ|2

dx/(|Γ0,cur|φ2
|Γ0,cur ). Then, denoting by (θ

obs
, φobs) an

observer of (θ, φ) based on the observation of the sens-
ing voltage y(φ) = φ on Γel

obs the measurement node, the
state feedback is replaced by an observer based feedback.
The convergence of the observer is guaranteed by choos-
ing the observation penalization term L(y(φ) − y(φobs))

such that
∫ 1

0

∫
Ωel

0
L(y(φ)− y(φobs))× (φ−φobs) dxdτ =

µ
∫ 1

0

∫
Γ0,el
obs

(φ − φobs)2 dxdτ with a sufficiently large µ

since this yields the same kind of estimate as the above
one for θ. For the sake of concision, the expression of the
operator L is not detailed here.

5. Conclusions
A new SThM probe has been designed and microfabri-

cated with the purpose of achieving unprecedented perfor-
mances. To assist its development phase and its use, sim-
ulations are required. The electrothermal behavior of the
probe in contact with a sample and with a modulated har-
monic heating has been simulated for low frequencies. For
large frequencies, the simulation turns out to be imprac-
ticable. A space-time multi-scale model has been derived
to overcome this limitation. It has been implemented suc-



cessfully and results have been compared to experiments.
Then, the model is used to built a state feedback control
law. In the future, the latter will be improved to take into
account the lock-in amplifier in the measurement and to be
tested in simulation before to be reduced and implemented
in a real-time embedded computing device and used in an
experimental setup.
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