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Abstract
In this paper, we present a two-scale model including

an optimal active control for a one-dimensional cantilever
array with regularly spaced actuators and sensors. With
the purpose of implementing the control in real time, we
propose an approximation that may be realized by an ana-
log distributed electronic circuit. More precisely, our ana-
log processor is made by Periodic Network of Resistances
(PNR). The control approximation method is based on two
general concepts, namely on functions of operators and
on the Dunford-Schwartz representation formula. We con-
ducted validations of the control approximation method as
well as of its effect in the complete control loop.

1. Introduction
In the past decade, a number of papers have been fo-

cused on semi-decentralized distributed optimal control for
systems with distributed actuators and sensors. Most of
them are dealing with infinite length systems, see [1] and
[10] for systems governed by partial differential equations,
and [3] for discrete systems. In the papers [4] and [5] the
authors have introduced an approximation of an optimal
control to a finite length beam endowed with a periodic dis-
tribution of piezoelectric sensors and actuators. Even if it
was giving satisfactory results, it was suffering from some
limitations. In [9] it has been extended so that to cover a
larger range of systems and to increase its precision and
robustness. Indeed, the new method does not require that
each operator of the state equation and of the cost func-
tional be functions of a same operator but they must be
only functions of a same operator up to some change of
variable operators. Regarding precision, the Taylor series
approximating a function of an operator has been replaced
by the use of the Dunford-Schwartz representation formula
followed by a quadrature rule for the contour integral.

Here we apply our new method to a recently developed
and validated two-scale model of cantilever arrays, submit-
ted in the paper [8]. It is rigorously justified thanks to an
adaptation of the two-scale approximation method intro-
duced in [6] and detailed in [7]. Its main advantage is that
in the same time it requires little computing effort and it is
reasonably precise.

This paper presents results from an implementation of
the new semi-decentralized optimal control strategy on the
two-scale model of cantilever arrays. We provide results re-
garding precision and cost. However our calculations have
been carried out using the simplest optimal control strat-
egy, namely a Linear Quadratic Regulator. As in [5], we
also provide a realization of the semi-decentralized control
scheme through a Periodic Network of Resistances (PNR),

implementing a finite difference scheme for the partial dif-
ferential operator in the Dunford-Schwartz formula. Fi-
nally, we quote that the entire approach can be extended
to other linear optimal control problems, i.e. LQG or H∞
controls as well as to more physical actuating and sensing
principles.

2. A Two-Scale Model of Cantilever Arrays
We consider a one-dimensional cantilever array com-

prised of an elastic base, and a number of clamped elas-
tic cantilevers with free end, see Figure 1. Assuming that
the number of cantilevers is sufficiently large, a homoge-
nized model was derived using a two-scale approximation
method. This is reported in the detailed paper [7] devoted
to static regime. The corresponding model extended to dy-
namic regime is introduced in the letter [6]. The modelling
papers were written in view of Atomic Force Microscopy
application.

Fig. 1: Array of Cantilevers

After a number of simplifications, the approximate ho-
mogenized model expressed in the two-scale referential,
which is a rectangle Ω = (0, LB)× (0, L∗

C). The parame-
ters LB and L∗

C represent respectively the base length in the
macroscale x−direction and the scaled cantilever length in
the microscale y−direction. The base is modelled by the
line Γ = {(x, y) | x ∈ (0, LB) and y = 0}, and the rectan-
gle Ω is filled by an infinite number of cantilevers. We de-
scribe the system motion by its bending displacement only.
So, the base is governed by an Euler-Bernoulli beam equa-
tion with two kinds of distributed forces, one exerted by
the attached cantilevers and the other, denoted by u(t, x, 0),
originating from an actuator distribution. The bending dis-
placement, the mass per unit length, the bending coefficient
and the scaled cantilever width being denoted by w(t, x, 0),
ρB, RB and ℓ∗C , the base governing equation states

ρB∂2
ttw +RB∂4

x···xw + ℓ∗CR
C∂3

yyyw = u in Γ. (1)

The base is assumed to be clamped, so the boundary con-
ditions are

w = ∂xw = 0, (2)

at its ends. Each cantilever is oriented in the y-direction,
and its motion is governed by the Euler-Bernoulli equation



distributed along the y-direction. It is subjected to a con-
trol force u(t, x, y) taken as distributed along each whole
cantilever. It can be replaced by any other realistic force
distribution. Denoting by w(t, x, y), ρC and RC cantilever
bending displacements, the mass per unit length, and the
bending coefficient, the governing equation in (x, y) ∈ Ω
is

ρC∂2
ttw +RC∂4

y···yw = u, (3)

endowed with the boundary conditions{
∂yw = 0 at y = 0,
∂2
yyw = ∂3

yyyw = 0 at y = L∗
C ,

(4)

representing an end clamped in the base, and a free end.
The weak formulation associated to (1-4) states as∫ LB

0
(ρB∂2

ttw v +RB∂2
xxw∂

2
xxv)|Γ dx

+l∗C
∫
Ω
ρC∂2

ttw v +RC∂2
yyw∂

2
yyv dydx

=
∫ LB

0
(u v)|Γ dx+ l∗C

∫
Ω
u v dydx,

(5)

for any regular function v, satisfying in particular the con-
ditions: v = ∂xv = 0 at both end of the base and ∂yv = 0
at y = 0 at the junction.

3. Model Reformulation
To simplify the model, but keeping its distributed fea-

ture, we discretize in the y-direction projecting on a ba-
sis Kn(y) =

∫ y

0
yT ′

n(y)dy, where Tn(y) is the basis of
Chebyshev polynomial. We define the approximations of
the displacement and of the control

w(t, x, y) ≈
N∑

n=1
wn(t, x)Kn(y),

u(t, x, y) ≈
N∑

n=1
un(t, x)Kn(y),

where wn(t, x) and un(t, x) are the polynomial coeffi-
cients in the approximation of w and u respectively. We

also choose v ≈
N∑

m=1
vm(t, x)Km(y), so we find that

(wn(t, x))n=1,2,··· ,N are the solutions to a set of equations
posed on Γ,

N∑
n,m=1

Mm,n∂
2
ttwn +KB

m,n∂
4
x···xwn

+KC
m,nwn =

N∑
n,m=1

B̃m,nun in [0,∞)× Γ.

(6)

The boundary conditions are
N∑

n=1
wn(t, 0)Kn(0) =

N∑
n=1

∂xwn(t, 0)Kn(0) = 0 and
N∑

n=1
wn(t, LB)Kn(0) =

N∑
n=1

∂xwn(t, LB)Kn(0) = 0. In (6), we use the notations

Mm,n = ρB(KmKn)|Γ + l∗Cρ
C
∫ L∗

C

0
KmKn dy,

KB
m,n = RB(KmKn)|Γ,

KC
m,n = l∗CR

C
∫ L∗

C

0
∂2
yyKm∂2

yyKn dy,

B̃m,n = (KmKn)|Γ + l∗C
∫ L∗

C

0
KmKn dy.

The LQR problem is set for control variables
(un)n=1,2,··· ,N ∈ L2(Γ)N and for the cost functional

J =
∫ +∞
0

N∑
n=1

∥∥∂2
xxwn(t, x)

∥∥2
L2(Γ)

+ ∥un(t, x)∥2L2(Γ) dt.
(7)

The choice of the functional is related to vibration stabi-
lization of the microcantilever array.

4. Classical Formulation of the LQR Problem
Now, we write the above LQR problem in a classical

abstract setting, see [2], even if we do not detail the func-
tional framework. We set zT =

(
wn ∂twn

)
n=1,2,··· ,N

the state variable, uT = (un)n=1,2,··· ,N the control vari-

able, A =

(
0N×N IN×N

−(M−1(KB∂4
x +KC))N×N 0N×N

)
the

state operator, B =

(
0N×N

(M−1B̃)N×N

)
the control opera-

tor, C =

(
∂2
xxIN×N 0N×N

0N×N 0N×N

)
the observation operator,

and S = IN×N the weight operator. Consequently, the
LQR problem, consisting in minimizing the functional un-
der the constraint (6), may be written under its usual form
as

∂tz (t, x) = Az (t) +Bu (t)
for t > 0 and z (0) = z0, (8)

with the minimized cost functional (7). We know that
(A,B) is stabilizable and that (A,C) is detectable, in the
sense that the system is controllable and observable. It fol-
lows that for each z0, the LQR problem (8) admits a unique
solution

u∗ = −Kz, (9)

where K = S−1B∗P, and P is the unique self-adjoint non-
negative solution to the operational Riccati equation

A∗P + PA− PBS−1B∗P + C∗C = 0. (10)

5. Semi-Decentralized Approximation
This Section is devoted to formulate the approxima-

tion method. The mathematical derivation has been intro-
duced in a paper [9]. We denote by Λ, the mapping: Λ :
f −→ w, where w is the unique solution of ∂4

x···xw = f
in Γ with the boundary conditions w = ∂xw = 0 for
x = {0, LB}. The spectrum σ (Λ) is discrete and made
up of real eigenvalues λk. They are solutions to the eigen-
value problem Λϕk = λkϕk with ∥ϕk∥L2(Γ) = 1. In the
sequel, Iσ = (σmin, σmax) refers to an open interval that
includes the complete spectrum.

5.1 Factorization of K by a Matrix of Functions of Λ
In this part, we introduce the factorization of the con-

troller K under the form of a product of a matrix of
functions of Λ. To do so, we introduce the change of

variable operators ΦZ =

(
Λ

1
2 0
0 I

)
, ΦU = I and

ΦY =

(
∂2
xΛ

1
2 0

0 I

)
, from which we introduce the ma-

trices of functions of Λ, a (Λ) = Φ−1
Z AΦZ , b (Λ) =



Φ−1
Z BΦU , c (Λ) = Φ−1

Y CΦZ and s (Λ) = Φ−1
U SΦU , sim-

ple to implement on a semi-decentralized architecture. A
straightforward calculation yield

a (λ) =

(
0 I

M̃ 0

)
, b (λ) =

(
0

M−1B̃

)
,

c (λ) =

(
I 0
0 0

)
, and s (λ) = I,

where M̃ = −M−1(KBλ−1/2 +KCλ1/2). From (9), the
optimal controller K admits the factorization

K = k(Λ) = ΦUq(Λ)Φ
−1
Z , (11)

where q (λ) = s−1 (λ) bT (λ) p (λ) , and where for all
λ ∈ σ, p(λ) is the unique self-adjoint nonnegative matrix
solving the algebraic Riccati equation

aT (λ) p+ pa (λ)− pb (λ) s−1 (λ) bT (λ) p
+cT (λ) c (λ) = 0.

5.2 Approximation of the Functions of Λ
We build the approximation in two steps. Firstly, we

use a rational approximation kR(Λ) of k(Λ), then it is ap-
proximated by another function kR,M which is simple to
discretize, and yields an accurate approximation. To do so,
we use the Dunford-Schwartz formula, see [12], represent-
ing a function of an operator, because it involves only the
operator (ζI − Λ)

−1 which may be simply and accurately
approximated. Since the function k(Λ) is not known, the
spectrum σ (Λ) cannot be easily determined, so we approx-
imate k(λ) by a highly accurate rational approximation
kR(Λ), then the Dunford-Schwartz formula is applied to
kR(Λ) with a path tracing out ellipses including Iσ but no
poles. Since the interval Iσ is bounded, for each function
kij(λ) have a rational approximation over Iσ, we write un-
der a global formulation, (which may be understood com-
ponent wise)

kR (λ) =

∑RN

m=0 dmλm∑RD

m′=0 d
′
m′λ

m′ , (12)

where dm, d′m′ are matrices of coefficients and R =(
RN , RD

)
is the couple comprised of the matrices RN of

numerator polynomial degrees and the matrices RD of de-
nominator polynomial degrees. The path C, in the Dunford-
Schwartz formula,

kR (Λ) =
1

2iπ

∫
C
kR (ζ) (ζI − Λ)

−1
dζ,

is chosen to be an ellipse parameterized by ζ(θ) =
ζ1(θ) + iζ2(θ), with θ ∈ [0, 2π]. The parametriza-
tion is used as a change of variable, so the integral can
be approximated by a quadrature formula involving M
nodes (θl)l=1,..,M ∈ [0, 2π], and M weights (ωl)l=1,..,M ,
IM (g) =

∑M
l=1 g (θl)ωl.

In the following equations, we state that the matrices
kR (ζ) associated to the rational approximation with the

numerator polynomial degrees RN and the denominator
polynomial degrees RD. So, for each z ∈ L2(Γ)2N and
ζ ∈ C, we introduce the 2N -dimensional vector field

vζ = −iζ ′kR (ζ) (ζI − Λ)
−1

z.

Decomposing vζ into its real part vζ1 and its imaginary part
vζ2 , the couple (vζ1 , v

ζ
2) is solution of the system{

ζ1v
ζ
1 − ζ2v

ζ
2 − Λvζ1 = Re

(
−iζ ′kR (ζ)

)
z,

ζ2v
ζ
1 + ζ1v

ζ
2 − Λvζ2 = Im

(
−iζ ′kR (ζ)

)
z.

(13)

Thus, combining the rational approximation kR and
the quadrature formula yields an approximate realization
kR,M (Λ) of k (Λ) ,

kR,M (Λ) z =
1

2π

M∑
l=1

v
ζ(θl)
1 ωl. (14)

This formula is central in the method, so it is the center
of our attention in the simulations. A fundamental remark
is that, a ”real-time” realization, kR,M (Λ) z, requires solv-
ing M systems like (13) corresponding to the M quadra-
ture nodes ζ(θl). The matrices kR (ζ(θl)) could be com-
puted ”off-line” once and for all, and stored in memory,
so their determination would not penalize a rapid real-time
computation. In total, the ultimate parameter responsible of
accuracy in a real-time computation, apart from spatial dis-
cretization discussed in next Section, is M the number of
quadrature points.

6. Circuit Implementation
To realize an optimal control by a set of distributed

circuits, we introduce a spatial discretization and synthe-
sis of Equation (13). The interval Γ is meshed with regu-
larly spaced nodes separated by a distance h, we introduce
Λ−1
h the finite difference discretization of Λ−1, associated

with the clamping boundary condition. In practice, the dis-
cretization length h is chosen small compared to the dis-
tance between cantilevers. Then, zh denoting the vector of
nodal values of z, for each ζ we introduce (vζ1,h, v

ζ
2,h), a

discrete approximation of (vζ1 , v
ζ
2), solution of the discrete

set of equations,

ζ1v
ζ
1,h − ζ2v

ζ
2,h − Λhv

ζ
1,h = Re

(
−iζ ′kR (ζ)

)
zh, (15)

ζ2v
ζ
1,h + ζ1v

ζ
2,h − Λhv

ζ
2,h = Im

(
−iζ ′kR (ζ)

)
zh. (16)

Finally, an approximate optimal control, intended to be im-
plemented in a set of spatially distributed actuators, could
be estimated from the nodal values,

kR,M,hzh =
1

2π

M∑
l=1

v
ζl

1,hωl,

estimated at mesh nodes in the following. We propose
a synthesis of (15–16) by a distributed electronic circuit.
The system is rewritten under the manageable form (17–
18) and for the sake of simplicity, we use the notations α =



i
(k−1)
1 i

(k)
1

Cell
k − 2 k − 1

Cell
k

Cell
k + 1

Cell
k + 2

Cell
1

Cell
0

Cell
−1

Cell
N − 1

Cell
N

Cell
N + 1

Cell
i
(N−1)
1i

(k+2)
1i

(k+1)
1i

(k−2)
1i

(1)
1

= vB= 0= vA = 0

· · · · · ·

u
(1)
1 u

(k−2)
1 u

(k−1)
1 u

(k)
1 u

(k+1)
1 u

(k+2)
1 u

(N−1)
1

(Λhi1)1 (Λhi1)k−2 (Λhi1)k−1 (Λhi1)k (Λhi1)k+1 (Λhi1)k+2 (Λhi1)N−1

Fig. 2: Analog computation of Λhv1.
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Fig. 3: Five adjacent interior cells.

Re
(
−iζ ′kR (ζ)

)
zh, β = Im

(
−iζ ′kR (ζ)

)
zh, v1 = vζ1,h,

and v2 = vζ2,h.

v1 =
ζ1

ζ21 + ζ22
(α+ Λhv1) +

ζ2
ζ21 + ζ22

(β + Λhv2) ,

(17)

v2 =
ζ1

ζ21 + ζ22
(β + Λhv2)−

ζ2
ζ21 + ζ22

(α+ Λhv1) .

(18)

6.1 Analog computation of Λhv1 and Λhv2
The analog computation of Λhv1 and Λhv2 are made by

Periodic Network of Resistances(PNR) circuits [11]. These
electronic circuits have been developed to solve a large
class of PDEs by analog computation. More exactly, PNR
circuits compute the finite difference solution of a PDE.

PNR circuits are gathering of cells (Figure 2), the in-
terior cells are indexed by k = 1, . . . , N − 1, while the
boundary cells correspond to k = −1, 0, N and N +1. We
will show that the circuits solve the equations Λ−1

h u1 = i1.
If the current sources i1 are replaced by a voltage controlled
current sources defined by i1 = gv1 (with g is a real num-
ber), the voltage outputs of the circuits u1 solve g(Λhv1)
and so Λhv1. The computation of Λhv2 is done in the same
way.

The interior cell k which compute (Λhv1)k is repre-
sented on Figure 3 with its two adjacent cells on each side.
We call ρ1 the resistances between the potentials u(k)

1 and
u
(k±2)
1 , and ρ2 the resistances between the potentials u

(k)
1

and u
(k±1)
1 . By applying the Kirchhoff Current Law (KCL)

at node u
(k)
1 , rearranging some terms and dividing by h4,

the equation of the cell k can be written under the form:

1
h4 [− 1

ρ1
u
(k−2)
1 − 1

ρ2
u
(k−1)
1 + 2u

(k)
1

(
1
ρ1

+ 1
ρ2

)
− 1

ρ2
u
(k+1)
1 − 1

ρ1
u
(k+2)
1 ] = 1

h4 i
(k)
1 .

If one choose the negative potential ρ1 = −h4ρ0 and posi-
tive potential ρ2 = h4ρ0/4, then the potential at node u

(k)
1

is expressed as a function of its neighbor voltages as

1
h4 [u

(k−2)
1 − 4u

(k−1)
1 + 6u

(k)
1 − 4u

(k+1)
1

+u
(k+2)
1 ] = ρ0i

(k)
1 ,

which is the stencil of the differential operation Λ−1. Con-
sequently, the whole electronic circuit composed of N − 1
cells computes the finite difference approximation u1 =
Λhi1 = g (Λhv1). The numerical value of ρ0 only changes
the magnitude of the voltages u

(k)
1 . The values of the re-

sistances inside a cell depend only on the circuit topology
and are easily expressed as a function of ρ1 or ρ2, here the
resistances of the cells can be taken as r1 = r3 = r4 =
r6 = ρ1/4 and r2 = r5 = ρ2/2.

The VCCS (Voltage Controlled Current Source) i(k)1 of
Figure 3 is controlled by the voltage v(k)1 through the equa-
tion i

(k)
1 = gv

(k)
1 . The four boundary cells are represented

in Figure 4. The imposed values of the voltages correspond
to the clamping boundary condition. Remark that the ter-
minals denoted by a cross are not connected, so the resis-
tances are linked by one side at them can be removed with-
out changing the behavior of the circuits. They are saved to



vB

0 N N + 1−1

vA

g(Λhv1)0 = 0 g(Λhv1)N = 0

vB = g(Λhv1)N−1vA = g(Λhv1)1

g(Λhv1)N+1 = vBg(Λhv1)
−1 = vA

Fig. 4: Four boundary cells.

show clearly the real difference between interior cells and
boundary cells.

6.2 Analog computation of equation (17)
The analog computation of Equation (17) can made by

an array of classical non inverting summing amplifiers of
Figure 5. Notice that there is no current exchange between
these circuits and PNR inputs and outputs, see buffers in
Figure 3. Analysis of the circuit of Figure 5 leads to (19).

Ra

Rb

R2

Rc

Rd

R1

v
(k)
1

g(Λhv2)k

g(Λhv1)k

α

β

Fig. 5: Analog computation of the k-th equation (17).

With a proper choice of resistances, Figure 5 solve (17),

v
(k)
1 = R1+R2

R1
[Ru

Ra
α+ Ru

Rb
g (Λhv1)k

+Ru

Rc
β + Ru

Rd
g (Λhv2)k],

(19)

where 1
Ru

= 1
Ra

+ 1
Rb

+ 1
Rc

+ 1
Rd

.

6.3 Analog computation of equation (18)
In a very similar way, the analog computation of Equa-

tion 18 can made by an array of classical difference sum-
ming amplifiers of Figure 6. Analysis of the circuit of Fig-
ure 6 leads to (20). With a proper choice of resistances,
Figure 6 solve (18),

v
(k)
2 = Rv

Rw

R′
2

R′
a
β + Rv

Rw

R′
2

R′
b
g (Λhv2)k

−R′
2

R′
c
α− R′

2

R′
d
g (Λhv1)k ,

(20)

where 1
Rv

= 1
R′

a
+ 1

R′
b
+ 1

R′
1

and 1
Rw

= 1
R′

c
+ 1

R′
d
+ 1

R′
2
.

R′

a

R′

b

R′

c

R′

d

R′

1

R′

2

v
(k)
2

g(Λhv1)k

g(Λhv2)k

β

α

Fig. 6: Analog computation of the k-th equation (18).

7. Numerical Simulation
In this Section, we validate the approximation method,

established in Section 5, by a numerical simulation. We
consider a silicon array comprised of an elastic base
clamped of 10 elastic cantilevers, with base dimensions
LB × lB ×hB = 500µm×16.7µm×10µm, and one can-
tilever dimensions LC × lC × hC = 41.7µm× 12.5µm×
1.25µm. The model parameters of base and cantilever: the
bending coefficient RB = 1.09×10−5N/m, RC = 2.13×
10−4N/m the mass per unit length ρB = 0.0233kg/m,
ρC = 0.00291kg/m. In the rational approximation, the
numerator polynomial degrees RN and the denominator
polynomial degrees RD can be chosen sufficiently large
(namely RN = RD = 20) so that the relative errors be-
tween the exact solution k and its rational approximation
kR, e =

||kR−k||L2(Iσ)

||k||L2(Iσ)
, can be in the order of 10−8. This

choice has no effect on real-time computation time.
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Fig. 7: The relative error between the exact solution and
the final approximation



Numerical integrations have been performed with a
standard trapezoidal quadrature rule. The relative error,
E =

||kR,M−k||L2(Iσ)

||k||L2(Iσ)
, between the exact control function

and final approximation are shown in Figure 7, for the num-
ber of nodes M varying from 5 to 20. It may be easily tuned
without changing spatial complexity associated with the fi-
nite difference discretization of Λ−1.

We also present the ratio of the computation time of
solving the whole system for varying number of nodes M
to the reference computation time of solving the whole sys-
tem for M = 20, see Figure 8.
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8. Conclusion
In this paper, we have presented a semi-decentralized

approximation of an optimal control operator applied to a
two-scale model of microcantilever arrays. This model is
discretized in y-direction projecting on a transformed ba-
sis of Chebyshev polynomials. It has been shown that the
semi-decentralized optimal controller can be implemented
by a set of distributed electronic circuits. Numerical sim-
ulations have been carried out to validate the method and
study its performances. This method can be extended to
other optimal control theories, such as LQG or H∞.
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