
Abstract

Atomic force microscopes (AFM) provide high resolution images of surfaces. In this paper, we focus our attention
on an interferometry method for deflection estimation of cantilever arrays in quasi-static regime. In its original
form, spline interpolation was used to determine interference fringe phase, and thus the deflections. Computations
were performed on a PC. Here, we propose a new complete solution with a least square based algorithm and an
optimized FPGA implementation. Simulations and real tests showed very good results and open perspective for
real-time estimation and control of cantilever arrays in the dynamic regime.

Keywords

FPGA, cantilever arrays, interferometry.

1

A new approach based on a least square
method for real-time estimation of cantilever

array deflections with a FPGA

I. INTRODUCTION

Cantilevers are used in atomic force microscopes
(AFM) which provide high resolution surface images.
Several techniques have been reported in literature for
cantilever displacement measurement. In [2], authors
have shown how a piezoresistor can be integrated into
a cantilever for deflection measurement. Nevertheless
this approach suffers from the complexity of the mi-
crofabrication process needed to implement the sensor.
In [3], authors have presented a cantilever mechanism
based on capacitive sensing. These techniques require
cantilever instrumentation resulting in complex fabrica-
tion processes.

In this paper our attention is focused on a method
based on interferometry for cantilever displacement mea-
surement in quasi-static regime. Cantilevers are illu-
minated by an optical source. Interferometry produces
fringes enabling cantilever displacement computation. A
high speed camera is used to analyze the fringes. In view
of real time applications, images need to be processed
quickly and then a fast estimation method is required
to determine the displacement of each cantilever. In [4],
an algorithm based on spline has been introduced for
cantilever position estimation. The overall process gives
accurate results but computations are performed on a
standard computer using LabView R©. Consequently, the
main drawback of this implementation is that the com-
puter is a bottleneck. In this paper we pose the problem
of real-time cantilever position estimation and bring a
hardware/software solution. It includes a fast method
based on least squares and its FPGA implementation.

The remainder of the paper is organized as follows.
Section II describes the measurement process. Our solu-
tion based on the least square method and its implemen-
tation on a FPGA is presented in Section III. Numerical
experimentations are described in Section IV. Finally a
conclusion and some perspectives are drawn.

II. ARCHITECTURE AND GOALS

In order to build simple, cost effective and user-
friendly cantilever arrays, we use a system based on

interferometry. The two following sections summarize
the original characteristics of its architecture and com-
putation method.

A. Experimental setup

In opposition to other optical based systems using a
laser beam deflection scheme and sensitive to the angular
displacement of the cantilever, interferometry is sensitive
to the optical path difference induced by the vertical
displacement of the cantilever.

The system is based on a Linnick interferometer [8].
It is illustrated in Figure 1. A laser diode is first split (by
the splitter) into a reference beam and a sample beam
both reaching the cantilever array. The complete system
including a cantilever array and the optical system can
be moved thanks to a translation and rotational hexapod
stage with five degrees of freedom. Thus, the cantilever
array is centered in the optical system which can be
adjusted accurately. The beam illuminates the array by
a microscope objective and the light reflects on the
cantilevers. Likewise the reference beam reflects on
a movable mirror. A CMOS camera chip records the
reference and sample beams which are recombined in the
beam splitter and the interferogram. At the beginning of
each experiment, the movable mirror is fitted manually in
order to align the interferometric fringes approximately
parallel to the cantilevers. Then, cantilever motion in the
transverse direction produces movements in the fringes.
They are detected with the CMOS camera which images
are analyzed by a Labview program to recover the
cantilever deflections.

B. Inteferometric based cantilever deflection estimation

As shown in Figure 2, each cantilever is covered
by several interferometric fringes. The fringes distort
when cantilevers are deflected. For each cantilever, the
method uses three segments of pixels, parallel to its
section, to determine phase shifts. The first is located
just above the AFM tip (tip profile), it provides the phase
shift modulo 2π. The second one is close to the base

Fig. 1. AFM Setup

Fig. 2. Portion of a camera image showing moving interferometric
fringes in cantilevers

junction (base profile) and is used to determine the exact
multiple of 2π through an operation called unwrapping
where it is assumed that the deflection means along the
two measurement segments are linearly dependent. The
third is on the base and provides a reference for noise
suppression. Finally, deflections are simply derived from
phase shifts.

The pixel gray-level intensity I of each profile is
modelized by

I(x) = A cos(2πfx+ θ) + ax+ b (1)

where x denotes the position of a pixel in a segment,
A, f and θ are the amplitude, the frequency and the
phase of the light signal when the affine function ax+
b corresponds to the cantilever array surface tilt with
respect to the light source.

The method consists in two main sequences. In the
first one corresponding to precomputation, the frequency
f of each profile is determined using a spline inter-
polation (see section III-C1) and the coefficients used
for phase unwrapping are computed. The second one,
that we call the acquisition loop, is done after images
have been taken at regular time steps. For each image,
the phase θ of all profiles is computed to obtain, after
unwrapping, the cantilever deflection. The phase deter-
mination is achieved by a spline based algorithm, which
is the most consuming part of the computation. In this
article, we propose an alternate version based on the least
square method which is faster and better suited for FPGA
implementation. Moreover, it can be used in real-time,
i.e. after each image is picked by the camera.

C. Computation design goals

To evaluate the solution performances, we choose a
goal which consists in designing a computing unit able
to estimate the deflections of a 10× 10-cantilever array,
faster than the camera image stream. In addition, the
result accuracy must be close to 0.3nm, the maximum
precision reached in [4]. Finally, the latency between
the entrance of the first pixel of an image and the end
of deflection computation must be as small as possible.
All these requirement are stated in the perspective of
implementing real-time active control for each cantilever,
see [6], [5].

If we put aside other hardware issues like the speed
of the link between the camera and the computation
unit, the time to deserialize pixels and to store them in
memory, the phase computation is the bottleneck of the
whole process. For example, the camera in the setup of
[4] provides 1024× 1204 pixels with an exposition time
of 2.5ms. Thus, if the pixel extraction time is neglected,

2

each phase calculation of a 100-cantilever array should
take no more than 12.5µs.

In fact, this timing is a very hard constraint. To illus-
trate this point, we consider a very small program that
initializes twenty million of doubles in memory and then
does 1,000,000 cumulated sums on 20 contiguous values
(experimental profiles have about this size). On an intel
Core 2 Duo E6650 at 2.33GHz, this program reaches
an average of 155Mflops. Obviously, some cache effects
and optimizations on huge amount of computations can
drastically increase these performances: peak efficiency
is about 2.5Gflops for the considered CPU. But this is
not the case for phase computation that is using only a
few tenth of values.

In order to evaluate the original algorithm, we trans-
lated it in C language. As stated in section III-C3, for 20
pixels, it does about 1,550 operations, thus an estimated
execution time of 1, 550/155 =10µs. For a more realistic
evaluation, we constructed a file of 1Mo containing
200 profiles of 20 pixels, equally scattered. This file is
equivalent to an image stored in a device file representing
the camera. We obtained an average of 10.5µs by profile
(including I/O accesses). It is under our requirements but
close to the limit. In case of an occasional load of the
system, it could be largely overtaken. Solutions would
be to use a real-time operating system or to search for
a more efficient algorithm.

However, the main drawback is the latency of such
a solution because each profile must be treated one
after another and the deflection of 100 cantilevers takes
about 200 × 10.5 = 2.1ms. This would be inadequate
for real-time requirements as for individual cantilever
active control. An obvious solution is to parallelize the
computations, for example on a GPU. Nevertheless, the
cost of transferring profile in GPU memory and of
taking back results would be prohibitive compared to
computation time.

It should be noticed that when possible, it is more
efficient to pipeline the computation. For example, sup-
posing that 200 profiles of 20 pixels could be pushed
sequentially in a pipelined unit cadenced at a 100MHz
(i.e. a pixel enters in the unit each 10ns), all profiles
would be treated in 200×20×10.10−9 = 40µs plus the
latency of the pipeline. Such a solution would be meeting
our requirements and would be 50 times faster than
our C code, and even more compared to the LabView
version. FPGAs are appropriate for such implementation,
so they turn out to be the computation units of choice
to reach our performance requirements. Nevertheless,
passing from a C code to a pipelined version in VHDL
is not obvious at all. It can even be impossible because

of FPGA hardware constraints. All these points are
discussed in the following sections.

III. AN HARDWARE/SOFTWARE SOLUTION

In this section we present parts of the computing
solution to the above requirements. The hardware part
consists in a high-speed camera linked on an embedded
board hosting two FPGAs. In this way, the camera
output stream can be pushed directly into the FPGA. The
software part is mostly the VHDL code that deserializes
the camera stream, extracts profiles and computes the
deflection.

We first give some general information about FPGAs,
then we describe the FPGA board we use for implemen-
tation and finally the two algorithms for phase computa-
tion are detailed. Presentation of VHDL implementations
is postponned until Section IV.

A. Elements of FPGA architecture and programming

A field-programmable gate array (FPGA) is an in-
tegrated circuit designed to be configured by the cus-
tomer. FGPAs are composed of programmable logic
components, called configurable logic blocks (CLB).
These blocks mainly contain look-up tables (LUT),
flip/flops (F/F) and latches, organized in one or more
slices connected together. Each CLB can be config-
ured to perform simple (AND, XOR, ...) or complex
combinational functions. They are interconnected by
reconfigurable links. Modern FPGAs contain memory
elements and multipliers which enable to simplify the
design and to increase the performance. Nevertheless,
all other complex operations like division and other
functions like trigonometric functions are not available
and must be built by configuring a set of CLBs. Since
this is not an obvious task at all, tools like ISE [7]
have been built to do this operation. Such a software
can synthetize a design written in a hardware description
language (HDL), maps it onto CLBs, place/route them
for a specific FPGA, and finally produces a bitstream
that is used to configure the FPGA. Thus, from the
developer’s point of view, the main difficulty is to trans-
late an algorithm into HDL code, taking into account
FPGA resources and constraints like clock signals and
I/O values that drive the FPGA.

Indeed, HDL programming is very different from
classic languages like C. A program can be seen as
a state-machine, manipulating signals that evolve from
state to state. Moreover, HDL instructions can be ex-
ecuted concurrently. Signals may be combined with
basic logic operations to produce new states that are
assigned to another signal. States are mainly expressed

3

as arrays of bits. Fortunately, libraries propose higher
levels representations like signed integers, and arithmetic
operations.

Furthermore, even if FPGAs are cadenced more
slowly than classic processors, they can perform
pipelines as well as parallel operations. A pipeline con-
sists in cutting a process in a sequence of small tasks,
taking the same execution time. It accepts a new data
at each clock top, thus, after a known latency, it also
provides a result at each clock top. The drawback is that
the components of a task are not reusable by another
one. Nevertheless, this is the most efficient technique
on FPGAs. Because of their architecture, it is also very
easy to process several data concurrently. Finally, the
best performance can be reached when several pipelines
are operating on multiple data streams in parallel.

B. The FPGA board

The architecture we use is designed by the Armadeus
Systems company. It consists in a development board
called APF27 R©, hosting a i.MX27 ARM processor
(from Freescale) and a Spartan3A (from Xilinx). This
board includes all classical connectors as USB and
Ethernet for instance. A Flash memory contains a Linux
kernel that can be launched after booting the board
via u-Boot. The processor is directly connected to the
Spartan3A via its special interface called WEIM. The
Spartan3A is itself connected to an extension board
called SP Vision R©, that hosts a Spartan6 FPGA. Thus,
it is possible to develop programs that communicate
between i.MX and Spartan6, using Spartan3 as a tunnel.
A clock signal at 100MHz (by default) is delivered
to dedicated FPGA pins. The Spartan6 of our board
is an LX100 version. It has 15,822 slices, each slice
containing 4 LUTs and 8 flip/flops. It is equivalent to
101,261 logic cells. There are 268 internal block RAM
of 18Kbits, and 180 dedicated multiply-adders (named
DSP48), which is largely enough for our project. Some
I/O pins of Spartan6 are connected to two 2×17 headers
that can be used for any purpose as to be connected to
the interface of a camera.

C. Two algorithms for phase computation

As said in section II-B, f is computed only once
but the phase needs to be computed for each image.
This is why, in this paper, we focus on its computation.
The next section describes the original method, based
on spline interpolation, and section III-C2 presents the
new one based on least squares. Finally, in section
III-C3, we compare the two algorithms from their FPGA
implementation point of view.

1) Spline algorithm (SPL): We denote by M the
number of pixels in a segment used for phase compu-
tation. For the sake of simplicity of the notations, we
consider the light intensity I a function on the interval
[0,M] which itself is the range of a one-to-one mapping
defined on the physical segment. The pixels are assumed
to be regularly spaced and centered at the positions
xp ∈ {0, 1, . . . ,M − 1}. We use the simplest definition
of a pixel, namely the value of I at its center. The pixel
intensities are considered as pre-normalized so that their
minimum and maximum have been resized to −1 and 1.

The first step consists in computing the cubic spline
interpolation of the intensities. This allows for inter-
polating I at a larger number L = k × M of points
(typically k = 4 is sufficient) xs in the interval [0,M [.
During the precomputation sequence, the second step is
to determine the affine part a.x + b of I . It is found
with an ordinary least square method, taking account
the L points. Values of I in xs are used to compute its
intersections with a.x+ b. The period of I (and thus its
frequency) is deduced from the number of intersections
and the distance between the first and last.

During the acquisition loop, the second step is the
phase computation, with

θ = atan

[∑N−1
i=0 sin(2πfxsi)× I(xsi)∑N−1
i=0 cos(2πfxsi)× I(xsi)

]
. (2)

Remarks:

• The frequency could also be obtained using the
derivative of spline equations, which only implies to
solve quadratic equations but certainly yields higher
errors.

• Profile frequency are computed during the pre-
computation step, thus the values sin(2πfxsi) and
cos(2πfxsi) can be determined once for all.

2) Least square algorithm (LSQ): Assuming that we
compute the phase during the acquisition loop, equation
1 has only 4 parameters: a, b, A, and θ, f and x being
already known. A least square method based on a Gauss-
Newton algorithm can be used to determine these four
parameters. This kind of iterative process ends with a
convergence criterion, so it is not suited to our design
goals. Fortunately, it is quite simple to reduce the number
of parameters to θ only. Firstly, the affine part ax + b
is estimated from the M values I(xp) to determine the
rectified intensities,

Icorr(xp) ≈ I(xp)− a.xp − b.

4

To find a and b we apply an ordinary least square method
(as in SPL but on M points)

a =
covar(xp, I(xp))

var(xp)
and b = I(xp)− a.xp

where overlined symbols represent average. Then the
amplitude A is approximated by

A ≈ max(Icorr)−min(Icorr)

2
.

Finally, the problem of approximating θ is reduced to
minimizing

min
θ∈[−π,π]

M−1∑
i=0

[
cos(2πf.i+ θ)− Icorr(i)

A

]2

.

An optimal value θ∗ of the minimization problem is a
zero of the first derivative of the above argument,

2

cosθ∗
M−1∑
i=0

Icorr(i).sin(2πf.i)

+sinθ∗
M−1∑
i=0

Icorr(i).cos(2πf.i)

−

A

cos2θ∗
M−1∑
i=0

sin(4πf.i) + sin2θ∗
M−1∑
i=0

cos(4πf.i)

 = 0

Several points can be noticed:
• The terms

∑M−1
i=0 sin(4πf.i) and

∑M−1
i=0 cos(4πf.i)

are independent of θ, they can be precomputed.
• Lookup tables (namely lutsfi and lutcfi in the

following algorithms) can be set with the 2.M
values sin(2πf.i) and cos(2πf.i).

• A simple method to find a zero θ∗ of the optimality
condition is to discretize the range [−π, π] with a
large number nbs of nodes and to find which one
is a minimizer in the absolute value sense. Hence,
three other lookup tables (luts, lutc and lutA) can
be set with the 3× nbs values sin θ, cos θ, andcos2θM−1∑

i=0

sin(4πf.i) + sin2θ

M−1∑
i=0

cos(4πf.i)

 .
• The search algorithm can be very fast using a

dichotomous process in log2(nbs).

The overall method is synthetized in an algorithm
(called LSQ in the following) divided into the precom-
puting part and the acquisition loop.

Algorithm 1: LSQ algorithm - before acquisition
loop.

M ← number of pixels of the profile1

I[] ← intensity of pixels2

f ← frequency of the profile3

s4i←
∑M−1
i=0 sin(4πf.i)4

c4i←
∑M−1
i=0 cos(4πf.i)5

nbs ← number of discretization steps of [−π, π]6

for i = 0 to nbs do7

θ ← −π + 2π × i
nbs

8

luts[i] ← sinθ9

lutc[i] ← cosθ10

lutA[i] ← cos2θ × s4i+ sin2θ × c4i11

lutsfi[i] ← sin(2πf.i)12

lutcfi[i] ← cos(2πf.i)13

end14

3) Algorithm comparison: We compared the two al-
gorithms regarding three criteria:

• precision of results on a cosines profile distorted by
noise,

• number of operations,
• complexity of FPGA implementation.

For the first item, we produced a Matlab version of
each algorithm, running in double precision. The profile
was generated for about 34,000 different quadruplets of
periods (∈ [3.1, 6.1], step = 0.1), phases (∈ [−3.1, 3.1],
steps = 0.062) and slopes (∈ [−2, 2], step = 0.4).
Obviously, the discretization of [−π, π] introduces an
error in the phase estimation. It is at most equal to π

nbs
.

From some experiments on a 17×4 array, we noticed an
average ratio of 50 between phase variation in radians
and lever end position in nanometers. Assuming such
a ratio and nbs = 1024, the maximum lever deflection
error would be 0.15nm which is smaller than 0.3nm, the
best precision achieved with the setup used.

Moreover, pixels have been paired and the paired
intensities have been perturbed by addition of a random
number uniformly picked in [−N,N]. Notice that we
have observed that perturbing each pixel independently
yields too weak profile distortion. We report percentages
of errors between the reference and the computed phases
out of 2π,

err = 100× |θref − θcomp|
2π

.

Table I gives the maximum and the average errors for
both algorithms and for increasing values of N the noise
parameter.

5

Algorithm 2: LSQ algorithm - during acquisition
loop.

x̄← M−1
21

ȳ ← 0, xvar ← 0, xycovar ← 02

for i = 0 to M − 1 do3

ȳ ← ȳ+ I[i]4

xvar ← xvar + (i− x̄)25

end6

ȳ ← ȳ
M7

for i = 0 to M − 1 do8

xycovar ← xycovar + (i− x̄)× (I[i]− ȳ)9

end10

slope← xycovar

xvar
11

start← ȳ − slope× x̄12

for i = 0 to M − 1 do13

I[i]← I[i]− start− slope× i14

end15

Imax ← maxi(I[i]), Imin ← mini(I[i])16

amp← Imax−Imin

217

Is← 0, Ic← 018

for i = 0 to M − 1 do19

Is← Is+ I[i]× lutsfi[i]20

Ic← Ic+ I[i]× lutcfi[i]21

end22

δ ← nbs
2 , bl ← 0, br ← δ23

vl ← −2.Is − amp.lutA[bl]24

while δ >= 1 do25

vr ← 2.[Is.lutc[br]+Ic.luts[br]]− amp.lutA[br]26

if !(vl < 0 and vr >= 0) then27

vl ← vr28

bl ← br29

end30

δ ← δ
231

br ← bl + δ32

end33

if !(vl < 0 and vr >= 0) then34

vl ← vr35

bl ← br36

br ← bl + 137

vr ← 2.[Is.lutc[br]+Ic.luts[br]]− amp.lutA[br]38

else39

br ← bl + 140

end41

if abs(vl) < vr then42

bθ ← bl43

else44

bθ ← br45

end46

θ ← π ×
[

2.bref
nbs

− 1
]

47

SPL LSQ
noise (N) max. err. aver. err. max. err. aver. err.

0 2.46 0.58 0.49 0.1
2.5 2.75 0.62 1.16 0.22
5 3.77 0.72 2.47 0.41

7.5 4.72 0.86 3.33 0.62
10 5.62 1.03 4.29 0.81
15 7.96 1.38 6.35 1.21
30 17.06 2.6 13.94 2.45

TABLE I
ERROR (IN %) FOR COSINES PROFILES, WITH NOISE.

The results show that the two algorithms yield close
results, with a slight advantage for LSQ. Furthermore,
both behave very well against noise. Assuming an av-
erage ratio of 50 (see above), an error of 1 percent on
the phase corresponds to an error of 0.5nm on the lever
deflection, which is very close to the best precision.

It is very hard to predict which level of noise will
be present in real experiments and how it will distort
the profiles. Results on a 17 × 4 array allowed us to
compare experimental profiles to simulated ones. We can
see on figure 3 the profile with N = 10 that leads
to the biggest error. It is a bit distorted, with pikes
and straight/rounded portions. In fact, it is very close
to some of the worst experimental profiles. Figure 4
shows a sample of worst profile for N = 30. It is
completely distorted, largely beyond any experimental
ones. Obviously, these comparisons are a bit subjective
and experimental profiles could also be more distorted
on other experiments. Nevertheless, they give an idea
about the possible error.

Fig. 3. Sample of worst profile for N=10

The second criterion is relatively easy to estimate
for LSQ and harder for SPL because of the use of
the arctangent function. In both cases, the number of

6

Fig. 4. Sample of worst profile for N=30

operation is proportional to M the number of pixels.
For LSQ, it also depends on nbs and for SPL on
L = k×M the number of interpolated points. We assume
that M = 20, nbs = 1024 and k = 4, that all possible
parts are already in lookup tables and that a limited set
of operations (+, -, *, /, <, >) is taken into account.
Translating both algorithms in C code, we obtain about
430 operations for LSQ and 1,550 (plus a few tenth for
atan) for SPL. This result is largely in favor of LSQ.
Nevertheless, considering the total number of operations
is not fully relevant for FPGA implementation for which
time and space consumption depends not only on the
type of operations but also of their ordering. The final
evaluation is thus very much driven by the third criterion.

The Spartan 6 used in our architecture has a hard
constraint since it has no built-in floating point units.
Obviously, it is possible to use some existing ”black-
boxes” for double precision operations. But they require
a lot of clock cycles to complete. It is much simpler to
exclusively use integers, with a quantization of all double
precision values. It should be chosen in a manner that
does not alterate result precision. Furthermore, it should
not lead to a design with a huge latency because of
operations that could not complete during a single or
few clock cycles. Divisions fall into that category and,
moreover, they need a varying number of clock cycles to
complete. Even multiplications can be a problem since a
DSP48 takes inputs of 18 bits maximum. So, for larger
multiplications, several DSP must be combined which
increases the overall latency.

Nevertheless, in the present algorithms, the hardest
constraint does not come from the FPGA characteristics
but from the algorithms themselves. Their VHDL im-
plementation can be efficient only if they can be fully
(or near) pipelined. We observe that only a small part

of SPL can be pipelined, indeed, the computation of
spline coefficients implies to solve a linear tridiagonal
system which matrix and right-hand side are computed
from incoming pixels intensity but after, the back-solve
starts with the latest values, which breaks the pipeline.
Moreover, SPL relies on interpolating far more points
than profile size. Thus, the end of SPL works on a larger
amount of data than at the beginning, which also breaks
the pipeline.

LSQ has not this problem since all parts, except the
dichotomic search, work on the same amount of data,
i.e. the profile size. Furthermore, LSQ requires less
operations than SPL, implying a smaller output latency.
In total, LSQ turns out to be the best candidate for phase
computation on any architecture including FPGA.

IV. VHDL IMPLEMENTATION AND EXPERIMENTAL
TESTS

A. VHDL implementation

From the LSQ algorithm, we have written a C program
that uses only integer values. We used a very simple
quantization which consists in multiplying each double
precision value by a factor power of two and by keeping
the integer part. For an accurate evaluation of the division
in the computation of a the slope coefficient, we also
scaled the pixel intensities by another power of two. The
main problem was to determine these factors. Most of
the time, they are chosen to minimize the error induced
by the quantization. But in our case, we also have some
hardware constraints, for example the width and depth
of RAMs or the input size of DSPs. Thus, having a
maximum of values that fit in these sizes is a very
important criterion to choose the scaling factors.

Consequently, we have determined the maximum
value of each variable as a function of the scale factors
and the profile size involved in the algorithm. It gave us
the maximum number of bits necessary to code them. We
have chosen the scale factors so that any variable (except
the covariance) fits in 18 bits, which is the maximum
input size of DSPs. In this way, all multiplications
(except one with covariance) could be done with a single
DSP, in a single clock cycle. Moreover, assuming that
nbs = 1024, all LUTs could fit in the 18Kbits RAMs.
Finally, we compared the double and integer versions of
LSQ and found a nearly perfect agreement between their
results.

As mentionned above, some operations like divisions
must be avoided. But when the divisor is fixed, a division
can be replaced by its multiplication/shift counterpart.
This is always the case in LSQ. For example, assuming

7

that M is fixed, xvar is known and fixed. Thus, xycovar

xvar

can be replaced by

(xycovar ×
⌊

2n

xvar

⌋
)� n

where n depends on the desired precision (in our case
n = 24).

Obviously, multiplications and divisions by a power
of two can be replaced by left or right bit shifts. Finally,
the code only contains shifts, additions, subtractions and
multiplications of signed integers, which are perfectly
adapted to FGPAs.

We built two versions of VHDL codes, namely one
directly by hand coding and the other with Matlab
using the Simulink HDL coder feature [1]. Although the
approaches are completely different we obtained quite
comparable VHDL codes. Each approach has advantages
and drawbacks. Roughly speaking, hand coding provides
beautiful and much better structured code while Simulink
HDL coder allows fast code production. In terms of
throughput and latency, simulations show that the two
approaches yield close results with a slight advantage
for hand coding.

B. Simulation

Before experimental tests on the FPGA board, we sim-
ulated our two VHDL codes with GHDL and GTKWave
(two free tools with linux). We built a testbench based on
experimental profiles and compared the results to values
given by the SPL algorithm. Both versions lead to correct
results. Our first codes were highly optimized, indeed the
pipeline could compute a new phase each 33 cycles and
its latency was equal to 95 cycles. Since the Spartan6 is
clocked at 100MHz, estimating the deflection of 100 can-
tilevers would take about (95+200×33).10 = 66.95µs,
i.e. nearly 15,000 estimations by second.

C. Bitstream creation

In order to test our code on the SP Vision board,
the design was extended with a component that keeps
profiles in RAM, flushes them in the phase computation
component and stores its output in another RAM. We
also added components that implement the wishbone
protocol, in order to ”drive” signals to communicate
between i.MX and other components. It is mainly used
to start to flush profiles and to retrieve the computed
phases in RAM. Unfortunately, the first designs could
not be placed and routed with ISE on the Spartan6 with
a 100MHz clock. The main problems were encountered
with series of arithmetic operations and more especially

with RAM outputs used in DSPs. So, we needed to
decompose some parts of the pipeline, which added few
clock cycles. Finally, we obtained a bitstream that has
been successfully tested on the board.

Its latency is of 112 cycles and it computes a new
phase every 40 cycles. For 100 cantilevers, it takes
(112 + 200 × 40) × 10ns = 81.12µs to compute their
deflection. It corresponds to about 12300 images per
second, which is largely beyond the camera capacities
and the possibility to extract a new profile from an image
every 40 cycles. Nevertheless, it also largely fits our
design goals.

V. CONCLUSION AND PERSPECTIVES

In this paper we have presented a full hard-
ware/software solution for real-time cantilever deflection
computation from interferometry images. Phases are
computed thanks to a new algorithm based on the least
square method. It has been quantized and pipelined to be
mapped into a FPGA, the architecture of our solution.
Performances have been analyzed through simulations
and real experiments on a Spartan6 FPGA. The results
meet our initial requirements. In future work, the algo-
rithm quantization will be better analyzed and an high
speed camera will be introduced in the processing chain
so that to process real images. Finally, we will address
real-time filtering and control problems for AFM arrays
in dynamic regime.

REFERENCES

[1] Simulink HDL coder 2.1. Matworks datasheet, 2011.
[2] N. Abedinov, P. Grabiec, T. Gotszalk, T. Ivanov, J. Voigt, and I. W.

Rangelow. Micromachined piezoresistive cantilever array with
integrated resistive microheater for calorimetry and mass detection.
Journal of Vacuum Science and Technology A, 19(6):2884–2888,
Nov 2001.

[3] D. R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L.
Britton, S. V. Patel, T. E. Mlsna, D. McCorkle, and B. Warmack.
Design and performance of a microcantilever-based hydrogen
sensor. Sensors and Actuators B: Chemical, 88(2):120–131, Jan
2003.

[4] M. Favre, J. Polesel-Maris, T. Overstolz, P. Niedermann, S. Dasen,
G. Gruener, R. Ischer, P. Vettiger, M. Liley, H. Heinzelmann, and
A. Meister. Parallel afm imaging and force spectroscopy using
two-dimensional probe arrays for applications in cell biology.
Journal of Molecular Recognition, 24(3):446–452, 2011.

[5] H. Hui, Y. Yakoubi, M. Lenczner, and N. Ratier. Semi-
decentralized approximation of a lqr-based controller for a one-
dimensional cantilever array. In 18th World Congress of the
International Federation of Automatic Control (IFAC), 2011.

[6] M. Lenczner, N. Ratier N, E. Pillet, S. Cogan S, H. Hui, and
Y. Yakoubi. NanoSystems & Systems on Chips, Modeling, Control
and Estimation, chapter Modelling, Identification and Control of
a Micro-cantilever Array. John Wiley & Sons, 2010.

[7] Hitesh Patel. Unlock new levels of productivity for your design
using ISE design suite 12. Xilinx White paper, May 2010.

[8] M. B. Sinclair, M. P. de Boer, and A. D. Corwin. Long-working-
distance incoherent-light interference microscope. Applied Optics,
44(36):7714–7721, Dec 2005.

8

