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Abstract

In this paper, we present a two-scale model including an optimal active control for a one-dimensional cantilever array
with regularly spaced actuators and sensors. With the purpose of implementing the control in real time, we propose an
approximation that may be realized by an analog distributed electronic circuit. More precisely, our analog processor is
made by Periodic Network of Resistances (PNR). The control approximation method is based on two general concepts,
namely functions of operators and on the Dunford-Schwartz representation formula. We conducted careful validations of
the control approximation method as well as of its effect in the complete control loop.
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I. INTRODUCTION

In the past decade, a number of papers have been focused
on semi-decentralized distributed optimal control for sys-
tems with distributed actuators and sensors. Most of them
are dealing with infinite length systems, see [1] and [10]
for systems governed by partial differential equations, and
[3] for discrete systems. In the papers [4] and [5] the
authors have introduced an approximation of an optimal
control to a finite length beam endowed with a periodic
distribution of piezoelectric sensors and actuators. Even
if it was giving satisfactory results, it was suffering from
some limitations. In [9] it has been extended so that
to cover a larger range of systems and to increase its
precision and robustness. Indeed, the new method does
not require that each operator of the state equation and
of the cost functional be functions of a same operator
but they must be only functions of a same operator up to
some change of variable operators. Regarding precision,
the Taylor series approximating a function of an operator
has been replaced by the use of the Dunford-Schwartz
representation formula followed by a quadrature rule for
the contour integral.

Here we apply our new method to a recently developed
and validated two-scale model of cantilever arrays, sub-
mitted in the paper [8]. It is rigorously justified thanks
to an adaptation of the two-scale approximation method
introduced in [6] and detailed in [7]. Its main advantage
is that in the same time it requires little computing effort
and it is reasonably precise.

This paper presents results from a full implementation
of the new semi-decentralized optimal control strategy
on the two-scale model of cantilever arrays. We provide
results regarding precision and cost. However our calcu-
lations have been carried out using the simplest optimal
control strategy, namely a Linear Quadratic Regulator

(LQR). In this paper, we provide numerical simulations
only for validating the quality of the approximation
method. We do not foucus on optimal control of the
practical applicaitons. As in [5], we also provide a real-
ization of the semi-decentralized control scheme through
a Periodic Network of Resistances (PNR), implementing
a finite difference scheme for the partial differential op-
erator in the Dunford-Schwartz formula. The purpose of
implementing the optimal control is to damp the vibration
of the distributed cantilever arrays. Finally, we quote
that the entire approach can be extended to other linear
optimal control problems, i.e. LQG or H∞ controls as
well as to more physical actuating and sensing principles.

II. A TWO-SCALE MODEL OF CANTILEVER ARRAYS

We consider a one-dimensional cantilever array com-
prised of an elastic base, and a number of clamped
elastic cantilevers with free end, see Figure 1. Assum-
ing that the number of cantilevers is sufficiently large,
a homogenized model was derived using a two-scale
approximation method. This is reported in the detailed
paper [7] devoted to static regime. The corresponding
model extended to dynamic regime is introduced in the
letter [6]. The modelling papers were written in view of
Atomic Force Microscopy application.

Fig. 1. Array of Cantilevers

After a number of simplifications, the approximate ho-
mogenized model expressed in the two-scale referential,
which is a rectangle Ω = (0, LB) × (0, L∗

C). The
parameters LB and L∗

C represent respectively the base
length in the macroscale x−direction and the scaled
cantilever length in the microscale y−direction. The base
is modelled by the line Γ = {(x, y) | x ∈ (0, LB)
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and y = 0}, and the rectangle Ω is filled by an infinite
number of cantilevers. We describe the system motion by
its bending displacement only. So, the base is governed
by an Euler-Bernoulli beam equation with two kinds of
distributed forces, one exerted by the attached cantilevers
and the other, denoted by u(t, x, 0), originating from an
actuator distribution. The bending displacement, the mass
per unit length, the bending coefficient of base and of
cantilever, and the scaled cantilever width being denoted
by w(t, x, 0), ρB , RB , RC and ℓ∗C , the base governing
equation states

ρB∂2
ttw +RB∂4

x···xw + ℓ∗CRC∂3
yyyw = u in Γ. (1)

The base is assumed to be clamped, so the boundary
conditions are

w = ∂xw = 0, (2)

at its ends. Each cantilever is oriented in the y-direction,
and its motion is governed by the Euler-Bernoulli equa-
tion distributed along the y-direction. It is subjected to
a control force u(t, x, y) taken as distributed along each
whole cantilever. It can be replaced by any other realistic
force distribution. Denoting by w(t, x, y) and ρC bending
displacements and the mass per unit length, the governing
equation in (x, y) ∈ Ω is

ρC∂2
ttw +RC∂4

y···yw = u, (3)

endowed with the boundary conditions{
∂yw = 0 at y = 0,
∂2
yyw = ∂3

yyyw = 0 at y = L∗
C ,

(4)

representing an end clamped in the base, and a free end.
The weak formulation associated to (1-4) states as∫ LB

0
(ρB∂2

ttw v +RB∂2
xxw∂2

xxv)|Γ dx
+l∗C

∫
Ω
ρC∂2

ttw v +RC∂2
yyw∂2

yyv dydx

=
∫ LB

0
(u v)|Γ dx+ l∗C

∫
Ω
u v dydx,

(5)

for any regular function v, satisfying in particular the
conditions: v = ∂xv = 0 at both end of the base and
∂yv = 0 at y = 0 at the junction.

III. MODEL REFORMULATION

To simplify the model, but keeping its distributed feature,
we discretize in the y-direction projecting on a basis
Kn(y) =

∫ y

0
yT ′

n(y)dy, where Tn(y) is the basis of
Chebyshev polynomial. We define the approximations of
the displacement and of the control

w(t, x, y) ≈
N∑

n=1

wn(t, x)Kn(y),

u(t, x, y) ≈
N∑

n=1

un(t, x)Kn(y),

where wn(t, x) and un(t, x) are the polynomial coef-
ficients in the approximation of w and u respectively.

We also choose v ≈
N∑

m=1

vm(t, x)Km(y), so we find

that (wn(t, x))n=1,2,··· ,N are the solutions to a set of
equations posed on Γ,

N∑
n,m=1

Mm,n∂
2
ttwn +KB

m,n∂
4
x···xwn

+KC
m,nwn =

N∑
n,m=1

B̃m,nun in [0,∞)× Γ.

(6)

The boundary conditions are
N∑

n=1

wn(t, 0)Kn(0) =

N∑
n=1

∂xwn(t, 0)Kn(0) = 0 and
N∑

n=1

wn(t, LB)Kn(0) =

N∑
n=1

∂xwn(t, LB)Kn(0) = 0. In (6), we use the notations

for the matrices M, KB , KC and B̃,

Mm,n = ρB(KmKn)|Γ + l∗Cρ
C
∫ L∗

C
0

KmKn dy,
KB

m,n = RB(KmKn)|Γ,
KC

m,n = l∗CR
C
∫ L∗

C
0

∂2
yyKm∂2

yyKn dy,

B̃m,n = (KmKn)|Γ + l∗C
∫ L∗

C
0

KmKn dy.

The LQR problem is set for control variables
(un)n=1,2,··· ,N ∈ L2(Γ)N and for the cost functional

J =
∫ +∞
0

N∑
n=1

∥∥∂2
xxwn(t, x)

∥∥2

L2(Γ)

+ ∥un(t, x)∥2L2(Γ) dt.
(7)

The choice of the functional is related to vibration stabi-
lization of the microcantilever array.

IV. CLASSICAL FORMULATION OF THE LQR
PROBLEM

Now, we write the above LQR problem in a classical
abstract setting, see [2], even if we do not detail the func-
tional framework. We set zT =

(
wn ∂twn

)
n=1,2,··· ,N

the state variable, uT = (un)n=1,2,··· ,N the control vari-

able, A =

(
0N×N IN×N

−(M−1(KB∂4
x +KC))N×N 0N×N

)
the state operator, B =

(
0N×N

(M−1B̃)N×N

)
the control

operator, C =

(
∂2
xxIN×N 0N×N

0N×N 0N×N

)
the observation op-

erator, and S = IN×N the weight operator. Consequently,
the LQR problem, consisting in minimizing the functional
under the constraint (6), may be written under its usual
form as

∂tz (t, x) = Az (t) +Bu (t)
for t > 0 and z (0) = z0,

(8)
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with the minimized cost functional (7). We know that
(A,B) is stabilizable and that (A,C) is detectable, in
the sense that the system is controllable and observable.
It follows that for each z0, the LQR problem (8) admits
a unique solution

u∗ = −Kz, (9)

where K = S−1B∗P, and P is the unique self-adjoint
nonnegative solution to the operational Riccati equation

A∗P + PA− PBS−1B∗P + C∗C = 0. (10)

V. SEMI-DECENTRALIZED APPROXIMATION

This Section is devoted to formulate the approximation
method. The mathematical derivation has been introduced
in a paper [9]. We denote by Λ, the mapping: Λ :
f −→ w, where w is the unique solution of ∂4

x···xw = f
in Γ with the boundary conditions w = ∂xw = 0 for
x = {0, LB}. The spectrum σ (Λ) is discrete and made
up of real eigenvalues λk. They are solutions to the
eigenvalue problem Λϕk = λkϕk with ||ϕk||L2(Γ) = 1.
In the sequel, Iσ = (σmin, σmax) refers to an open
interval that includes the complete spectrum. For a given
real valued function g, continuous on Iσ, g(Λ) is the
linear self-ajoint operator on space L2(Γ) defined by

g(Λ)z =

∞∑
k=1

g(λk)zkϕk (11)

where zk =
∫
Γ
zϕk dx.

A. Factorization of K by a Matrix of Functions of Λ

In this part, we introduce the factorization of the con-
troller K under the form of a product of a matrix of
functions of Λ. To do so, we introduce the change of

variable operators ΦZ =

(
Λ

1
2 0
0 I

)
, ΦU = I and

ΦY =

(
∂2
xΛ

1
2 0

0 I

)
, from which we introduce the

matrices of functions of Λ, a (Λ) = Φ−1
Z AΦZ , b (Λ) =

Φ−1
Z BΦU , c (Λ) = Φ−1

Y CΦZ and s (Λ) = Φ−1
U SΦU ,

simple to implement on a semi-decentralized architecture.
A straightforward calculation yield

a (λ) =

(
0 I

M̃ 0

)
, b (λ) =

(
0

M−1B̃

)
,

c (λ) =

(
I 0
0 0

)
, and s (λ) = I,

where M̃ = −M−1(KBλ−1/2 + KCλ1/2). From (9),
the optimal controller K admits the factorization

K = k(Λ) = ΦUq(Λ)Φ
−1
Z , (12)

where q (λ) = s−1 (λ) bT (λ) p (λ) , and where for all
λ ∈ σ, p(λ) is the unique self-adjoint nonnegative matrix
solving the algebraic Riccati equation

aT (λ) p+ pa (λ)− pb (λ) s−1 (λ) bT (λ) p
+cT (λ) c (λ) = 0.

B. Approximation of the Functions of Λ

We build the approximation in two steps. Firstly, we
use a rational approximation kR(Λ) of k(Λ), then it is
approximated by another function kR,M which is simple
to discretize, and yields an accurate approximation. To
do so, we use the Dunford-Schwartz formula, see [12],
representing a function of an operator, because it involves
only the operator (ζI − Λ)−1 which may be simply and
accurately approximated. Since the function k(Λ) is not
known, the spectrum σ (Λ) cannot be easily determined,
so we approximate k(λ) by a highly accurate rational ap-
proximation kR(Λ), then the Dunford-Schwartz formula
is applied to kR(Λ) with a path tracing out ellipses in-
cluding Iσ but no poles. Since the interval Iσ is bounded,
for each function kij(λ) have a rational approximation
over Iσ , we write under a global formulation,

kR (λ) =

∑RN

m=0 dmλm∑RD

m′=0 d
′
m′λ

m′ , (13)

where dm, d′m′ are matrices of coefficients and R =(
RN , RD

)
is the couple comprised of the matrices RN

of numerator polynomial degrees and the matrices RD

of denominator polynomial degrees. The path C, in the
Dunford-Schwartz formula,

kR (Λ) =
1

2iπ

∫
C
kR (ζ) (ζI − Λ)−1 dζ,

is chosen to be an ellipse parameterized by ζ(θ) =
ζ1(θ) + iζ2(θ), with θ ∈ [0, 2π]. The parametrization
is used as a change of variable, so the integral can be
approximated by a quadrature formula involving M nodes
(θl)l=1,..,M ∈ [0, 2π], and M weights (ωl)l=1,..,M ,
IM (g) =

∑M
l=1 g (θl)ωl.

In the following equations, we state that the matrices
kR (ζ) associated to the rational approximation of the
couple

(
RN , RD

)
. So, for each z ∈ L2(Γ)2N and

ζ ∈ C, we introduce the 2N -dimensional vector field

vζ = −iζ′kR (ζ) (ζI − Λ)−1 z.
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Decomposing vζ into its real part vζ1 and its imaginary
part vζ2 , the couple (vζ1 , v

ζ
2) is solution of the system

ζ1v
ζ
1 − ζ2v

ζ
2 − Λvζ1

= Re (−iζ′kR (ζ)) z,
ζ2v

ζ
1 + ζ1v

ζ
2 − Λvζ2

= Im (−iζ′kR (ζ)) z.

(14)

Thus, combining the rational approximation kR and the
quadrature formula yields an approximate realization
kR,M (Λ) of k (Λ) ,

kR,M (Λ) z =
1

2π

M∑
l=1

v
ζ(θl)
1 ωl. (15)

This formula is central in the method, so it is the center
of our attention in the simulations. A fundamental remark
is that, a ”real-time” realization, kR,M (Λ) z, requires
solving M systems like (14) corresponding to the M
quadrature nodes ζ(θl). The matrices kR (ζ(θl)) could be
computed ”off-line” once and for all, and stored in mem-
ory, so their determination would not penalize a rapid
real-time computation. In total, the ultimate parameter
responsible of accuracy in a real-time computation, apart
from spatial discretization discussed in next Section, is
M the number of quadrature points.

VI. SPATIAL DISCRETIZATION

The final step in the approximation consists in a spatial
discretization and synthesis of Equation (14). The inter-
val Γ is meshed with regularly spaced nodes separated
by a distance h, we introduce Λ−1

h the finite differ-
ence discretization of Λ−1, associated with the clamping
boundary condition. In practice, the discretization length
h is chosen small compared to the distance between
cantilevers. Then, zh denoting the vector of nodal values
of z, for each ζ we introduce (vζ1,h, v

ζ
2,h), a discrete

approximation of (vζ1 , v
ζ
2), solution of the discrete set of

equations,

ζ1v
ζ
1,h − ζ2v

ζ
2,h − Λhv

ζ
1,h

= Re (−iζ′kR (ζ)) zh,
(16)

ζ2v
ζ
1,h + ζ1v

ζ
2,h − Λhv

ζ
2,h

= Im (−iζ′kR (ζ)) zh.
(17)

Finally, an approximate optimal control, intended to be
implemented in a set of spatially distributed actuators,
could be estimated from the nodal values,

kR,M,hzh =
1

2π

M∑
l=1

v
ζl
1,hωl,

estimated at mesh nodes in the following. We propose a
synthesization of (16–17) by a distributed electronic cir-
cuit the mechanical structure. The system is rewritten un-
der the manageable form (18–19) and For the sake of sim-
plification, we use the notations α = Re (−iζ′kR (ζ)) zh,
β = Im (−iζ′kR (ζ)) zh, v1 = vζ1,h, and v2 = vζ2,h.

v1 = ζ1
ζ21+ζ22

(α+ Λhv1)

+ ζ2
ζ21+ζ22

(β + Λhv2) ,
(18)

v2 = ζ1
ζ21+ζ22

(β + Λhv2)

− ζ2
ζ21+ζ22

(α+ Λhv1) .
(19)

A. Analog computation of Λhv1 and Λhv2

The analog computation of Λhv1 and Λhv2 are made
by Periodic Network of Resistances(PNR) circuits [11].
These electronic circuits have been developed to solve a
large class of PDEs by analog computation. More exactly,
PNR circuits compute the finite difference solution of a
PDE.
PNR circuits are gathering of cells (Figure 2), the interior
cells are indexed by k = 1, . . . , N − 1, while the bound-
ary cells correspond to k = −1, 0, N and N+1. We will
show that the circuits solve the equations Au1 = i1. If
the current sources i1 are replaced by a voltage controlled
current sources defined by i1 = gv1 (with g is a real
number), the voltage outputs of the circuits u1 solve
g(Λhv1) and so Λhv1. The computation of Λhv2 is done
in the same way. The interior cell k which compute
(Λhv1)k is represented on Figure 3 with its two adjacent
cells on each side. We call ρ1 the resistances between
the potentials u

(k)
1 and u

(k±2)
1 , and ρ2 the resistances

between the potentials u
(k)
1 and u

(k±1)
1 . By applying the

Kirchhoff Current Law (KCL) at node u
(k)
1 , rearranging

some terms and dividing by h4, the equation of the cell
k can be written under the form:

1
h4 [− 1

ρ1
u
(k−2)
1 − 1

ρ2
u
(k−1)
1 + 2u

(k)
1

(
1
ρ1

+ 1
ρ2

)
− 1

ρ2
u
(k+1)
1 − 1

ρ1
u
(k+2)
1 ] = 1

h4 i
(k)
1 .

If one choose the negative potential ρ1 = −h4ρ0 and
positive potential ρ2 = h4ρ0/4, then the potential at node
u
(k)
1 is expressed as a function of its neighbor voltages

as

1
h4 [u

(k−2)
1 − 4u

(k−1)
1 + 6u

(k)
1 − 4u

(k+1)
1

+u
(k+2)
1 ] = ρ0i

(k)
1 ,
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i
(k−1)
1 i

(k)
1

Cell
k − 2 k − 1

Cell
k

Cell
k + 1

Cell
k + 2

Cell
1

Cell
0

Cell
−1

Cell
N − 1

Cell
N

Cell
N + 1

Cell
i
(N−1)
1i

(k+2)
1i

(k+1)
1i

(k−2)
1i

(1)
1

= vB= 0= vA = 0

· · · · · ·

u
(1)
1 u

(k−2)
1 u

(k−1)
1 u

(k)
1 u

(k+1)
1 u

(k+2)
1 u

(N−1)
1

(Λhi1)1 (Λhi1)k−2 (Λhi1)k−1 (Λhi1)k (Λhi1)k+1 (Λhi1)k+2 (Λhi1)N−1

Fig. 2. Analog computation of Λhv1.

1

22

1

r1

r2

r3

r4

r5

r6

i
(k)
1i

(k−2)
1 i

(k−1)
1 i

(k+1)
1 i

(k+2)
1

i
(k−2)
1 = gv

(k−2)
1 i

(k−1)
1 = gv

(k−1)
1 i

(k)
1 = gv

(k)
1 i

(k+1)
1 = gv

(k+1)
1 i

(k+2)
1 = gv

(k+2)
1

k − 2 k − 1 k k + 1 k + 2

g(Λhv1)k−2 g(Λhv1)k−1 g(Λhv1)k g(Λhv1)k+1 g(Λhv1)k+2

u
(k−2)
1 u

(k−1)
1 u

(k)
1 u

(k+1)
1 u

(k+2)
1

Fig. 3. Five adjacent interior cells.

which is the stencil of the differential operation Λ−1.
Consequently, the whole electronic circuit composed of
N − 1 cells computes the finite difference approximation
u1 = Λhi1 = g (Λhv1). The numerical value of ρ0 only
changes the magnitude of the voltages u

(k)
1 . The values

of the resistances inside a cell depend only on the circuit
topology and are easily expressed as a function of ρ1
or ρ2, here the resistances of the cells can be taken as
r1 = r3 = r4 = r6 = ρ1/4 and r2 = r5 = ρ2/2.
The VCCS (Voltage Controlled Current Source) i

(k)
1 of

Figure 3 is controlled by the voltage v
(k)
1 through the

equation i
(k)
1 = gv

(k)
1 . The four boundary cells are

represented on Figure 4. The imposed values of the
voltages correspond to the clamping boundary condition.
Remark that the terminals denoted by a cross are not
connected, so the resistances are linked by one side at
them can be removed without changing the behavior of
the circuits. They are saved to show clearly the real
difference between interior cells and boundary cells.

B. Analog computation of equation (18)

The analog computation of Equation (18) can made by
an array of classical non inverting summing amplifiers of

Figure 5. Notice that there is no current exchange between
these circuits and PNR inputs and outputs, see buffers in
Figure 3.

Ra

Rb

R2

Rc

Rd

R1

v
(k)
1

g(Λhv2)k

g(Λhv1)k

α

β

Fig. 5. Analog computation of the k-th equation (18).

Analysis of the circuit of Figure 5 leads to (20). With a
proper choice of resistances, Figure 5 solve (18),

v
(k)
1 = R1+R2

R1
[Ru
Ra

α+ Ru
Rb

g (Λhv1)k
+Ru

Rc
β + Ru

Rd
g (Λhv2)k],

(20)

where 1
Ru

= 1
Ra

+ 1
Rb

+ 1
Rc

+ 1
Rd

.
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vB

0 N N + 1−1

vA

g(Λhv1)0 = 0 g(Λhv1)N = 0

vB = g(Λhv1)N−1vA = g(Λhv1)1

g(Λhv1)N+1 = vBg(Λhv1)
−1 = vA

Fig. 4. Four boundary cells.

C. Analog computation of equation (19)

In a very similar way, the analog computation of Equation
19 can made by an array of classical difference summing
amplifiers of Figure 6.

R′

a

R′

b

R′

c

R′

d

R′

1

R′

2

v
(k)
2

g(Λhv1)k

g(Λhv2)k

β

α

Fig. 6. Analog computation of the k-th equation (19).

Analysis of the circuit of Figure 6 leads to (21). With a
proper choice of resistances, Figure 6 solve (19),

v
(k)
2 = Rv

Rw

R′
2

R′
a
β + Rv

Rw

R′
2

R′
b
g (Λhv2)k

−R′
2

R′
c
α− R′

2
R′

d
g (Λhv1)k ,

(21)

where 1
Rv

= 1
R′

a
+ 1

R′
b
+ 1

R′
1

and 1
Rw

= 1
R′

c
+ 1

R′
d
+ 1

R′
2
.

VII. NUMERICAL SIMULATION

In this Section, we validate the approximation method,
established in Section V, by a numerical simulation. We
consider a silicon array comprised of an elastic base
clamped of 10 elastic cantilevers, with base dimensions
LB × lB × hB = 500µm × 16.7µm × 10µm, and
one cantilever dimensions LC × lC × hC = 41.7µm ×
12.5µm × 1.25µm. The model parameters of base
and cantilever: the bending coefficient RB = 1.09 ×
10−5N/m, RC = 2.13 × 10−4N/m the mass per unit
length ρB = 0.0233kg/m, ρC = 0.00291kg/m. In the
rational approximation, the numerator polynomial degrees

RN and the denominator polynomial degrees RD can be
chosen sufficiently large (namely RN = RD = 20) so
that the relative errors between the exact solution k and
its rational approximation kR, e =

||kR−k||
L2(Iσ)

||k||
L2(Iσ)

, can

be in the order of 10−8. This choice has no effect on
real-time computation time.

Numerical integrations have been performed with a stan-
dard trapezoidal quadrature rule. The relative errors,
E =

||kN,M−k||
L2(Iσ)

||k||
L2(Iσ)

, between the exact functions
and final approximations are shown in Figure 7, for the
number of nodes M varying from 5 to 20. It may be
easily tuned without changing spatial complexity associ-
ated with the finite difference discretization of Λ−1. We
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Fig. 7. The relative error between the exact solution and the
final approximation
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present Figure 8 to illustrate the displacement evolution
w(t, x, y) of the first cantilever mode at the coordinate
(x, y) = (LB/2, LC/2) with different number of nodes
M . We choose the displacement evolution for M = 20
as a reference.
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Fig. 8. Displacement evolution of first cantilever mode with
approximation of optimal control

We also present the ratio of the computation time of
solving the whole system for varying number of nodes M
to the reference computation time of solving the whole
system for M = 20, see Figure 9.
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Fig. 9. The ration of computation time

VIII. CONCLUSION

In this paper, we have presented a semi-decentralized
approximation of a linear optimal control operator applied
to a two-scale model of microcantilever arrays. This
model is discretized in y-direction projecting on the
transformed basis of Chebyshev polynomials. A semi-
decentralized optimal controller is implemented by a set
of distributed electronic circuits. Numerical simulations
have demonstrated the computation time of solving the
whole system is almost linearly increasing with respect
to the number of quadrature nodes. A simulation of the
displacement evolution has confirmed that the approached
optimal control is effective on this model. Furthermore,
this method can be extended to other optimal control
theories.
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