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Abstract—During the last 4 years, chaotic waveforms for
random number generation found a deep interest within the can-
munity of analogue broadband chaotic optical systems. Eaiér
investigations on chaos-based RNG were proposed in the 90sch

early 2000, however mainly based on piecewise linear (PL) 1D

map, with bit rate determined by analog electronic processig
capabilities to provide the PL nonlinear function of concen.
Optical chaos came with promises for much higher bit rate,
and entropy sources based on high complexity (high dimensial)
continuous time (differential) dynamics. More specificaly in 2009,
Reidler et al. published a paper entitled “An optical ultrafast
random bit generator”, in which they presented a physical sgtem
for a random number generator based on a chaotic semiconduct
laser. This generator is claimed to reach potentially the exemely
high rate of 300 Gb/s. We report on analysis and experimentsfo
their method, which leads to the discussion about the actuarigin
of the obtained randomness. Through standard signal theory
arguments, we show that the actual binary randomness qualt
obtained from this method, can be interpreted as a complex
mixing operated on the initial analogue entropy source. Our
analysis suggests an explaination about the already repast
issue that this method does not necessarily require any spéc
deterministic property (i.e. chaos) from the physical sigal used

as the physical source of entropy. The bit stream randomness

quality is found to result from “aliasing” phenomena perfor med

by the post-processing method, both for the sampling and the

guantization operations. As an illustration, such random bt se-
guences extracted from different entropy sources are invégated.
Optoelectronic noise is used as a non deterministic entropsource.
Electro-optic phase chaotic signal, as well as simulationsf its
deterministic model, are used as deterministic entropy sages. In
all cases, the extracted bit sequence reveals excellent domness.

Keywords-Random number generation, chaos, optoelectronics,

noise, entropy sources, statistical tests

I. INTRODUCTION

algorithms implemented in hardware and software, the pseu-
dorandom numbers being generated from a single “seed” (such
generators are named pseudorandom number generators, or
PRNGs in short); Another one counts on high entropy signals,
whether from mainly nondeterministic and stochastic ptalsi
phenomena (see [4]-[7]), or from deterministic but chaotic
dynamical systems [7]—-[11]. A potential advantage of thta
physical high entropy signal, arises in its deterministiattires

that might be used to achieve chaos synchronization as it has
been already demonstrated [12] and widely used for secure
optical chaos communications [13]. However, synchroiorat
possibility of the random binary sequence extracted from
the chaotic physical signal is still an open problem, which
resolution could lead to the efficient and practical use ef th
one-time pad (a symmetric encryption algorithm derivedrfro
the Vernam cipher, which is proven to be impossible to crack
if used under appropriate conditions).

The PRNGs based on deterministic algorithms can be imple-
mented in any computational platform, some can even beyeasil
adapted with discrete chaotic iterations to improve output
quality of randomness [14]. They however suffer from the
vulnerability that the future sequence can be determaaibyi
computed if the seed or internal state of the algorithm is
discovered. The main advantage of PRNGs is that no hardware
cost is added, and the speed is only counted on digital pro-
cessing hardware. Their algorithms are developed to pteven
guessing of the initial conditions, and the rate might beveld
down while increasing the complexity of such algorithms.

Physical RNGs rely on chaotic or stochastic physical pro-
cesses. Such random number generators are building the
random bits from inherently random or chaotic physical
process [15], for example, radioactive decay [16], chaotic

Random Number Generators (RNGs) are widely used dfectrical and optical circuits [17], and so on. Up to retent

science and technology. They are a critical component #fe implementations of physical random generators have bee
modern cryptographic systems, communication systemt-stajimited to much slower rates than PRNGs because of lim-
tical simulation systems, and any scientific area incorilega itation of the mechanisms for extracting bits from physical
Monte Carlo methods and many others [1]-[3]. The unpreandomness without degrading statistical propertiesichfly
dictability of the bit stream and the speed at which the ramdojg Mb/s could be achieved by using electronic oscillator
bits can be produced are usually reported as very importgter [18] and 4 Mb/s using quantum optical noise [19].
aspects in the quality of the generated bit sequence. Otaﬁde should notice however, that such physical implementati
factors like system complexity, cost, reliability and so are a5 recently directly developed at the chip level in perona
also important for establishing successful RNGs. There afgmputer processors, finally achieving more than reasenabl
usually two methods for RNGs: One relates to deterministgbeed performances-(3 Gb/s), and actually also very good

. . o __randomness quality [20].
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conductor laser in the presence of external feedback [21]claaotic laser intensity, or a noisy signal covering a simila
well known setup in chaotic optical systems. The dynamickburier spectrum. The randomness quality is evaluated in
processes involved in optical systems can indeed be vety f&ection IV via the results of four statistical testing pagpés
Moreover, high complexity chaotic dynamics can be pralijica The paper ends with a discussion of the obtained results, and
obtained, whether due to intrinsic complex nonlinear cmgpl concludes with possible future work.
between light and matter interactions in lasers, or due ¢o th
presence of a large delay feedback cavity enabling dynamic[ﬁ M ETHOD FORRANDOM BIT SEQUENCE GENERATION
with "”Frge n_umbe_r of deg_rees of fr_eedom. . . FROM AN OPTOELECTRONICSIGNAL
Chaotic optical signal might consist of pulses with a width
of few 10ps and with random amplitude and time positions, In this section we describe the physical setup from which we
which provide attractive potentials to easily generatedoan €xpect to obtain a fast random bit sequence. We also describe
bits at fast rates. In [9], a first attempt already reached 1iffe binary sequence extraction method from the continuous
Gb/s RNG, the physical randomness originating from twime signal generated by the physical setup, as it was fdymer
independent chaotic semiconduct lasers. Each laser itgenproposed in [22], [23]. Additionally, theoretical integtations
signal is practically sampled at an incommensurate rate wand discussions of this extraction method are proposed in
respect to the individual optical feedback delay times.rrae terms of basic signal processing and sampling theory. These
threshold value is set for comparison with each signal levigiterpretation and discussion are intended to give insigtthe
and to obtain a Boolean sequence. Lastly the random pfssible mechanisms at the origin of the bit stream randesne
sequence is produced by executing a XOR function betwe@ality.
the two Boolean sequences. More recently, Reidler and col-
leagues [22], [23] claim thgt they succgssfully demonetfatA_ Setup delivering a broadband optoelectronic signal
another method in generating random bit sequence from ultra
fast optical chaos, at much faster rate. In such method, thdn order to additionally support our work with experiments
output of a single chaotic laser, with the optical feedbadk the generation of optical broadband signals, data record
delay time incommensurate with the sampling clock freqyendrom physical chaos generator as well as from optoeleatroni
was digitized by an 8-bit analog-to-digital converter (ADCNoise sources, have been studied. These experiments are dif
practically provided by an ultra-fast digital scope). Thiae ferent from the ones described in [22] and [23], althougly the
difference between adjacent, but not nearest, points fnent are also originating from broadband optoelectronic device
bit digitized time series is performed (it is defined as a gseu A twofold physical source of entropy has been used (see
“derivative” operation). At last, a few LSBs only of the vaki Fig.1), both having been tested for their randomness gualit
resulting from the subtracted samples are retained to ganefOne source (referred as “Optoelectronic noise” in Fig.1) is
the binary sequence. Following this combination of broadbaoriginating from physical noise sources in the semiconatuct
photonic chaos and digital post-processing, generatittnas laser light generation process (known as RIN: relativenisitsy
high as 300 Gb/s are claimed. Many additional papers haveise), in combination with the electronic noise of the pho-
then appeared [24]-[30], utilizing similar bit stream extion todetector and its integrated electronic amplifier (theémoise
method, but on different alternative photonic setups. €hegnd semiconductor photodiode junction noise, amplifiechiey t
reported works have claimed to have achieved comparalite hitpise figure of the electronic amplifier). A comparable (and
speed and high randomness quality bit stream. None of th@yen cheaper) optoelectronic noise source was also prdpose
papers has however discussed the actual and respectige rold5], [31].
played by the photonic chaotic waveform on one side, and B the contrary, the other physical source of entropy is
the post-processing method on the other side. originating from a strongly deterministic process, whichsw

In this paper, the study of using broadband optical signased for a field experiment demonstrating (analogue) chaoti
to generate random binary sequence according to the metloptical masking of 10 Gb/s data signals, transmitted over
proposed by Reidler, is going to be deepen. We proposeao installed fiber optic link [32]. The strong determinism
apply the same method on the chaotic waveform generatdthis entropy source indeed enabled to implement accurate
by another class of broadband photonic oscillations, and heoadband chaos synchronization at the receiver, in oaler t
analyze the different post-processing steps involved ia thremove the chaotic masking signal and thus to retrieve the
method. We will analyze three key factors in the schenwiginal binary data stream. The dynamics of the electro-
of [22] and [23]: the sampling, the difference of distanoptical phase chaos generator is ruled by a nonlinear dual
samples, and LSBs retaining. delay differential equation implemented in an optoeledto

The paper is organized in the following way. In Sectioand electro-optic feedback loop.
II, the original architecture that we propose as the physica Each of these two signals obtained from noise or chaotic op-
system to generate fast random bit sequences, is descritzedectronic systems, has been processed by using the dnetho
in details. Analysis of the conversion of the physical timproposed in [22]. By doing so, the aim is to support our
series into a binary random sequence as proposed in [3R]nal processing analysis on the extraction method of ihe b
is recalled, but also analyzed in terms of signal processiegquence, which is inferring that in both cases, the randéssin
arguments. Then an entropy evaluation for the binary semiemuality must be very similar. As we shall illustrate and diss
is processed in Section Ill, thus providing insight for théater, and as it has been pointed only in the literature [ddos
entropy rate capability for the generated binary sequendg.not a necessary condition for a good randomness quality
Finally, the randomness quality of the obtained bit seqaesic of the extracted bit stream. Global spectral and statistica
compared, depending on the used physical signal: whethefeatures in the original analogue source of entropy appeae t
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Fig. 1: Experimental setup of the optical system used to

generate signal as physical random sources for the denivatj . . . L
of random bit sequences the one involved in the noisy optoelectronic signal (lased a

photodiode noise, also complemented here by the RF elec-
tronic amplifier noise). Equation (1) can be confidently used

enough, such as a broadband Fourier spectrum, and a suﬁici%ely without the noise contribution, when the large atnplié

spreading of the amplitude probability distribution. aoth r;::)tlortl_ onlt);]'i of |r;]terest. TO s”uppgtrt .th% asum[?tlo
Instead of using necessarily noise corrupted signal asPff® Might notice that such numerically oblained wavetorms

is always the case in experiments, one can also gener\g{feere found to _exhibit very good qualitative agreement viiké t
time traces numerically, thus resulting in an even stronggge observed in the experiment [33]. The proposed model has

determinism in the entropy source. In that case, the nois le en also successfully used to derive analytically [34]irobs

is significantly reduced to numerical rounding and numéricgpelbﬁqrcatmnfeatures mdee_d observeq in the experintiemns
integration errors. One however needs a suitable detesticini indicating that the large amplitude solutions can be configie

model in order to generate such numerical time traces. O(iﬂ,lculated numerically from the noise-free model.

deterministic chaotic signal is modeled by the physicaltsoh

of a nonlinear dual delay dynamics ruled by the following

differential equation:

' A B. Extraction method for the random binary sequence

0 [ a(e)dg + 7 () + o(t) = Fsin’lor — s + 2ol
0 A schematic view of the algorithm used to extract a random

binary sequence from a broadband physical signal, as pedpos

the characteristic times of the low and high cut—off freqren in [23], is depicted in Fig.2. On the basis of a physical setup

respectively, which are involved in the bandpass feedbagﬁliv_ering a b_roadband Sig”a'* as_the one _des_cribe_:d in the
filtering of the RF filter. From a signal processing viewpoinPreVious section, a real time oscilloscope is first involved

such a dynamical system can be interpreted as a nonlinEyPerform an analogue to digital conversion of the output
delayed feedback oscillator. This oscillator is ruled by thSi9nal of the setup. This conversion is typically achieveal v

dynamics of a linear bandpass filtéfw), which is driven an 8-bit digitizer at a sampling rate of 40 GHz. In the next

by a nonlinear transformation of two delayed “echos” (ds|a);ubsection_, we will discu_ss f_rom the signal theory viewpoir}_
T and T + &T) of the filter output,z(t). Chaotic solutions some particular processing issues that are found to signifi-

are obtained when the feedback loop gairis high enough, cantly contribute to th_e actual ran_don_mess of _the fingl lyinar
of the order of 5. This gain is adjusted via the tuning ofeduénce. More precisely, sampling issues will be disdisse
the laser light intensity. A typically observed chaoticutin duantization issues, and also post-processing opergocs

is a white noise like signal which is covering the spectr@S distant sample difference, and LSB-only retaining).sThi
range of the broadband bandpass feedback RF filer,ca signal processing is performed before getting the actual fin
130 kHz—13 GHZ. This results in a fast noise-like |argerand_om _blnary sequence, to be test_ed for their randomness
amplitude signalz(¢), which is expected to be suitable forduality via standard statistical test suites.

high speed RNG based on physical device. It is worth noticing1) Sampling issues. aliasing for enhanced entropy: In the

that this chaotic signal generation process can be viewed a®llowing, we assume that samples are originally acquired
balanced equilibrium between the RF feedback filter (lingiti by a real time digital scope measuring a broadband complex
the spectral span of the signa(t)), and the spectral broaden-time trace. Such equipment is designed to follow the classic
ing performed by the nonlinear transformatieimg —function Shannon sampling theorem: the sampling rafés matching

of the difference delayed signals; — xzr,s7). The offset the instrument analogue input bandwidth, which defines the
phase®, is typically adjusted through the static interferencenaximum Fourier frequencyy that can be captured by the
condition, which interference phenomena is physicallyhat tinstrument. The Shannon sampling theorem indeed statés tha
origin of thesin? nonlinear transformation. a limited bandwidth signal can be digitized without loss of
A more accurate description of the generated signd@) information, when the sampling frequency is at least twice
should also include (small amplitude) noise sources in thlge maximum signal frequency. The sequence of the samples
equation. The latter noise is actually of the same kind thdn,, = x(nT"), n € Z} can be defined as a function of the

wherez stands for the delayed signalt — T"), 6 andr are



the information of short time scale correlations). Another

(a) consequence is that such an operation is unidirectionahgn
sense that original information is actually lost after aasihg
Jg process. Because of the complex mixing of the Fourier fre-
guency components, the original spectrum cannot be reedver
(b) with a “simple” unmixing procedure.

2) Further post-processing: difference sequence between
distant samples: In [22] and [23], computing the difference
sequence between two neighbor samples are named as “deriva-
Fig. 3: lllustration of the properly fulfilled sampling then tive”. However, mathematically speaking, the term “detiiel
conditions (a), and the incorrect sampling condition lagdbd of z(¢) is used for the asymptotic valie (¢t + At) —z(t)) /At
aliasing (b). when At — 0. In the physical case of a finite sampling rate,

the neighbor samples are obviously not infinitely closerimeti

hence we prefer not to use “derivative” here. More precjsely
continuous time as follows: we are dealt here with significantly separated samples i@, tim
since strong aliasing is first operated (see Section 11-B1),

_f\l -fé f; -f;\II

S(t)k:f_(t)"‘uTS(t)’ @ with an undersampling number up 0 — 16. The initial
B ~— 40 GHz sampling rate is respecting the oscilloscope analogu
whereLL 7(t) = kZ ot —kT). input bandwidth of 12 GHz, but the final series obtained after

retaining 1 sample over 16, is corresponding to a 2.5 GHz
A typical illustration of the proof for the sampling theorésn undersampling rate. The samples obtained after this distan
presented in Fig.3, as one describes the spectrum of suckample difference (which will be called from here DSD)
sampled signak(t), operation can be described as follows:

S() = FT[s(0)] = X@)FTILL2(0)] = 2 X () xL1 1/ (0), (i we = (alhT] —al(k =Tk €N} (4)

(3) If we try again to analyze in the Fourier domain the meaning
where we have used the well known result that the Fourief this second processing, one obtain the following exjoess
Transform (FT) of a comb is also a comb. The convolutiofor the Fourier spectrum of—undersampled difference signal:

roduct in the Fourier domain reveals that the spectrumef th . imw .
gampled signal is the result of the superpositiorl13 of an efini D) = [2ée7T "X () sin(monT)] x L (v). (8)
number of regularly spaced replica of the original signa&csp This expression reveals a so-called channeled spectrum filt
trum X (v) =FT[z(t)], two neighboring replica being separatedvhich applies a periodic sinusoidal modulation of the oragi
by the sampling frequencys = 1/T. Thus, if the maximum spectrumX (v). One could notice that the maximum trans-
frequency fu of the bounded support oK (v) is less than mission of this filter is centered at half the undersampling
fs/2, the replicated spectra do not overlap (see Fig.3(a)). Itriate (n7')~!/2) where aliasing is maximally symmetric (thus
then obvious that a suitable window filtering of the samplesbmehow selecting the frequency components that are most
signals(t) allows to recover in the Fourier domain exactly thaffected by aliasing), and the frequencies of null transmis
same spectrum as the one of the original sigr(@). Such a sion are centered at zero angdn7)~! (where the aliasing
filter typically transmits perfectly all the Fourier comparis phenomenon is the less pronounced in the Fourier spectrum,
in a frequency band such as fs/2, + fs/2], and rejects all as long asn is not too large). When focusing on the low
the other Fourier components for the other frequency rangégquency domain only, another comment about the action of
When undersampling is used, thkasing phenomenon occurs this DSD processing could be made: the very low frequencies
in the Fourier domain. It consists then of overlaps betwéen tare filtered out, which consequence is to asymptoticallytset
replicated spectra due to the comb convolution. The actuadro the mean value of the corresponding sample set, and thus
spectrum of the sampled signalt), can be viewed as aalso improving the symmetry around zero of the amplitude
complex mixing of the frequency components of the origingrobability distribution.
signalz(t), due to the overlapped replica &f(v) =FT[z(¢)]. The Fourier analysis of the DSD processing is however not
The procedure of selecting only one sample eveffyom the as obvious as for the aliasing issue in terms of randomness
original sampled sequence, is thus equivalent to an afjasienhancement, or entropy amplification. A more meaningful
operation with an undersampling of order The original discussion can however be made through the analysis of the
goal of cementification of the extracted sample sequenctatistical sample distribution of the DSD compared to the
can thus be viewed as an aliasing technique resulting inodginal one. More precisely, Fig.4a shows the evolution of
complex mixing of the original frequency components. Thiée amplitude statistics when the DSD processing is itdrate
consequence is an increased entropy of the output sequesegeral times. One clearly sees that the statistics is mude a
When viewed in the time domain, this procedure results more symmetric, resembling closer and closer to a Gaussian
the vanishing of the short time correlations, since a longeti distribution. We have checked that introducing noise in the
intervalle is then separating two successive samples, atedp simulation does not change this result.
to the width of the autocorrelation function of the originallhis convergence towards a Gaussian statistics through DSD
signal. On the contrary, the short time scales correlationan be qualitatively explained through the analysis of tisDD
are necessarily present when the conditions of the samplipignciple. Since the difference is performed between tieesa
theorem are fulfilled (two successive samples would thup kesample sequence but shifted in time over a quantity large
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Fig. 4: Statistics of recorded chaotic time series (expenital). (a)lst-4th times DSD for2.5GHz undersampling; (b) Zooming
of the centering area of (a); (c) 1st-10th times DSD, loggtm between weight and height, showing the hyperbolidiatahip
between the two as DSD is repetitively processed.

enough compared to the correlation time, one can interpretnditions for the last post-processing operation progpdse
the DSD as the superposition of nearly independent pseud2], leading to the final random bit sequence: LSBs retainin
random processes. The central limit theorem can then be used o o ] )

to explain qualitatively the amplitude distribution congence 3 LSB retaining, and quantization noise effect: Surpris-
towards a Gaussian one (limit of the amplitude distributiof?9!y: the qualitative signal processing analysis of thit post-

for the superposition of an asymptotically large number GOCESSING step, is involving very similar theoreticalighs
independent random processes). compgred _to the_ones related to_th_e aliasing phenomenon
At the same time, as more and more DSD are Operaté@derllned in section II-I??ll. The main |de.a.f0r the analydis o
the amplitude range is increased along the horizontal axi@iS last step of LSB retaining, actually originates fromede-
whereas the maximum of the statistics along the vertical ajant and powerful analogy between the temporal discrédizat

is inversely decreased. Figure 4c shows the numerical eeigle ©cCUITing during sampling, and the amplitude discretorati

of a hyperbolic relation between width and height for th@ccurring as quantization is concerned [35]. Following the
successive iterated processings. results of this statistical theory of quantization, one irildat

This asymptotically Gaussian distribution obtained aféer the actual consequence of the LSBs retaining method is prac-

few DSD steps, finally prepares a kind of optimal statisticAically to provide a nearly constant (flat) amplitude proitigh
distribution for the quantization noise, for quantizatiemels
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as high as the root mean square of the signal to be quantizedd a kind of aliasing, but performed on the initial Gaussian
terms of LSBs retaining, this means that flat noise distidout amplitude probability distribution, according to the watal

is obtained for the corresponding LSBs amplitude, evendf ttheory of quantization. The Gaussian profile is implicitely
LSB maximum amplitude reaches the root mean square of f@vided through Reidler's method when a sufficiently high
qguantized signal. As illustrated in Fig.9 of Ref. [35], thatfl number of DSD processing is performed.

amplitude distribution results in a kind of aliasing frometh ) ) o )

original symmetric (Gaussian) amplitude distributionjevhis ~ 4) Discussion of the randomness origin: A straightforward
segmented and superimposed over the central small amgplitiRPU€ can then b.e rals_ed about the actual source Qf randesmnes
interval limited by the resolution of the quantized ampieu '€2ding to the final bit sequence, as proposed in [22]. The

(i.e. the amplitude range encoded by the retained LSBs). randomness origin has been many times attributed to the
chaotic character of the solution generated by the original

Thus, after a complex mixing in the Fourier frequencphysical system: A SC laser diode subject to proper optical
domain due to a sampling theory aliasing effect, the LS®edback, which is well known to exhibit chaotic motion.
retaining process results in a strong flattening of the aoqidi  However, from the previously analyzed post-processingsste
probability distribution for the retained LSBs. This flatteg no single argument related to any chaotic property of the
of the amplitude probability distribution can be also retht original signal was involved. The only necessary requingime



was to have a certain broadband character in the originaékig A. Introducing noise in the smulated chaotic dynamics

such that first standard aliasing could occur in the Fouriergqg, the entropy calculation, we first consider a transient-
domain. Secpnd the DSD proce_ssing leads to a symmetrizatjgdy chaotic solution of Eq.(1)8( = 5). To achieve such
of the amplitude statistics, with a convergence towards Aso|ytion, Eq.(1) is integrated under the proper parameter
Gaussian distribution. And last, LSBs retaining perforratin - ditions known to lead to a high complexity chaotic sainti
rally a flattening of the final amplitude probability diswiion  Thjs preliminary numerical integration is performed over a
corresponding to the selected bits. duration long enough compared to the slowest characteris-

To investigate this issue, we performed_a similar analys(ii\% time scale of the dynamics);, so that the asymptotic
as the one done in the previous subsections on the chagfifectory is free of any transient. Once this correspogdin
motion of a nonlinear electro-optic delay dynamics, butwvéit chaotic attractor is supposed to be reached via the nurherica
physical signal a priori originating from physical nois@ises  integration, this asymptotic solution can be associated to
only, without any deterministic chaotic compound. Thisnsiy single temporal waveform covering only the longest timeagel
is chosen to be the output of the amplified photodiode of thg e dynamics, i.eT + §T: this is defining the initial
same setup, but without the nonlinear delayed feedbackdboR.gndition of the corresponding delay based, and noise-free
the origin of the chaotic time series: The amplified photdeio ¢pg0tic dynamics, from which noise influence will be exptbre
signal is issued from the laser intensity noise, it comisrisye then introduce in the right hand side of Eq.(1) an arbjtrar
also the photodiode junction noise and the electronic &f@pli sma)| additive noise term (small perturbation along theotica
noise (see “Optoelectronic Noise” output in Fig.1). Altlgbu trajectory). The noise amplitude is arbitrarily set so ttad
the electrical signal level is significantly lower, we usé® t sjgnal-to-Noise Ratio (SNR) is 40 dB. After further integra
scope magnification to get a time trace of a comparaligy Eq.(1) with the noise term and starting from the initial
amplitude with respect to the scope vertical amplitude eang:ondition corresponding to the calculated noise free ghaot
thus resulting in an effective digital scope quantizatioera trajectory, one is able to obtain a continuously noisetsbed
comparable number of bits with respect to the chaotic signghaotic trajectory. When repeating this calculation withiezal

We have reported in Fig.4 and 5 the statistics evolutitiifferent noise realizations, one then expects to obseree t
of the digitally acquired optoelectronic noise signal at&l igffect of SIC when comparing the different noise perturbed
width / height evolution. The figures clearly show very simil chaotic trajectories. This property manifests itself tigb a
features. From this rough analysis of the influence of thgogressive amplification (as time is running) of the small
two physical signals (the optoelectronic noise and thetelec perturbations materialized by the added noise. Compatiag t
optic chaos), we realize that the post-processing leads different calculated waveforms, they consequently looks a
qualitatively equivalent final bit sequence. This obseorat the same right after the noise addition, but they split apart
and the previous analysis of the post-processing stepppsiup (differently for each pair of such time series) after a tgic
the assumption, at least qualitatively, that the randomioés time scale related to the inverse of the largest Lyapunov
the final bit sequence might be mainly issued from the pogigxponent of the chaotic dynamics (see Ref. [36] for detalils)
processing steps. The chaotic feature of a time series BPPeRyo such simulated waveforms are represented in Fig.6; afte
as an actually sufficient but not required condition, for thghe undersampling procedure, and before the DSD and bit
generation of a random bit sequence when the discussed pgastaining processes for the final extracted binary sequéitee
processing is used (undersampling, DSD, and LSBs retginingayeforms thus do not appear anymore as continuous in time
A simple noisy signal with similar spectral extend is foungjye to undersampling. For these two realizations and with th
to lead to similar final output bit stream, as already refbrtghosen SNR for the noise amplitude, one clearly sees that the
previously [4], but not yet analyzed and interpreted as wehayyo time series separate one from each other after a typical

proposed. time scale of ca. 300 ns. This time scale is of the order a few
tens of the largest time deldy+ 67", which is corresponding
I1l. EFFECT OENOISE ON THEENTROPY RATE IN THE to a few tens round trips of the chaotic signal in the nonlinea
BINARY SEQUENCE delayed feedback loop. This is fully consistent with theidgp

order of magnitude of the inverse largest Lyapunov expgnent

I this section, the time evolution of the entropy in the fingly it is of the order of the largest time delay in the dynasnic
binary sequence is evaluated under different choices fer th

method used to build the final random bit stream from the

chaotic signal. The aim is to get insight in the origin of the o )

entropy creation mechanism involved in the constructiothef B- Entropy estimation for each bit cell

final random bit stream. More precisely, we aim at discrimi- Many different noisy chaotic time seriesV(= 103) are
nating under which conditions the deterministic featur¢hef simulated to generate as many random bit sequences. Each
chaotic signal (the determinism coming from the dynamicgalization is calculated from the same initial conditidtise
described by Eq.(1)) is indeed involved in the entropy of theoise free chaotic waveform over one largest delay tima-inte
extracted bit stream. To achieve this goal we reproduce thal), but with different added small noise perturbationsrf
method proposed in [36], which is intended to measure tlkach obtained time series, one can explore various bitrstrea
sensitivity to initial condition (SIC) of the deterministthaotic extraction methods, e.g. with or without DSD, or even with
motion in the presence of additional small noise. This measiseveral successive DSD processing, with the LSB retaining
consists in calculating the temporal entropy evolutiontfe or with the MSB, ...For a fixed bit extraction method, the
generated binary random sequence, with respect to sevéyabbtained bit sequences can be used to calculate, at each
different noise realizations. time t;, of a new extracted bit, the probabilitig3)(¢;) and
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most reflecting the deterministic features of the signakmehs
this determinism is earlier lost as smaller LSBs are corezrn
The SIC amplification of the small initial differences (nis
realizations in that case) occurs naturally earlier for ESB
than MSBs. Differently speaking, this illustrates the fawht
deterministic properties are more prononced with MSBs, or
equivalently, LSBs are containing less deterministic desd
than MSBs.
Columns 2 and 3 in Fig.7 are showing similarly this deter-
minism loss from MSBs to LSBs, when one and two DSD
steps are processed respectively. One clearly sees that the
smooth entropy transition, which is a signature of the chaos
determinism, even completely disappears for LSBs (a zaom-i
00 200 200 600 800 1000 1200 1400 1600 over the first ns, would show that the entropy already starts a
Time (ns) values very close to unity).

Fig. 6: Two simulated waveforms of chaotic laser intensi% The co?clusmlr_l on F|g.£|s thﬁ.t fasctjesthentrlf)spé rate (dowdn tod
starting from the same initial conditions with differentis® Eactua salmplng) can be achieve va en q ﬁ_ar_e lﬁse an
sequences added at timeThe noise amplitude is set so that¥hen several DSD processing are performed. This is however

SNR is 40 dB (the signal energy being calculated on the noi?ec_hieve_dhat the cost a ﬂ;]" lost of detern;}inismh. (zero memo(;y
free chaotic trajectory) time, without any smooth entropy growth). This corresponds

to the plots on the upper right positions, for which unit eptr
is already achieved very close to the time origin. This suppo
Pi(t,) for obtaining a bit 0 or 1 respectively. This timethe fgct thgt det_erministic chaos does not exist anymorken t
varying probability distribution is then used to calculéiaw obigined final bit stream randomness..
the statistical bit entropy evolves in time, Qn the contrary, the MSBs are shqwmg a non-zero memory
time, and thus a signature of a maintained determinism. The
! most pronounced determinism is revealed in the lower left
H(t) = _Z Pi(t) - logy Pi(t). (6) plots, for MSB and without any DSD. One could notice that
=0 this actually corresponds to the 1-bit ADC used in [9], where
As described in [36] if SIC of a chaotic dynamics is indeedeterministic chaotic origin does contribute to the randess
involved in the final bit sequence, th& extracted bit of the final bit stream. In this case, the good randmoness
sequences are initially strongly correlated. This is beedbe quality is obtained only by carefully combining two uncerre
bits are originating from the same initial chaotic waveformated chaotic signals (two chaotic lasers, with incommeatsu
Consequently, the influence of the small added noise dharacteristic time scales).
negligible at the initial times of the deterministic cha&oti Figure 8 shows the plots of every bit cell entropy averaged
dynamics: the entropy at smallis expected to be close toover 10° trajectories. Each plot of entropy is obtained as a
zero if indeed the dominating phenomena is deterministitinction of time for an ensemble of time series starting with
However, as time is evolving, SIC is amplifying the influencexactly the same initial condition at time= 0. Eight plots
of the small noise amplitude on the large amplitude chaotze shown in Fig. 8 corresponding to eight different positio
motion, and theN bit streams realizations are more andit cell of the value. These curves are the smoothed versions
more decorrelated, leading progressively to a maximudue to averaging, of the curves represented in the first aplum
binary entropy of 1. This unity entropy means an equaf Fig.7. Again, it can be seen that more time is required to
probability for obtaining bit zero and one, independentfy a@onverge to a unity entropy when using MSB compared to the
any deterministic motion. The influence of the small addagse of LSB. Differently speaking, the memory time depends
noise term is then dominating the output random bit streamn bit cell selecting, MSB and LSB appearing as the slowest
One should notice here that the bit extraction method usedd fastest entropy increasing rate, respectively.
in Ref. [36] concerns MSB only. In our case, we apply the
complex bit extraction method with multiple steps (ali@sin IV. STATISTICAL TESTS
DSD, LSBs retaining) proposed in [22], and we are interestedAdditionally to the previous signal theory analysis of the
in the resulting entropy growth rate under these particularocessing steps used in the bit extraction method, thisosec
conditions, with actually expected significant differesice is intended to qualify the final bit stream in terms of their
benchmarking from several standard randomness test .suites
Figure 7 represents the obtained binary entropy calculaté® thus verify in this section that the analyzed and used
with different bit extraction methods. In the first columhet method proposed in [22] and [23] have led also in our exper-
binary entropies obtained from a direct 8-bits ADC for diffe iment to quasi-equivalent random bit stream quality, whaeth
ent bits from LSB to MSB, are plotted as a function of timefrom the deterministic EO phase chaos generator or with the
According to the description of [36], memory time is define@ptoelectronic noise source.
as the time required for the entropy to reach a value close to
one. One clearly sees that as the bits chosen for the randdmlhe tested streams
bit stream moves from LSB to MSB, the memory time of First of all, we give here a brief description of the tested
the related bit cell is increasing. This illustrates thatB4%re methods that have been formerly proposed in [22] and [23].
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Fig. 7: LSBs entropy evolution as a funtion of time, for an @mnble of simulated chaotic time series with the same initial
conditions, but with different small noise added to it. Thase strength is-40 dB, with sampling rate.5 GHz 8-bit ADC.
(a) For sampling value; (b) For the 1st DSD of the samplingi®alc) For the 2nd DSD of sampling value.

1o is processed times and3 LSBs of each value are joined to
produce the pseudorandom bit stream.

] These two schemes are both adapted to optoelectronic noisy

T signal. The generated streams sourced from chaotic lasker an

noise are compared by standard statistical tests in the next

subsections.
g LSB
< — — —2nd bit i<t
i and i B. Statistical tests
- ’;‘:2 E:: Considering the properties of binary random sequences,
~ — —6thbit various statistical tests can be designed to evaluate Heetas
o 7;}2;" that the sequence is generated by a perfectly random source.

We have performed some statistical tests for the optoeleictr

noise and electro-optic chaos generators proposed heeseTh

200 400 600 800 1000 1200 1400 1600 tests include NIST suite [37], DieHARD battery of tests [38]
Time(ns) ENT program [39], and and some comparative test parameters.

Fig. 8: Simulated averadge growth of bit entropy and ié brief description of each of the aforementioned testsvemyi
. p the following paragraphs.

dependence on bit cell selecting (from MSB to LSB), witho A _

any DSD 1) NIST statistical test suite: Among the numerous standard
tests for pseudorandomness, a convincing way to show the
randomness of the produced sequences is to confront them
to the NIST (National Institute of Standards and Technojogy

On the one hand, in [22], authors have used a DSD methSthtistical Test, because it is an up-to-date test suitpqsed

to generate a random bits stream. The chaotic laser signabys the Information Technology Laboratory (ITL). A new

sampled by using 8.5 GHz ADC, and therb LSBs of every version of the Statistical Test Suite has been released gustu

first DSD value are joined together to generate the final randd.1, 2010.

sequence. On the other hand, in [23], the chaotic laser IsignaThe NIST test suite SP 800-22 is a statistical package con-

is sampled thanks to 20 GHz ADC. Then the DSD operationsisting of 15 tests. They were developed to test the randssnne
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of binary sequences produced by hardware or software base8) Sample test: Sample test means can be tested for bias in
cryptographic pseudorandom number generators. These test random number generation. In binary mode, the expected
focus on a variety of different types of non-randomness that mean is 0.5 while for bytes, the expected mean is 127.5.

could exist in a sequence. 4) Monte Carlo test: a Monte Carlo approximation 7of
For each statistical test, a set Bf— values (corresponding which is simply the evaluation the area of the unit circle

to the set of sequenceBy) is produced. The interpretation using theN generated random numbets (X, 1), i =

of empirical results can be conducted in various ways. I8 thi 2,...,N.

paper, the examination of the distribution Bf to check for 5) Serial Correlation test: Serial correlation coefficiewdal-

uniformity is used. The distribution of P-values is exandine uated from< X;, X, 1 > / < X;, X; >, fori =2,..N.

to ensure uniformity. I1fP7 > 0.0001, then the sequences can The intended value for perfect random sequences is 0.

be considered to be uniformly distributed. In Table Il, it is shown that the results for each pair of

In our experiments, 100 sequences=t 100), each with random streams, considering these five tests detailed above
1,000,000-bit long, are generated and tested. Ifitheof any  are very closed one to each other. They all achieved to pass
test is smaller than 0.0001, the sequences are considebed the threshold of the Chi-squared test, and the results axe ve
not good enough and the generating algorithm is not suitaldgnijar for the other tests. To sum up, all these streamsfgati
for usage. In Table I, the random streams generated by #i@ same random-like behavior according to the ENT battery.
chaotic laser and by the noisy signal have both obtained as) comparative test parameters. Five well-known statis-
100% passing rate when considering the NIST battery of tes{ga| tests [40] are used too as simple comparison tools.
thus it is impossible to found a difference between the tWehey encompass frequency and autocorrelation tests. It wha
streams using the NIST suite. _ follows, s = s°, s', 5%, ..., s"~! denotes a binary sequence of

2) DieHARD battery of tests: The DieHARD battery of |engihy,, The question is to determine whether this sequence
tests has been the most sophisticated standard for ovep@sesses some specific characteristics that a truly random
decade. Because of the stringent requirements in the DidMARgqence would be likely to exhibit. Standard tests intdride
test suite, a generator passing DieHARD battery of tests cafs\ver this question arequency test (monobit test), Serial
be considered good as a rule of thumb. test (2-bit test), Poker test, Runs test and Autocorrelation test

~ The DieHARD battery of tests consists of 18 differenf e refer the reader to [40] or [41] for detailed definitions)
independent statistical tests. This collection of testbased

. . 5?/5(he noisy optoelectronic signal. The results confirm that
32-bit m_tege_rs in order to run the full se_t of tests. Mosﬁroposed random streams present very closed statistiedit qu
of the tests in DieHARD return & —value, which should be {5 s finding implies that to have a chaos-like deteistin

uniform on [0, 1) if the input file contains truly independentori(‘:]in is not a required condition for high randomness dyali
random bits. Occasion&—wvalues near 0 or 1, such as 0.001Z the proposed method.

or 89f98|3(;:afn occur. However, an r']nd'v'dlljal t?Stf'S (_:onader Finally a comparison of the overall stability fromx 103
to be failed if its P —value approaches 1 closely, forinstance,, o . 105 for these generators is given in Fig. 9. It can be

P —value > 0.9999. _ _ seen that the trends for the amplitude movements of valees ar
Results derived from applying the DieHARD battery of tests, o o jess in the same scale, which again indicates that all

to the two random streams computed from experimental tifje, oo yandom sequences share closed random properties.
series, reveals that both sequences can pass sucesdftiig al

tests. This confirms that the quantitative randomness obithe
stream taken from the chaotic laser intensity indicateslaim
features compared to the one obtained by the optoelectroniRandom number generation via photonic broadband signal
noise source (thus without any chaotic origine). generation does provide nowadays a novel and interesting
3) ENT test program: ENT test program applies variousapproach allowing for unprecedented high bit rate of random
tests to sequences of bytes stored in files and reports thiksresit streams. These photonics to digital world conversiom ar
of those tests. The program is useful for evaluating randaesigned so that randomness can be certified according to mos
number generators for encryption and statistical sampling the usual randomness tests such as NIST and DieHARD
applications, compression algorithms, and other apjiioat suites. Among the recently proposed physical systems and re
where the information density of a file is of interest [39]. lated processing intended to extract bit streams from pfioto
There are 5 tests contained in the program: analogue waveforms, two rather different approaches can be
1) Entropy test: Entropy in bits per character (or byte)dentified: when the source of randomness explicitly stems
which corresponds to the incompressibility of the sdrom photonic noise [4]-[6], and when deterministic chaos
guence (as a perfectly random sequence cannot be casnelaimed to be at the origin of the random bit stream [9],
pressed, since no part of it can be expressed in terms[22]. Whereas the first approach provides obviously, and by
other parts). Hence entropy of 8 bits/byte means perfatgfinition, a non deterministic random bit stream, the sdcon
randomness in the sense of incompressibility. one has an implicit potential source of determinism, sirhila
2) 2 test: x? testing is very common for goodness-of-fito the algorithmic and fully digital pseudorandom bit seqees
of sample distributions of random numbers. It is know(PRBS) generators.
to be very sensitive to deficiencies in random numbé major interest of the digital PRBS resides in their capgpbil
generators (when it is located between 5% to 95%, daié generating a distant and synchronized random bit stream,
are treated as random). which allows one to apply them in symmetric cryptography.
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TABLE I: NIST SP 800-22 test result®{)

Method 2.5GHz, 1st DSD, 5LSB 20GHz, 4th DSD, 8LSB

Source Chaotic Iaser| Noise Chaotic Iaser| Noise

Frequency: 0.935716 0.798139 0.171867 0.834308
BlockFrequency: 0.040108 0.350485 0.289667 0.867692
CumulativeSums: 0.334152 0.575225 0.228927 0.688782
Runs: 0.595549 0.834308 0.851383 0.637119
LongestRun: 0.191687 0.964295 0.162606 0.304126
Rank: 0.534146 0.037566 0.637119 0.719747
FFT: 0.236810 0.514124 0.202268 0.249284
NonOverlappingTemplate: 0.502510 0.491449 0.521769 0.501830
OverlappingTemplate: 0.851383 0.964295 0.090936 0.574903
Universal: 0.798139 0.739918 0.102526 0.319084
ApproximateEntropy: 0.224821 0.236810 0.435436 0.419021
RandomExcursions: 0.347389 0.229729 0.471174 0.104312
RandomExcursionsVariant;  0.217344 0.209317 0.461569 0.350467
Serial: 0.300289 0.366918 0.237996 0.606177
LinearComplexity: 0.350485 0.262249 0.224821 0.935716

TABLE II: ENT battery using10® bits for each stream

Method | Using source| Entropy | Chi-square| Sample | 7rerror| Correlation

2.5GHz, 1st | Chaotic laser| 7.999984 67.18% 127.4988| 0.03% | -0.000771
DSD, 5 LSBs | Noisy signal | 7.999986 7.13% 127.5034 | 0.03% -0.000392
20GHz, 4th Chaotic laser| 7.999986 73.48% 127.4973 | 0.03% 0.000481
DSD, 8 LSBs | Noisy signal | 7.999985 12.37% 127.5011 | 0.02% -0.000411

TABLE IIl: Comparison between the presented sources faral0’ bits sequence

Subjects Monobit | Serial | Poker | Runs | Autocorrelation
Method 2.5GHz, 1st DSD, 5LSBs
Chaotic laser| 0.2509 | 1.9200 | 16.6650 | 16.6215 1.5739
Noise 0.6019 | 0.7144 | 8.5606 | 17.5156 1.5247
Method 20GHz, 4st DSD,8LSBs
Chaotic laser| 1.4580 | 0.5199 | 13.1430 | 28.9460 1.1583
Noise 0.2554 | 0.7835 | 14.0035| 22.9136 1.6739

A major advantage of PRNG is precisely their perfect dén that particular context, we have proposed to addresgeckla
terminism, and perfect control, due to their digital pragra issues, through the analysis of a particular post-proegssi
based generation process. This feature is also at the arfgiimethod [22] applied in many chaos-based photonic RNGs.
their main drawback: the same absolute digital determinisiine actual role of deterministic chaos in this photonic RNG
can be used in principle for cryptanalysis, trying to gudss tapproach was known to be controversial [4], [42] (but not
seed which can then deterministically and totally allowtfog analyzed), since purely non-deterministic (noisy) phaon
random bit sequence reproduction, even by an eavesdropp@mals were found to lead to similar randomness qualityrwhe
Also from a more technical viewpoint, the processor baseding the same method.

architecture of PRNGs defines some speed limitations cklale this article, we have checked on additional experimdms t

to the processor clock, and the number of elementary opetiae proposed method can succesfully lead to high speed and
tions needed to implement the PRNG algorithm. Noise baséiigh randomness quality, whether when used on strongly-dete
and chaos based, photonic RNGs provide at least a techniwa@tistic chaos provided by an electro-optical phase dynami
answer to the limited bit rate generation provided by purelyr when used on a photonic noise having comparable spectral
algorithmic solutions. It was also reported in many attesnpand statistical features. It is thus confirmed that chao®isan

on photonics based RNGs, that high quality randomnessniscessary condition for the method to be successful.
possible, since they can pass successfully all the stadl&H We have also analyzed and interpreted this digital post-
and DieHARD test suites. A strong open problem however stiffocessing method. Standard signal theory argumentsleevea
remains concerning the capability to control, and repredudhat the method is actually acting as an entropy enhancement
the random bit stream provided by photonic chaos-bastatough aliasing phenomena, both with the time discretinat
RNGs. On the contrary to the photonic noise based RNGs, tlisidersampling) and with the amplitude discretizationBkS
indeed can be expected from the chaos-based photonic RN@#ining).

since they also originates, at least partially, from deteistic Finally, we have also investigated how a typical signature
dynamics, similarly to the algorithmic PRNGs. of deterministic chaos, sensitivity to initial conditiocan or
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cannot survive in the final bit stream. It is found that thigoj
determinism signature is actually lost precisely due to th&l]
random bit stream extraction method.

We also conclude that the analyzed bit stream extractign,
method does not appear as suitable, when further use of
deterministic feature is expected. For example, this happ
when one wants to achieve synchronization between dist ng
random bit stream (e.g. when cryptographic applicatiors ar
concerned, such as one time pad cypher). (24]
Synchronizable random bit stream generated from detesmini
tic chaos, is thus still an open problem, which would require
other bit stream extraction methods able to provide both[%l
strong enough determinism together with a high randomness
quality.
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