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Optoelectronic oscillators are the subject of extensive research because of the wide variety of associated appli-
cations, which include chaos cryptography, ultrastable microwave generation, and neuromorphic computing. The
wideband optoelectronic oscillator presents a particular feature allowing for two dynamical time scales to be
superimposed, namely, a slow one and a fast one. In this paper, we fully characterize the onset of the slow-scale
oscillation in the wideband optoelectronic oscillator. We investigate the dynamics associated to the first Hopf
bifurcation and calculate analytically both the amplitude and period of the induced limit-cycle. In particular,
we show how the dynamics of the zero-delay case can be used to provide insight into the infinite-dimensional
dynamics of the delayed system. Our theoretical results are in very good agreement with the experimental
measurements. © 2014 Optical Society of America

OCIS codes: (120.3940) Metrology; (190.3100) Instabilities and chaos; (350.4010) Microwaves.
http://dx.doi.org/10.1364/JOSAB.31.002310

1. INTRODUCTION
Dynamical systems with delay are abundant in nature, and
they have been the object of many investigations in science
and technology (see, for example, [1,2] and references
therein). A delay differential equation (DDE) with a single
constant delay can be represented under the general form

dx
dt

� F�t; x�t�; x�t − TD��; (1)

where x is a N -dimensional variable, F a N -dimensional alge-
braic function (generally nonlinear), t is the time, and TD is the
delay. Such delayed systems have been thoroughly studied in
optics and photonics, where the time scales can span over
several orders of magnitude and thereby require taking into
account delay propagation times (see, for example, review ar-
ticles [3,4]). In particular, delay dynamical systems emerged
as a very fertile formalism for the study of narrowband
[5–7] and wideband [8–17] optoelectronic oscillators
(OEO), which are generally investigated using the paradigm
of Ikeda equations [18–20].

However, compared to the original studies on the Ikeda
paradigm, its optoelectronic experimental version has intro-
duced two novel and essential dynamical features: (i) the ex-
perimentally intrinsic band limited feedback required the
introduction of a slow (integral) time scale, and (ii) the pre-
vious feature forces the reconsideration of the positive feed-
back situation as a source of novel dynamical phenomena
(the well-known period doubling route to chaos extensively

studied with the Ikeda paradigm is indeed concerned with
the negative feedback only).

In such a case of wideband OEO, it had been shown that
they can be synthetically modeled using an integrodifferential
delay equation (iDDE), which is characterized by three time
scales: a fast time scale τ related to the high cutoff frequency
(linked to the derivative term), a slow time scale θ related to
the low cutoff frequency (linked to the integral term), and a
third time scale defined by the delay generally much slower
than τ (large-delay case). The richness of the observed
dynamical solutions appears as a consequence of the interplay
between these three time scales, in which the importance is
generally ruled by the strength of the nonlinearity in the dy-
namics (where strength is typically controlled by the gain of
the nonlinear function) F.

For weak nonlinearities, delay dynamical systems with an
integral term and positive feedback exhibits stable low-
frequency periodic oscillations that do not exist in the original
Ikeda paradigm. Faster oscillations also appear with positive
feedback, even though for higher nonlinear feedback. As the
gain is increased from zero, a large variety of motions can
indeed be observed whether experimentally or numerically,
from fixed points through limit-cycles and torii up to fully de-
veloped chaos. In this work, we will focus on the dynamical
characterization of the slow limit-cycle emerging from the first
Hopf bifurcation, for the wideband configuration of the OEO.
Understanding this phenomenology is particularly important
in applications were these slow-scale oscillations have to be
either avoided or enhanced. In particular, we will focus on the
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variation of the amplitude and frequency (or period) evolution
as the gain parameter is slightly increased from the Hopf
threshold. Our methodology will rely on first studying the
zero-delay (two-dimensional) system, and thereby gain insight
into the more complex case of the (infinite-dimensional)
delayed system.

The outline of the paper is the following. The model of the
wideband OEO is briefly presented in Section 2, and we study
the Hopf bifurcation in Section 3. In Section 4, we present our
OEO experimental setup and discuss the results obtained.
Section 5 focuses on the evolution of the oscillation period
depending on the various tunable parameters (laser power
and bias voltage) in the absence of delay. The case with delay
is discussed in Section 6, and the last section concludes the
article.

2. MODEL
A schematic view of the OEO configuration analyzed in this
paper is shown in Fig. 1. The laser diode (LD) sends a continu-
ous wave (CW) light into an integrated electro-optic Mach–
Zehnder modulator (MZM) of half-wave voltages VπDC (DC
input) and VπRF (RF input). The nonlinearly modulated optical
intensity at the output of the MZM is then sent to an optical
fiber which is mainly responsible for the time delay TD. Sub-
sequently, the light at the end of the optical fiber is detected by
a broadband amplified photodiode (PD). This photodiode con-
verts and filters the optical signal into the electrical one. The
resulting electrical signal is amplified with gain G by a radio
frequency (RF) amplifier and used to drive the MZM [RF volt-
age V�t�]. In the first approximation, the electronic bandwidth
of the feedback loop is supposed to result from two cascaded
linear first-order low-pass and high-pass filters, with low and
high cutoff frequencies f L and f H , respectively. The equation
describing the dynamics of this OEO can be modeled by the
following iDDE [8,10]:

x� τ
dx
dt

� 1
θ

Z
t

t0

x�s�ds � β cos2�x�t − TD� � ϕ�; (2)

where τ � 1∕2πf H , θ � 1∕2πf L, ϕ � πVB∕2V πDC , with VB

being the bias voltage applied to the DC electrode of the MZM.
The dimensionless variable of the system x�t� � πV�t�∕2Vπ is
the normalized voltage applied to the MZM. The main control
parameter is the feedback gain β � πκSGP∕2Vπ which de-
pends on the overall attenuation of the feedback loop κ, the
responsivity of the photodiode S, the RF amplifier gain G, and
the optical power emitted by the laser P. For numerical
simulations, the following parameter values derived from
the experimental setup will be considered: τ � 1.6 ns

(f H � 100 MHz), TD � 10 μs (2 km of fiber), and θ �
160 μs (f L � 1 kHz) for the three characteristic time scales
(thus spanning over 5 orders of magnitude), and unless oth-
erwise stated, the value of ϕ will be set to −π∕4.

3. HOPF BIFURCATION AND AMPLITUDE
OF THE LIMIT-CYCLE
The model presented in the previous section only has a single
fixed point, which is the trivial equilibrium xtr � 0. The stabil-
ity analysis of this fixed point has already been performed in
[10], in the configuration where τ ≪ TD ≪ θ which is also the
one we consider in this paper. It was then found that γ �
β sin 2ϕ is a more meaningful bifurcation parameter, since
it contains through the factor sin 2ϕ the slope of the nonlinear
transfer function at the fixed point, which can be positive or
negative depending on ϕ. On one hand, it is also shown that
when γ is increased from 0 to�∞, the first bifurcation value is
γ1 ≃ 1 and corresponds to a Hopf bifurcation which leads to
oscillations of frequency Ω1 � π∕TD (or period 2TD). On the
other hand, when γ is increased in on the negative side
(toward −∞), the first bifurcation value is

γ0 � −1 −
1
2
TD

θ
; (3)

leading to a Hopf bifurcation of frequency

Ω0 �
1���������
θTD

p : (4)

This latter Hopf bifurcation frequency is indeed very low, and
accordingly, reveals the interplay between the slow time scale
and the time delay. It was later shown in [10] that as the gain is
increased, fast-scale hyperchaotic oscillations appear on top
of this slow-scale limit-cycle, leading then to the emergence of
chaotic breathers.

In this section, we aim to analytically calculate the ampli-
tude of this limit-cycle in the small amplitude approximation,
as verified when considering gain values close to the Hopf
bifurcation point. We first consider that the limit-cycle has a
stationary sinusoidal solution with constant amplitude A and
phase ψ (which can be considered as the reference phase and
arbitrarily set to zero, if needed). This solution can be formally
written as

x�t� � A cos�Ω0t� ψ � � 1
2
AeiΩ0t � c:c:; (5)

where c.c. stands for the complex conjugate of the preceding
term, A � Aeiψ is the complex-valued envelope of the slow-
scale oscillation, whileΩ0 is its frequency as defined in Eq. (4).

Further analytics can be developed with the Jacobi–Anger
expansion

eiz cos α �
X�∞

n�−∞
inJn�z�einα; (6)

where Jn is the nth order Bessel function of the first kind, and
the nonlinear cos2 term can be expanded in harmonics of Ω0

following:

PD

LD PC MZM
Fiber

Delay

BPF
Amplifier

G

DCRF

Fig. 1. Experimental setup: LD, laser diode; MZM, Mach–Zehnder
modulator; PD, photodiode; PC, polarization controller; BPF, band-
pass filter.
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cos2�x�t − TD� � ϕ� � C0 �
X�∞

n�1

�
1
2
CneinΩ0t � c:c:

�
; (7)

where

C0 �
1
2
� 1

2
J0�2A� cos 2ϕ;

Cn � 1
2
Jn�2A�inein�ψ−σ�fe2iϕ � �−1�ne−2iϕg; n ≠ 0: (8)

The parameter σ � Ω0TD is the phase shift of the signal after
one round trip in the delayed oscillator loop. Then, after
inserting Eqs. (5) and (7) into the original Eq. (2), we obtain
the following relationship:

�
1� iΩ0τ�

1
iΩ0θ

�
A � βC1; (9)

after equating oscillating terms of the same fundamental tone
frequency Ω0. In the particular wideband OEO configuration
considered here (τ≪TD≪θ), the term 1∕Ω0θ � Ω0TD � σ is
small compared to 1, but the other term Ω0τ is even smaller,
so that it can be neglected. We are therefore left with the
equation

�1 − iσ�A � −β sin 2ϕJ1�2A�eiψe−iσ ; (10)

and in the limit σ ≪ π which is typical for wideband OEOs, we
have

e−iσ

1 − iσ
≃ 1 −

σ2

2
� 1 −

1
2
TD

θ
; (11)

up to the second order in σ. This truncated Taylor expansion
helps us to find the following nonlinear transcendental equa-
tion for the real-valued amplitude:

Jc1�2A� � −

1

2γ
h
1 − 1

2
TD
θ

i ; (12)

where Jc1 is the Bessel-cardinal function defined by
Jc1�x� � J1�x�∕x.

The Bessel-cardinal function qualitatively looks like the
well-known sine-cardinal function, except its maximum is
Jc1�0� � 1∕2 instead of 1. The bifurcation parameter threshold
is therefore achieved for

1
2
� −

1

2γ0
h
1 − 1

2
TD
θ

i ; (13)

yielding the critical value γ0 � −1 − TD∕2θ that was obtained
in [10]. Notice that from Eq. (12), the following explicit rela-
tionship can be derived:

A �
���
3

p
2
641 − 1���

3
p

���������������������������������
4

jγj
h
1 − 1

2
TD
θ

i − 1

vuut
3
75

1∕2

; (14)

after a sixth-order expansion of the Bessel-cardinal function.
The final Eq. (14) shows that the evolution of the amplitude of

the oscillations mainly depends on the parameter γ, and we
note that similar results have been found in the context of
narrow-band OEOs [5–7]. The amplitude of oscillations given
by Eq. (14) remains approximately valid until the breathers
emerge in our system.

In order to validate our theoretical development, we com-
pare our results on the amplitude of the oscillations with
numerical simulations of Eq. (2). Bifurcation diagrams from
both the theoretical and numerical analyses are presented
in Fig. 2. We clearly observe in this figure that the first bifur-
cation occurs at jγ0j, in the typical form of a supercritical Hopf
bifurcation. The size of the limit-cycle grows continuously
from zero, and increases proportionally to

������������������
jγj − jγ0j

p
for jγj

close to jγ0j≃ 1.031.

4. EXPERIMENTAL OBSERVATION OF THE
SLOW-SCALE LIMIT-CYCLES
The setup described in Section 2 was used to record and ana-
lyze a few of the oscillating waveforms observed under differ-
ent bifurcation parameter values close to the Hopf threshold
along the positive slope.

The 1550 nm Telecom DFB semiconductor laser has an out-
put power level which can be varied from 0 to around 10 mW,
thus providing a convenient way to adjust the experimental
parameter β, and thus γ.

The light coming from the MZM propagates through an op-
tical fiber and is detected by a InGaAs photodiode with a sen-
sitivity of S � 0.95 A∕W, at the wavelength of 1550 nm, and a
bandwidth of 100 MHz. The parameter ϕ is tuned by varying
VDC over a 2V πDC interval. The normalized feedback gain β
can be tuned by varying the pump laser current from 10 to
80 mA. Figure 3 presents the experimental and numerical tem-
poral signals in the regions (1) and (2) of Fig. 2. For values of
the control parameter jγj just above the Hopf bifurcation, the
oscillations have a shape close to the one of a sinusoidal wave.
Experimentally, we observe in Fig. 4 that this sinusoidal shape
is deformed when the power of the laser and therefore the
gain jγj is increased. Such a behavior is analogous to the evo-
lution of the oscillations in the well-known Van der Pol oscil-
lator, where quasi-sinusoidal oscillations rapidly morph into
relaxation oscillations when the gain is increased. The very
good agreement between the experimental results and the
numerical simulations validates the theoretical analysis

Fig. 2. Bifurcation diagram of Eq. (2) for ϕ � −π∕4 and TD � 0. The
solid line is obtained analytically from Eq. (14), while the dotted line is
obtained from the numerical simulation of Eq. (2). The labels (1) and
(2) indicate the two dynamical regimes.
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developed in Section 3. Note that away from the Hopf bifur-
cation, the numerical experimental transitions are sharper
than the numerical ones because the filters used experimen-
tally have a sharper profile (steeper edges) than the low-order
bandpass filters considered in the model.

We will now focus on the evolution of the period of the os-
cillations when the control parameter is changed. In the pres-
ence of delay, the complexity of the dynamics does not allow
for a simple mathematical analysis. We will therefore start by
studying the case where the delay can be neglected �TD � 0�.
In Section 6, we will show that the case TD � 0 enables an in-
depth understanding of the general case where TD is not null.

5. EVOLUTION OF THE PERIOD WITH γ IN
THE CASE TD � 0
In this section, we study the dependence of the period with the
parameters β and ϕ. In the first case, β is varied while ϕ is
fixed to −π∕4 (symmetric wave oscillations). In the second
case, we maintain the parameter β fixed but we vary ϕ, and
here, strongly asymmetric oscillations emerge. In both cases,
we compare analytical results with the numerical ones.

A. Evolution of the Period with β
We first rewrite Eq. (2) under the form

_y � x; τ _x � −x −

1
θ
y� βfcos2�x� ϕ� − cos2�ϕ�g: (15)

Note that in the above equation, the term −βcos2�ϕ� has been
added on the right-hand side of the equation ruling the dynam-
ics of x. This term, which has in fact no impact on the long-
term dynamics of the system (it is a constant term, which is
progressively eliminated by the bandpass filtering of the

system), is nevertheless physically convenient because it en-
ables one to immediately spot that x � 0 is a fixed point in the
system.

In this equation, we have two time scales (slow and fast).
The slow manifold is obtained in the limit τ → 0 in Eq. (15),
yielding

z � −x� βfcos2�x� ϕ� − cos2�ϕ�g; (16)

where z � �1∕θ�y, and from Eqs. (15) and (16), we can derive

_x � −

1
θ

x
1� β sin�2x� 2ϕ� : (17)

In the phase space, slow transition dynamics end when the
velocity tends to infinity, and this corresponds to

1� β sin�2x� 2ϕ� � 0: (18)

The above equation gives the two critical points in Fig. 5,
namely, xN and xQ following:

xN � −xQ � 1
2
arccos

�
1
jγj

�
: (19)

The maximum and the minimum values of the amplitude of
the wave oscillation in Fig. 5 are deduced from Eq. (14)

xM � −xP �
���
3

p
2
41 − 1���

3
p

�������������
4
jγj − 1

s 3
51∕2

: (20)

We can now compute the period of the system as the sum of
the durations of the two slow dynamical phases of the oscil-
lation beginning at M and ending at Q:

TSym � TM→N � TP→Q; (21)

where TM→N and TP→Q represent the durations of the two
slow transitions. The duration of the fast time transition is
considered negligible, thereby yielding TN→P ≃ 0. For the
evaluation of the duration of the slow time scale phase, we
use Eq. (14) to obtain

Fig. 3. Quasi-sinusoidal temporal evolution of the OEO after the
Hopf bifurcation depicted in Fig. 2 (T � 10 μs). (a) Experimental re-
sult (pump power set just above the threshold at Pth ≃ 1.2 mW).
(b) Numerical simulation of Eq. (2) for β � 1.032. Note that close to
the bifurcation, the experimental and numerical plots [parts (a) and
(b), respectively], display a period comparable to the theoretical value
provided by Eq. (4), that is T0 � 2π∕Ω0 � 2π

���������
θTD

p
≃ 250 μs.

Fig. 4. Typical experimental timetraces of the relaxation-like slow-
scale dynamics of the OEO far away from the Hopf bifurcation. The
period Texp is found to vary significantly with the gain, still having the
same order of magnitude as the theoretical Hopf period T0. (Left)
Texp ≃ 560 μs. (Right) Texp ≃ 760 μs.

Fig. 5. Typical time evolution of x in Eq. (15) for β > 1, ϕ � −π∕4,
and TD � 0. Note the symmetric nature of this numerical timetrace.
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TM→N � −θ

Z
xN

xM

1� γ cos�2x�
x

dx: (22)

Due to the symmetric nature of the oscillations we always
have TM→N � TP→Q, and the integration of Eq. (22) gives

TSym�γ� � 2θ
�
ln
�
xM
xN

�
� γ�Ci�2xM� − Ci�2xN ��

�
; (23)

where Ci is the cosine-integral function. It is possible to inte-
grate numerically Eq. (23) when the endpoints of the integral
are given or well known. In Fig. 5, we show the time evolution
of Eq. (15) when the value of β is higher than 1. This oscillation
presents a symmetric wave shape, with equal absolute values
for the extremal amplitudes. In Fig. 6, we have displayed the
evolution of the period of this symmetric wave oscillation,
which is obtained using the numerical simulation of Eq. (15)
and the analytical expression of Eq. (23). We observe an ex-
cellent agreement between the numerical and analytical re-
sults. It is also important to note that in this case of null
time-delay, the evolution of the period is almost perfectly a
linear function of β.

B. Evolution of the Period with ϕ
In this subsection, we study the evolution of the period of the
system when the bias voltage VπDC is tuned, and this is equiv-
alent to change the value of the parameter ϕ. In the general
case, the variation of ϕ influences the shape of the wave. This
was theoretically and experimentally analyzed in [15], where
strongly asymmetric square waves with a period close to one
delay are observed in the OEO. The solution we focus on in
this article (slow motion instead of a one-delay period) also
exhibits asymmetry with respect to parameter ϕ. Let us con-
sider the period of the asymmetric wave oscillation to be
TAsym. This period can be approximated by the sum of the
two slow-scale phases occurring in Fig. 7 during the transition
from A to B (TA→B), and from C to D (TC→D), according to

TAsym � TA→B � TC→D (24)

with

TA→B �
Z

xB

xA

f �x�dx;

TC→D �
Z

xD

xC

f �x�dx; (25)

where

f �x� � −θ
1� β sin�2x� 2ϕ�

x
: (26)

Note that asymmetry implies TA→B ≠ TC→D. The integrals in
Eq. (25) give the following expression of the period of the
system:

TAsym�ϕ� � −θ ln
�
xBxD
xAxC

�
− θβ sin 2ϕ�Ci�2xB� � Ci�2xD�
− Ci�2xA� − Ci�2xC��
� θβ cos 2ϕ�Si�2xB� � Si�2xD�
− Si�2xA� − Si�2xC��; (27)

where Si is the sine-integral function. In the above equation,
the integral domain boundaries xA, xB, xC , and xD are un-
known at this stage. In order to compute Eq. (27), these four
quantities have to be determined. Using the same reasoning as
in the preceding subsection, the equation 1� β sin�2x�
2ϕ� � 0 is solved in order to determine xB and xD. It results
that

xB � −

1
2
arcsin

�
1
β

�
− ϕ;

xD � 1
2

�
−π � arcsin

�
1
β

��
− ϕ: (28)

The values of xB and xD shown in Fig. 7 are, respectively, pos-
itive and negative. Let us now determine the maximum and
the minimum values xA and xC of the wave of Fig. 7. We first
evaluated z�xB� and z�xD� from Eq. (16) using the values of xB
and xD computed in Eq. (28). The analysis of Fig. 8 shows that
z�xB� � z�xC� and z�xD� � z�xA�, and these equalities can be
exploited to yield

−xA � β�cos2�xA � ϕ� − cos2�ϕ�� � z�xD�;
−xC � β�cos2�xC � ϕ� − cos2�ϕ�� � z�xB�: (29)

Fig. 6. Evolution of the period of the symmetric wave oscillation for
TD � 0 and ϕ � −π∕4. The solid line is obtained with the analytical
simulation of Eq. (23), while the dots stand for the numerical simu-
lations of Eq. (15).

Fig. 7. Temporal evolution of Eq. (15) for ϕ � −0.51 and TD � 0.
Note the asymmetric nature of this numerical timetrace.
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The resolution of Eq. (29) allows us to determine xA > 0
and xC < 0. However, it is not possible to have the simple
expression of these extrema. Numerical simulation is required
to determine their numerical values. The computation of
Eqs. (27), (28), and (29) when β is fixed and ϕ is varied is rep-
resented in Fig. 9.

It results from this figure that the analytical expression of
Eq. (27) coincides with the numerical simulation of the
Eq. (15), and we observe that the evolution of the period with
ϕ is a parabolic shape. We also see in Fig. 9 that the minimum
value of the period for a fixed value of β corresponds to the
symmetric oscillations with ϕ � −π∕4.

6. DISCUSSION OF THE CASE OF THE OEO
WITH DELAY �TD ≠ 0�
We here discuss the evolution of the period of the system
when the delay is considered. In order to compute this,
we have to take into account the fast time scale dynamics
which are not negligible anymore. The resulting period is
T sys � 2T slow � 2T fast, and both contributions have to be an-
alyzed in detail. A multiple time scale approach can be used
for this purpose [11].

Slow manifolds are (locally) invariant subsets along which
the speed is commensurate with the slow time scale in slow–
fast systems. In many systems, trajectories spend most of their
time attracting slow manifolds—making rapid transitions
from one slow manifold to another [21–23]. Let us consider

that the slow time is t1 � ϵ0t. The differentiation of Eq. (2)
with respect to t1 yields

dx�t1�
dt1

− β cos�2x�t1 − ϵ0T��
dx�t1 − ϵ0TD�

dt1

� x�t1�
θϵ0

� 0; (30)

where the terms in O�ϵ30� have been neglected and ϕ � −π∕4.
The time delay variable contained in Eq. (30), can be simply
approximated as

x�t1 − ϵ0TD� ≈ x�t1� � η�ϵ0; TD; xmax�; (31)

where η is a very small function (with respect to x) having the
following properties: (i) η ≠ 0 when TD ≠ 0 and (ii) η � 0
when TD � 0. The variable x�t1� can be deduced from the
study done above, but the principal difficulty is to determine
the function η as a function of the delay. Unfortunately, there
is no mathematical theory able to analytically determine this
functional dependence.

For the analysis of the fast manifold transition, it is rather
convenient to take the fast time t2 � t∕ϵ0. The differentiation
of Eq. (30) with respect to t2 yields

d2x�t2�
dt22

� dx�t2�
dt2

− β cos�2x�t2 − TD∕ϵ0��

×
dx�t2 − TD∕ε0�

dt2
� 0; (32)

and Eq. (32) can enable us to track the fast manifold behavior
of the oscillation.

7. CONCLUSION
In this article, we have investigated the slow-scale dynamics
of a wideband optoelectronic oscillator and analyzed the evo-
lution of the amplitude and period of the Hopf-induced limit-
cycle with respect to the gain and the offset phase. It has been
evidenced that the dynamical features of the slow-scale limit-
cycle are indeed significantly modified by these parameters.
We have successfully compared some of our theoretical re-
sults with numerical simulations and experimental measure-
ments. We have shown that in the case of null time-delay,
the evolution of the period is a linear function of the gain
and parabolic with respect to the offset phase. Our investiga-
tions have also outlined the link between the two-dimensional
dynamics of the zero-delay system and the infinite-
dimensional dynamics of the delayed system.

Future work will focus on a full characterization of the
route to chaos in these systems where the three main time
scales are distributed in a logarithmic-like fashion, as well
as on the multiscale nonlinear dynamics of other OEO
architectures [24–26].
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