
INSTITUT FEMTO-ST

UMR CNRS 6174

The proof of the FLC consensus algorithm (V2)

Fouad Hanna — Lionel Droz-Bartholet — Jean-Christophe Lapayre

Rapport Technique no RTDISC2014-1

DÉPARTEMENT DISC – March 26, 2015

The proof of the FLC consensus algorithm (V2)

Fouad Hanna , Lionel Droz-Bartholet , Jean-Christophe Lapayre

Département DISC

CARTOON

March 26, 2015 (16 pages)

Abstract: It is well known that consensus algorithms are fundamental building blocks for fault
tolerant distributed systems. In this technical report we present the correctness proof of our new
leader-based consensus algorithm (FLC algorithm) for the crash-stop failure model. Our algorithm
uses the leader oracle Ω and adapts a decentralized communication pattern.

Key-words: Fault tolerance, consensus, asynchronous distributed systems, unreliable failure
detectors, leader oracle Ω.

FEMTO-ST Institute, DISC research department
UFR Sciences - Route de Gray - F-25030 BESANÇON cedex FRANCE

Tél : (33 3) 81 66 64 00 – Fax : (33 3) 81 66 64 23 – e-mail : brigitte.bataillard@univ-fcomte.fr

La preuve de l’algorithme de consensus FLC (V2)

Résumé : Il est bien connu que les algorithmes de consensus sont des éléments fondamentaux pour
les systèmes distribués tolérant aux pannes. Dans ce rapport technique, nous présentons la preuve de
notre nouvel algorithme de consensus à base de leader (l’algorithme FLC). Notre algorithme utilise
l’oracle leader Ω, adapte un schéma de communication décentralisé et considère un modèle de panne
crash-stop.

Mots-clés : Tolérance aux pannes, consensus, systèmes distribués asynchronnes, détecteurs de
pannes non fiables, l’oracke leader Ω.

FEMTO-ST Institute, DISC research department
UFR Sciences - Route de Gray - F-25030 BESANÇON cedex FRANCE

Tél : (33 3) 81 66 64 00 – Fax : (33 3) 81 66 64 23 – e-mail : brigitte.bataillard@univ-fcomte.fr

The proof of the FLC consensus algorithm 7

1 Proof of the FLC algorithm

We present here the correctness proof of our algorithm. The proof goes
through three properties: Termination, Agreement and validity. To sim-
plify the presentation of the proof we use the word vote to indicate the
LeaderAck(r) message as well as the integrated leader vote in the EST mes-
sage. Accordingly, when we say that a process is elected to be leader, this
means that either it has received a majority of LeaderAck(r) messages during
the current round (this is the case of the first round of the first consensus to
be executed) or that it has received a majority of integrated leader votes dur-
ing the previous round. The election using LeaderAck(r) messages is used
only for the first round of the first consensus (i.e. when ri = 0∧ c = 0). The
integrated leader votes are used to elect a leader when ri > 0 (i.e. for every
round after the first one) regardless of the consensus number c. Finally, for
the first round of every consensus after the first one (i.e. when ri = 0∧c > 0),
processes will designate the leader of the last consensus lastConsLeader as
the leader of the current one and thus no voting mechanism is used during
this round. In all three cases, we say that a leader is designated and the
variable leaderChoseni will be set to true. The algorithm is presented in
figure 1.

Axiom 1. The communication network does not lose, alter nor duplicate
messages.

Axiom 2. Eventual leadership property of the leader oracle Ω: There is a
time after which all correct processes always trust the same correct process.

Axiom 3. A process does not start consensus c + 1 before terminating con-
sensus c.

Lemma 1. A correct process does not block infinitely during a round.

Proof. Let r be a round during which a process pi blocks forever, we show
that this is impossible. A process can block only at lines 14 and 17. We start
by considering line 14. At line 14 we have two possibilities after the leader
designation phase (phase 1) (Figure 1 lines 7-13):

• A leader was designated: In this case, depending on the consensus
number c, either one of the processes has been elected to be leader or the
leader of the previous consensus is not crashed and has been designated
to be leader of the round. If the designated leader process is process
pi then it will have leaderChoseni = true. As a result, the waiting
condition at line 14 will be broken. Depending on the values of the

RTDISC2014–1

8 F. Hanna, L. Droz-Bartholet, and J.-C. Lapayre

1: procedure MainTask (c, lastConsLeader) . The body of the algorithm

2: ri ← −1; electedLeaderi ← false; esti ← [vi, i]; . vi 6=⊥
3: while true do
4: ri ← ri + 1; estFromLeaderi ← [⊥, i]; leaderChoseni ← false;

5: ph1Endi ← false; leaderChangedi ← false; nbLeaderV otesi ← 0; nbNextRoundLeaderV otesi ← 0;

6: nbESTi ← 0; nbNullESTi ← 0; nbNonNullESTi ← 0;

7: if ri = 0 ∧ c = 0 then . First round of the first consensus run

8: leaderi ← getOmegaLeader();

9: send LeaderAck(ri) to leaderi;

10: else if (ri = 0 ∧ lastConsLeader = i)
∨

(ri > 0 ∧ electedLeaderi = true) then

11: estFromLeaderi ← esti; leaderi ← i; leaderChoseni ← true;

12: end if
13: ph1Endi ← true;

14: wait until (leaderChoseni = true
∨

leaderChangedi = true
∨

nbNullESTi > 0);

15: . At this point we have estFromLeaderi = est or ⊥
16: ∀j: send EST (ri, leaderi, estFromLeaderi, getOmegaLeader()) to j;

17: wait until (nbESTi ≥ d
n+1
2
e); . Wait to receive a majority of EST messages

18: if nbNullESTi ≥ d
n+1
2
e then skip; . Skip to the next round

19: else if nbNonNullESTi ≥ d
n+1
2
e then

20: lastConsLeader ← est[1]; ∀j 6= i: send Decide(est) to j; exit(est[0], lastConsLeader);

21: else esti ← est;

22: end if
23: if nbNextRoundLeaderV otesi ≥ d

n+1
2
e then . Process i is elected leader for the next round

24: electedLeaderi ← true;

25: else electedLeaderi ← false;

26: end if
27: end while
28: end procedure

29: procedure NewOmegaLeader(j) . Called by Ω when the leader changes

30: if ph1Endi = true ∧ leaderChoseni = false then

31: leaderi ← j; leaderChangedi ← true;

32: end if
33: end procedure

34: procedure DeliverMessage(msg) . Called when a message is received

35: if msg = LeaderAck(ri) then

36: if leaderChoseni = false ∧ ri = 0 ∧ lastConsLeader = −1 then

37: nbLeaderV otesi + +;

38: if nbLeaderV otesi ≥ d
n+1
2
e then . Process i is elected leader

39: estFromLeaderi ← esti; leaderi ← i; leaderChoseni ← true;

40: end if
41: end if
42: else if msg = Decide(est) then

43: lastConsLeader ← est[1]; ∀j 6= i: send Decide(est) to j; exit(est[0], lastConsLeader);

44: else if msg = EST (ri, leader, est, nextRoundLeader) then

45: if est[0] 6=⊥ then

46: nbNonNullESTi + +;

47: if leaderChoseni = false then

48: estFromLeaderi ← est; leaderi ← leader; leaderChoseni ← true;

49: end if
50: else nbNullESTi + +;

51: end if
52: if nextRoundLeader = i then nbNextRoundLeaderV otesi + +;

53: end if
54: nbESTi + +;

55: end if
56: end procedure

Figure 1: The new consensus algorithm

consensus number c and the round number r, the path corresponding
to this case is one of the following (Figure ??): 1 → 2 → 6 when
r > 0, 1 → 3 → 7 when r = 0 ∧ c > 0 and 1 → 4 → 5 → 11

FEMTO-ST Institute

The proof of the FLC consensus algorithm 9

when r = 0 ∧ c = 0. However if process pi is not the designated
leader of round r then based on axiom 1 it will eventually receive an
EST (ri, leader, v 6=⊥, nextRoundLeader) message from the designated
leader of the round. As a result process pi will execute line 48 which
will set the variable leaderChoseni = true and consequently break the
waiting condition at line 14. In this case, process pi follows one of the
following paths (Figure ??): 1 → 2 → 10 when r > 0, 1 → 3 → 10
when r = 0 ∧ c > 0 and 1→ 4→ 5→ 10 when r = 0 ∧ c = 0.

• A leader could not be designated: This can happen either because no
process succeeded to accumulate a majority of votes or because the des-
ignated leader process (i.e. the elected process or the leader of the last
consensus) is crashed. In the latter case, suppose that process px is the
crashed leader. Then, the function NewOmegaLeader(j) of process
pi (with i, j 6= x) will be eventually called by the leader oracle Ω due
to its eventual leadership property (axiom 2). As a result, the variable
leaderChangedi will be set to true and the waiting condition at line
14 will be broken. Depending on the values of the consensus number
c and the round number r, the path corresponding to this case is one
of the following (Figure ??): 1 → 2 → 8 when r > 0, 1 → 3 → 8
when r = 0 ∧ c > 0 and 1 → 4 → 5 → 8 when r = 0 ∧ c = 0. In
the first case, where no process succeeded to accumulate a majority
of votes, no process will become leader and therefore process pi will
be blocked at line 14. Due to the eventual leadership property (axiom
2), the leader oracle Ω at each process will eventually give the same
correct process (let it be j) to be considered leader of the round. Two
cases can happen: (1) process pi voted for a process px where x 6= j
then the function NewOmegaLeader(j) will be called and the variable
leaderChangedi will be set to true. As a result, the waiting condi-
tion at line 14 will be broken and process pi will proceed by sending
the null value ⊥ to all other processes at line 16. (2) process pi has
voted for the eventual leader j then the function NewOmegaLeader(j)
will not be called because the eventual leadership property (axiom 2)
of the leader oracle Ω is already satisfied. Let us suppose the worst
case where there are only a majority of correct processes. In this case,
there must be at least a process px, with x 6= i, voted for a process
different from j. This situation leads process px to be in case (1). Con-
sequently, px will send a null estimate to all other processes (message
EST (ri, leader,⊥, nextRoundLeader)). By axiom 1, process pi will re-
ceive the null estimate from px and will break the waiting condition at
line 14 accordingly (it will have nbNullESTi > 0). In this situation,

RTDISC2014–1

10 F. Hanna, L. Droz-Bartholet, and J.-C. Lapayre

process pi follows one of the following paths in the execution diagram
presented in Figure ??: 1 → 2 → 9 when r > 0, 1 → 3 → 9 when
r = 0 ∧ c > 0 and 1→ 4→ 5→ 9 when r = 0 ∧ c = 0.

This means that no correct process blocks forever at line 14. As a result, all
correct processes will execute line 16 by sending a EST (ri, leader, v, nextRoundLeader)
message to all other processes. By axiom 1 and as there is always a major-
ity of correct processes in the system then each correct process will receive
at least a majority of EST (ri, leader, v, nextRoundLeader) messages (i.e.
nbESTi ≥ dn+1

2
e). Consequently, no correct process blocks forever at line

17.

Lemma 2. For the first consensus, i.e. when c = 0: (a) there is at most one
leader per round and (b) no two processes decide differently regardless of the
round number.

Proof. We start by proving the first part (a) which will be used to prove the
second part (b).

(a) From the algorithm (figure 1) we notice that during the first con-
sensus c = 0, a leader can be designated only by using votes: either the
LeaderAck(r) message when ri = 0 or the integrated leader vote in the EST
message when ri > 0. Therefore, a process pi becomes leader of the round
if it receives a majority of votes. According to the algorithm, each process
diffuses at most one time the EST message (line 16) and sends at most one
LeaderAck(r) message during round ri = 0 (line 9). Consequently, a process
votes only one time per round. The proof is by contradiction. We now sup-
pose the existence of two leaders during round r: pi and pj. This means that
pi has received votes to become leader from a majority of processes Qi and
that pj has also received votes to become leader from a majority of processes
Qj. As | Qi |≥ dn+1

2
e and | Qj |≥ dn+1

2
e then Qi∩Qj 6= ∅. It follows that ∃px

such that px ∈ Qi∩Qj. This means that the process px sent 2 different votes
during round r. This leads us to a contradiction with the fact that a process
can send at most one vote per round. Therefore, it is impossible to have more
than one leader per round during the first consensus c = 0. (b) Processes
can decide either during the same round or during different rounds. There-
fore, we start by proving that if two processes decide (at line 20), during the
same round r, then they decide the same value. The proof is by contradic-
tion. Suppose that process pi and process pj decide at line 20 two different
values v1 and v2 respectively. Knowing that a process can send at most one
EST (r, leader, v, nextRoundLeader) message per round, then there must be
two leaders for the round r (the first proposed the value v1 while the second
proposed the value v2). This contradicts the first part of this lemma (a)

FEMTO-ST Institute

The proof of the FLC consensus algorithm 11

which says that for the first consensus there cannot be more than one leader
per round. As a result, v1 = v2 and the two processes pi and pj decided
the same value. Now we show that even if two processes decide during two
different rounds, then they will also decide the same value. Let r1 be the first
round during which a process pi decides a value v1 at line 20. Let us assume
that another process decides a different value vm during round rm > r1. To
prove that v1 = vm we show that the local estimate value of every process pj
that progresses to round r1 + 1 is equal to v1 and thus no other value can be
decided in a future round. For a process to finish a round (or to decide) it has
to receive the EST (r, leader, v, nextRoundLeader) message from a majority
of correct processes. Let Qi and Qj be the set of processes from which pi
and pj has received the EST (r1, leader, v, nextRoundLeader) message dur-
ing round r1. Since Qi and Qj are both majority sets then Qi ∩Qj 6= ∅ and
∃px such that px ∈ Qi∩Qj. As pi decided the value v1 during round r1 at line
20, then pi has received v1 from all the processes of Qi and consequently from
px. As a direct result of (a) we know that no other value than v1 could be
exchanged during round r1 because we cannot have more than one leader per
round and only a leader process can propose a value. This means that pj also
received the value v1 from px during round r1 and has consequently executed
line 46 making the variable nbNonNullESTj > 0. At any moment of the
execution we have nbESTj = nbNullESTj + nbNonNullESTj and at the
end of round r1 we have nbNonNullESTj > 0 then nbNullESTj < dn+1

2
e.

From the algorithm we notice that a process can proceed to the next round
by either executing line 18 or line 21. As pj has nbNullESTj < dn+1

2
e and at

the same time nbNonNullESTj < dn+1
2
e (because pj does not decide during

round r1 by assumption) then it will execute line 21. As a result, process pj
proceeds to round r1+1 with its local estimate estj = v1 (path 12→ 13→ 16
or path 12→ 13→ 17 in Figure ??). This means that any process that pro-
ceeds to round r1+1 will have its local estimate equal to v1 and therefore the
only value that can be decided during a round rm > r1 is v1 because no other
value is present in the system. By returning to our assumption we have that
the value vm was decided during a round rm > r1 and therefore v1 = vm.

Lemma 3. For any consensus, (a) there is at most one leader per round and
(b) no two processes decide differently regardless of the round number.

Proof. The proof is by induction on the consensus number c.

• When c = 0: This was proven by lemma 2.

• We suppose the lemma is correct for a given consensus number c > 0 (an
arbitrary number for c). This means that for consensus c, we suppose

RTDISC2014–1

12 F. Hanna, L. Droz-Bartholet, and J.-C. Lapayre

that there is at most one leader per round and no two processes decide
differently regardless of the round number.

• Now we prove the lemma for the consensus number c + 1. We start by
proving the first part (a) which is then used to prove the second part
(b).

(a) From the algorithm (Figure 1) we notice that during any consensus
c > 0 a leader can be designated using one of two methods depend-
ing on the round number r (line 10, Figure 1): (1) For the first round
(i.e. when ri = 0), the leader of the previous consensus will be des-
ignated to be leader of the round and (2) for any ri > 0, the leader
is elected using the integrated leader votes in the EST messages. For
(2) the proof is identical to lemma 2-a because we use the same leader
election mechanism which requires a majority of votes for a process to
become leader. The proof for (1) is done by contradiction. We now
suppose the existence of two leaders during round ri = 0 of consensus
c + 1: pi and pj. This means that lastConsLeader = i for pi and that
lastConsLeader = j for pj. From axiom 3 we have that consensus c
which precedes consensus c+1 had been terminated before starting con-
sensus c+ 1 (i.e. consensus c is finished and a decision is made). From
the algorithm we notice that the variable lastConsLeader for consen-
sus c + 1 is returned when a decision is made during consensus c and
represents the identifier of the process that originally proposed the de-
cision value (line 20 or 43, Figure 1). Also form the algorithm we notice
that an estimation est is composed of the value of the estimation and
the identifier of the process that proposed it. The process identifier is
attached to the estimation value at the beginning of the consensus (line
2, Figure 1) and never changes during the execution of the consensus.
By returning to our assumption, we have that lastConsLeader = i for
pi and that lastConsLeader = j for pj at the end of consensus c. This
means that the estimation est that was made as a decision at process
pi is different from the est that was made as a decision at process pj
and this contradicts the fact that no two processes decide differently
regardless of the round number during consensus c (assumption made
for the proof by induction on c). Therefore, only one leader can exist
for the first round (i.e. when ri = 0). Consequently, for any round
number r during consensus c + 1, at most one leader per round. This
concludes the proof of part (a) of the lemma.

(b) The proof is very similar to that of lemma 2-b because the only
difference between the first consensus (c = 0) and any other consen-

FEMTO-ST Institute

The proof of the FLC consensus algorithm 13

sus (c > 0) is in the way the leader of the first round is designated
while all the other parts of the algorithms are the same. Processes
can decide either during the same round or during different rounds.
Therefore, we start by proving that if two processes decide (at line 20),
during the same round r, then they decide the same value. The proof
is by contradiction. Suppose that process pi and process pj decide
at line 20 two different values v1 and v2 respectively. Knowing that
a process can send at most one EST (r, leader, v, nextRoundLeader)
message per round, then there must be two leaders for the round r
(the first proposed the value v1 while the second proposed the value
v2). This contradicts the first part of this lemma (a) which says that
for any consensus there cannot be more than one leader per round. As
a result, v1 = v2 and the two processes pi and pj decided the same
value. Now we show that even if two processes decide during two dif-
ferent rounds, then they will also decide the same value. Let r1 be
the first round during which a process pi decides a value v1 at line
20. Let us assume that another process decides a different value vm
during round rm > r1. To prove that v1 = vm we show that the local
estimate value of every process pj that progresses to round r1 + 1 is
equal to v1 and thus no other value can be decided in a future round.
For a process to finish a round (or to decide) it has to receive the
EST (r, leader, v, nextRoundLeader) message from a majority of cor-
rect processes. Let Qi and Qj be the set of processes from which pi and
pj has received the EST (r1, leader, v, nextRoundLeader) message dur-
ing round r1. Since Qi and Qj are both majority sets then Qi ∩Qj 6= ∅
and ∃px such that px ∈ Qi∩Qj. As pi decided the value v1 during round
r1 at line 20, then pi has received v1 from all the processes of Qi and
consequently from px. As a direct result of (a) we know that no other
value than v1 could be exchanged during round r1 because we cannot
have more than one leader per round and only a leader process can
propose a value. This means that pj also received the value v1 from px
during round r1 and has consequently executed line 46 making the vari-
able nbNonNullESTj > 0. At any moment of the execution we have
nbESTj = nbNullESTj + nbNonNullESTj and at the end of round
r1 we have nbNonNullESTj > 0 then nbNullESTj < dn+1

2
e. From

the algorithm we notice that a process can proceed to the next round
by either executing line 18 or line 21. As pj has nbNullESTj < dn+1

2
e

and at the same time nbNonNullESTj < dn+1
2
e (because pj does not

decide during round r1 by assumption) then it will execute line 21. As
a result, process pj proceeds to round r1 + 1 with its local estimate
estj = v1 (path 12 → 13 → 16 or path 12 → 13 → 17 in Figure ??).

RTDISC2014–1

14 F. Hanna, L. Droz-Bartholet, and J.-C. Lapayre

This means that any process that proceeds to round r1 + 1 will have
its local estimate equal to v1 and therefore the only value that can be
decided during a round rm > r1 is v1 because no other value is present
in the system. By returning to our assumption we have that the value
vm was decided during a round rm > r1 and therefore v1 = vm. This
concludes the proof for part (b) of this lemma.

Since both the basis and the inductive step have been performed, by induc-
tion, the lemma holds for any consensus number c.

1.1 Termination

Theorem 1. Every correct process eventually decides.

Proof. When a process decides it sends a decision message (Decide(v)) to all
other processes at line 20. Therefore, by axiom 1, any other correct process
will receive this message and will decide accordingly at line 43.

A leader can be designated either by voting or by designating the leader
of the last consensus as leader of the round when ri = 0∧ c > 0. In the latter
case and if the leader of the last consensus, let it be pl, is not crashed then it
will proceed to the second phase of the algorithm. In the first case where the
leader has to be elected using votes (LeaderAck(r) messages or integrated
leader votes) then we have from lemma 1 that no correct process blocks
forever during a round. Based on this lemma and the eventual leadership
property of the leader oracle Ω (axiom 2), there exist a round r and a correct
process pl such that each correct process pi has leaderi = l (i.e. the call of
getOmegaLeader() at lines 8 and 16 returns the same correct process pl to be
elected leader at all correct processes). This means that each correct process
will send a vote to pl. As a result and since there is always a majority of
correct processes in the system and by axiom 1, the process pl will receive a
majority of votes (i.e. nbLeaderV otesl ≥ dn+1

2
e) and becomes leader of the

round.
It follows that the leader pl sends its local estimate of the decision value

estl to all other processes at line 16. Now every correct process waiting at
line 14 will receive this non null estimate estl and will proceed by resending
it to all other processes. There are not any null values ⊥ that are being
exchanged among the processes during this round r because the eventual
leadership property (axiom 2) makes all correct processes trust the same
correct process pl to be leader of the round. According to lemma 2, only one
leader per round exists (process pl) and therefore estl is the only non null
estimate that can be received by any process. Consequently, estl is the only

FEMTO-ST Institute

The proof of the FLC consensus algorithm 15

value that can be sent at line 16. Thus, every correct process will receive
a majority of the non null estimate estl and will decide accordingly at line
16.

1.2 Agreement

The proof of this property is covered by the part (b) of lemma 3 which says
that for any consensus, no two processes decide differently regardless of the
round number. Consequently, all correct processes decide the same value.

1.3 Validity

The proof of this property is quite straightforward. From the algorithm, it
is obvious that if a process decides then it decides a value that was proposed
by a leader process and any process pi that becomes leader during a round
r will execute line 11 or line 39 affecting its local estimate to the variable
estFromLeaderi which will be sent to all other processes at line 16.

RTDISC2014–1

16 F. Hanna, L. Droz-Bartholet, and J.-C. Lapayre

FEMTO-ST Institute

FEMTO-ST INSTITUTE, headquarters
32 avenue de l’Observatoire - F-25044 BESANÇON Cedex FRANCE

Tél : (33 3) 81 85 39 99 – Fax : (33 3) 81 85 39 68 – e-mail : contact@femto-st.fr

FEMTO-ST - AS2M : TEMIS, 24 rue Alain Savary, F-25000 Besançon
FEMTO-ST - DISC : UFR Sciences - Route de Gray - F-25030 Besançon cedex France

FEMTO-ST - ENERGIE : Parc Technologique, 2 Av. Jean Moulin, Rue des entrepreneurs, F-90000 Belfort France
FEMTO-ST - MEC’APPLI : 24, chemin de l’épitaphe - F-25000 Besançon France
FEMTO-ST - MN2S : 32, rue de l’Observatoire - F-25044 Besançon cedex France

FEMTO-ST - OPTIQUE : UFR Sciences - Route de Gray - F-25030 Besançon cedex France
FEMTO-ST - TEMPS-FREQUENCE : 26, Chemin de l’Epitaphe - F-25030 Besançon cedex France

http://femto-st.fr

