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Abstract— In this paper, a generic microscale system is
studied where a smart microsystem composed of an active
based material actuator, sensorized structure and transfor-
mation system is studied. This problem is important at the
microscale because it offers a force measurement of the applied
force by the actuator to a flexible environment which enables
to understand the interaction between the complete smart
microsystem and the environment and to design and control
the interaction between the system and the environment. A
special case where a sensorized end-effector is fixed on the tip
of a piezoelectric actuator is detailed. Integrating a sensorized
end-effector influences the behavior of the smart microfinger
and is not studied in recent works.

The complete finger, which is called in this paper smart
finger, consists of a piezoelectric actuator, an end-effector
and a novel piezoresistive force sensor. A complete model is
developed for generating both force and displacement at the
finger’s tip while interaction with a flexible environment. A
nonlinear model of the piezoelectric actuator is considered and
a complete model is developed taking into account the frequency
dependent hysteresis of the piezoelectric actuator. The model of
the hysteresis is based on the Bouc-Wen method which simplifies
the parameter estimation. The complete dynamic force/position
model of the finger is validated experimentally with small errors
(less than 10%).

I. INTRODUCTION

Piezoelectric materials are commonly used for the actua-
tion of microsystems and microrobots. Their use is due to
their high resolution, high speed, low response time and their
ability to produce large forces. They are widely used for
the development of microgrippers [1], robotic platforms [2],
nanopositioning [3] for examples. However, the problem of
the piezoelectric materials are the presence of nonlinearities
which increases the difficulty of modeling and control of
such systems. The nonlinearities are notably manifested by
the hysteresis and the creep. The modeling and the control
of the hysteresis and of the creep have raised many works,
including linear approximation and linearization [4], alge-
braic or differential nonlinear modeling [5], [6], feedforward
control [7], [8] and feedback control [9] [10], [11].

Most of the developed models study the model of volt-
age/displacement of the piezoelectric actuator. Some other
works, study the voltage/force/displacement model of the
piezoelectric actuator [9], [12]. These models are limited for
the piezoelectric actuator itself and do not study the problem
of adding an end-effector to the piezoelectric actuator which
modifies the complete model of the finger. However, for
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many applications, it is important to integrate force mea-
surement into a piezoelectric actuator in order to develop
the complete model of the piezoelectric actuator, determine
the contact, study the interaction between the actuator and
the environment and control precisely the interaction. Most
of the force sensing techniques used for the piezoelectric
actuators are the self-sensing [13], force estimation using
models [14] and vision based force sensors [15]. However,
the integration of calibrated force sensors is of great interest
for precise dynamic measurement for many applications.

In this paper, a generic microscale problem is studied
where a classic piezoelectric actuator is used to interact with
an environment. However, in order to model the interaction
between the actuator and the environment, a sensorized end-
effector is fixed on the tip of the piezoelectric actuator. The
end-effector is composed of a rigid silicon part and an novel
piezoresistive force sensor presented in [16]. This generic
problem can be extended to other examples of microsys-
tems where actuator and force sensors are integrated. The
complete finger composed of a piezoelectric actuator with a
sensorized end-effector is called in this paper Smart Finger.
Unfortunately, the complete model of such a smart finger is
not studied in literature to the knowledge of the authors.

The first objective of the paper is to develop a precise
position/force dynamic nonlinear model of the smart finger
which enables to design and control such a smart finger inter-
action with a flexible environment. The model is developed
taking into consideration the effect of adding a sensorized
end-effector to the piezoelectric actuator which influences the
existing force/position models to the piezoelectric actuator
without an end-effector. The second objective of the paper
is to experimentally validate the developed model.

The paper is organized as follows. The piezoelectric ac-
tuator nonlinear dynamic model is revised in section II. The
model of the smart finger at the sensorized end-effector’s
tip is detailed in section III. In section IV, an experimental
setup is proposed to validate the model of the smart finger.
Section V presents the experimental results to validate the
model. Section VI concludes the paper.

II. PIEZOELECTRIC ACTUATOR MODEL

A generic microrobotic scenario is considered in this
paper. Consider that the smart finger comes into contact
with a flexible environment. The environment is modeled
as a mass-spring-damper system as it was done in [17]. The
complete system is shown in Figure 1 where four cases are
considered: case of the no contact no voltage are applied
(Figure 1-(a)), case of an applied voltage without contact



(Figure 1-(b)), case of applied voltage and just at contact
with a zero force (Figure 1-(c)) and case of both voltage
and contact applied (Figure 1-(d)). In this figure, A and
B represent respectively the actuator’s tip A and the end-
effector’s tip B. yA and yB represent respectively the position
of the actuator’s tip A and the end-effector’s tip B at time
t. ye represents the location of the environment without any
deformation when no force is applied to the environment
(ye = yB just at contact when the applied force is null).
y = yB represents the position of the environment and the
end-effector tip B when a contact is established between
the end-effector and the environment. αA is the angle at the
actuator tip A. L is the length of the end-effector. me, de and
ke are respectively the mass, the damping and the stiffness
of the environment.

In order to determine the complete model for the smart
finger, the piezoelectric actuator’s voltage/force/position non-
linear model is revised in this section and the complete model
of the smart finger is then detailed in section III. The aim
is to develop a simple dynamic nonlinear model in order to
facilitate the identification process. The inputs of the model
of the piezoelectric actuator are the voltage applied on the
electrodes of the piezoelectric actuator, U , and the forces
and the torque applied to the actuator’s tip A (as considered
in literature) and the outputs are the displacement at the
actuator’s tip A and the angle at the tip of the actuator αA
(see Figure 1).

Fig. 1. Complete scheme of the smart finger and the environment: (a)
without contact and without any applied voltage, (b) without contact and
with an applied voltage, (c) just at contact (Fe = 0) and with an applied
voltage and (d) with contact (Fe 6= 0) and with an applied voltage.

Using [12], [18], a piezoelectric actuator could be modeled
in the time domain as follows:

mÿA +bẏA + kyA = du−Γ− fA−
3

2La
MA

mα̈A +bα̇A + kαA =
2
La

(du−Γ)− 3
2La

fA−
3
L2

a
MA

(1)

where parameters m, b and k are respectively the mass, the
damping and the stiffness of piezoelectric actuator; d is the
piezoelectric constant, La is the length of the actuator, u =
u(t) is the input voltage, yA = yA(t) is the displacement of
the actuator’s tip A according to the Y axis and αA = αA(t)
is the angle between the actuator’s tip A and the X axis
(see Figure 1), fA = fA(t) and MA = MA(t) are respectively

the force and the torque applied at the actuator’s tip A and
Γ = Γ(t,u, f ) is an operator to represent the nonlinearities
of the piezoelectric actuator which consist of rate-dependent
hysteresis and creep. The variable time t is simplified from
the equations for the simplicity of the writing.

In the rest of the paper, the frequency domain is used
for the equations where the Laplace operator, s will be used
instead of the time domain. Knowing that [9]:

Γ(U,s) = H(U,s)+Cr(U,s) (2)

where H(U,s) and Cr(U,s) are respectively the hysteresis
and the creep of the piezoelectric actuator. According to (2),
the two nonlinearity phenomenas could be decoupled and
each could be treated in an independent way. The effect of
the creep is neglected in this paper.

The hysteresis of piezoelectric material is called rate-
dependent hysteresis because the hysteresis is function of
the frequency or the rate of the input of the system. An
approximate model of the rate-dependent hysteresis have
parameters which are also rate-dependent. This will increase
the complexity of the model. This problem is simplified
in [9] where the authors proposed to model the dynamical
hysteresis of the piezoelectric actuator, H(U,s), by a static
hysteresis, Hs(U), followed by a linear dynamical part, D(s),
as shown in Figure 2. D(s) is a second order transfer function
which represents the dynamics of the actuator. In Figure 2,

Fig. 2. Dynamic hysteresis could be decomposed in a static part followed
by a dynamical part.

U is the voltage applied to the piezoelectric actuator, δ is the
displacement of the actuator tip, δs is the static displacement
which is the output of the Bouc-Wen static hysteresis model,
H(U,s) is the rate-dependent hysteresis which depends on
the voltage, U , and the frequency which is written as the
Laplace operator, s= j2π f , and Hs(U) is the static hysteresis
determined by the Bouc-Wen model.

The dynamical hysteresis of the piezoelectric actuator is
determined using the following steps, [8]:

1) The transient part of the piezoelectric actuator, D(s),
is identified. The dynamical part could be considered
independent of the amplitude of the input voltage U .
It is determined by applying several steps of different
amplitudes and then the dynamical response could be
approximated by a second order transfer function as is
commonly used.



2) We apply a sine voltage with a low frequency (0.1 Hz)
and identify the Bouc-Wen parameters to minimize the
error between the experimental result of the displace-
ment of the actuator and the Bouc-Wen model for the
displacement of the actuator. Using this method we
determine Hs(U).

3) The dynamical hysteresis of the piezoelectric actuator
is determined, using the two previous steps, by the
relation H(U,s) = Hs(U) ·D(s).

Finally, using the Bouc-Wen model presented in [19] and
using the Laplace transform of (1), the adopted model for
the displacement at the tip of the piezoelectric actuator is
given, in the frequency domain, by the following:

yA(s) =
[

dpU−Hs− spFA−
3

2La
spMA

]
D(s)

αA(s) =
[

2
La

(dpU−Hs)−
3

2La
spFA−

3
L2

a
spMA

]
D(s)

Ḣs = αU̇−β |U̇ |Hs− γU̇ |Hs|
(3)

where
• yA is the displacement of the piezoelectric actuator’s tip

A along the Y axis,
• αA is the angle between the actuator’s tip A and the X

axis,
• dp = d

k is the piezoelectric constant and sp = 1
k is the

elastic constant,
• FA is an external force applied at the actuator’s tip A,
• MA is an external torque applied at the actuator’s tip A,
• U is the applied voltage to the piezoelectric actuator,
• Hs is an internal variable to represent the hysteresis,
• D(s) is a transfer function to represent the dynamics of

the actuator,
• α is a parameter which determines the amplitude of the

hysteresis,
• β and γ are parameters which determine the shape of

the hysteresis.
Second order transfer functions are commonly used to

model the dynamics of a piezoelectric actuator [12], [9]. D(s)
is then considered as a second order transfer function with
a static gain 1 (D(0) = 1). It can be written as follows:

D(s) =
k

ms2 +bs+ k
(4)

III. MODEL OF THE SMART FINGER AT THE
END-EFFECTOR TIP

The aim of this section is to develop the model of the
complete smart finger with and without contact with the
environment. The inputs of the smart finger in this case are
the voltage applied on the piezoelectric actuator electrodes,
U , and the distance between the equilibrium position of the
environment without any contact and the X axis, ye, while
the outputs of the system are the position of the sensorized
end-effector’s tip B and the interaction force between the
end-effector and the environment, Fe.

The model of smart finger is developed using the model
developed in (3) of the piezoelectric actuator where a force

and a torque is applied at the tip A of the piezoelectric
actuator ( fA and MA). Then, However, in the case of the
paper, the force will be applied at the end-effector’s tip B.
Thus, the effect of applying a force at the end-effector’s tip
B is studied and the relation between the force applied at
the tip B and the reaction forces and torque at the tip A is
determined. Finally, the complete model of the smart finger
when a force is applied at tip B is deduced for the non contact
and contact scenarios. One unified model is developed and
derived from the two models.

Starting with the case where a force is applied by the
environment at the force sensor’s tip B, a reaction force FA
and a reaction torque MA exist on the actuator’s tip A, which
can be written as follows:{

FA =−Fs +msÿB = Fe +msÿB

MA =−LFs = LFe
(5)

where Fe = Fend-effector→environment is the force applied by
the end-effector to the environment and Fs = − fe =
Fenvironment→end-effector is the force applied by the environment
to the end-effector when a contact exists; ms is the mass of
the force sensor. The mass of the force sensor is neglected
because it is small compared to the mass of the actuator
(ms = 0).

As the force sensor is also flexible, it can be modeled as
a mass-spring-damper system where the mass is neglected
and then the force sensor is modeled as a spring-damper. On
a force Fs is applied at the force sensor’s tip B, the force
sensor deforms and the displacement of the force sensor is
δ = yB− yo

B where yo
B is the supposed position of the force

sensor’s tip B without considering the deformation of the
force sensor. The relation between the Fs, yB and yo

B is given,
in the time domain, as follows:

Fs =−Fe = bs (ẏB− ẏo
B)+ ks (yB− yo

B) (6)

where bs and ks are respectively the damping and the stiffness
of the force sensor and its mass is neglected. yo

B is given as
follows:

yo
B = yA +LsinαA (7)

Since αA is supposed to be small sinαA ≈ αA and using (3),
(5), and (7), Y o

B is given as follows:

Y o
B (s) =

[(
1+

2L
La

)
(dpU−Hs)−(

1+
3L
2La

+
3L2

L2
a

)
spFe

]
D(s)

(8)

Using (8) and the Laplace transform of (6), the displacement
at the end-effector’s tip B is given as follows:

YB(s) =
Luk

ms2 +bs+ k
(dpU−Hs)−

ms2 +
(
b+bsL f

)
s+ k+ ksL f

(bss+ ks)(ms2 +bs+ k)
Fe

(9)

where Lu = 1+ 2L
La

and L f = 1+ 3L
La

+ 3L2

L2
a

In addition, the
force applied by the end-effector on the environment is given



by:

fe =

{
meÿB +beẏB + ke (yB− ye) if yB ≥ ye

0 if yB < ye
(10)

where me, be and ke are respectively the mass, damping
and stiffness of the environment. Using (9) and the Laplace
transform of (10), the following could be deduced:

Fe(s) =

{
Gu(s) [dpU−Hs−Ge(s)Ye] if yB ≥ ye

0 if yB < ye
(11)

where: 
Gu(s) =

Luk
(
mes2 +bes+ ke

)
(bss+ ks)

H(s)

Ge(s) =
ke
(
ms2 +bs+ k

)
Luk (mes2 +bes+ ke)

(12)

where

H(s) =mes4 +
[
mbs +mbe +me

(
b+L f bs

)]
s3+[

mks +bbs +mke +me
(
k+L f ks

)
+

be
(
b+L f bs

)]
s2+[

bks + kbs +be
(
k+L f ks

)
+ ke

(
b+L f bs

)]
s+

kks + ke
(
k+L f ks

)
Using (9) and (11), the final model at the end-effector’s tip
B could be written as follows:

YB =

[(
1+

2L
La

)
(dpU−Hs)−(

1+
3L
2La

+
3L2

L2
a

)
spFe

]
D
′
(s)

Fe =

{
Gu(s) [dpU−Hs−Ge(s)Ye] if yB ≥ ye

0 if yB < ye

Ḣs =αU̇−β |U̇ |Hs− γU̇ |Hs|

(13)

The complete model of the smart finger can be represented
by the scheme in figure 3 where the inputs of the model are
U and ye and the outputs are yB and Fe.

Fig. 3. Bloc diagram showing the model of the complete smart finger in
interaction with a flexible environment.

IV. EXPERIMENTAL SETUP

The experimental setup used in this paper, in order to
validate the developed model, is composed of a smart finger
and displacement and force sensors. The smart finger is
composed of a duo bimorph piezoelectric actuator presented

in [1] and a novel piezoresistive force sensor presented in
[16]. Two Keyence laser sensors are used to measure the
displacement of the actuator’s tip A and the end-effector’s
tip B. A force sensor from FemtoTools, with a sensing range
of 10mN, is fixed on a XY positioning stage from PiezoSys-
temJena, PXY D12 with a displacement range of 200µm.
The force sensor comprises a probe of 3mm of length and
50µm of thickness, that moves along its main direction (Y
according to Figure 4) once a force is applied at its tip.
The XY positioning is used to move the FemtoTools force
sensor towards the piezoresistive force sensor to calibrate
the force sensor and to simulate a contact between the smart
finger and the force sensor. The whole system is controlled
using a dSpace1104 with a sampling frequency of 10kHz.
The experimental setup is shown in Figure 4.

Keyence
Laser

Sensor

FemtoTools
Force Sensor

Tip

Piezoelectric
Actuator

Piezoresistive
Force Sensor
(End-Effector)

XY positioning
stage

10mm

X

Y

Smart
Finger

Fig. 4. The whole experimental setup used in this paper including the smart
finger, the XY positioning stage, a Keyence laser sensor and the FemtoTools
force sensor.

V. EXPERIMENTAL STUDIES

In this section, the presented model in section III is verified
experimentally. The validation of the model is performed in
three steps. First, the model of the displacement/voltage is
determined without any contact between the smart finger and
the environment. Then, the model of force/displacement is
determined without any applied voltage. Finally, the com-
plete model (displacement/force/voltage), defined in (13), is
tested by applying both voltage and contact to the smart
finger. The identified parameters are summarized in Table I.

A. Displacement/Voltage Model of the Smart Finger

In this section, no force is applied at the tip of the
smart finger. Two Keyence sensors are used to measure
the displacement at points A and B of the actuator and
end-effector respectively. The experiments are done in the
following steps:

1) the parameters of the actuator, dp, α , β and γ , defined
in (3) are identified by applying a sine wave with a
frequency of 0.1Hz (to ignore the dynamic part D(s))
without any force and using the nonlinear least square



method in order to fit the experimental results with
the model. A comparison between the model and the
experiments after the parameter estimation is shown
in Figure 5 for three different amplitudes of the sine
waves (30V, 60V and 100V),

2) the dynamic part, D(s), of piezoelectric actuator is
determined by applying several steps with different
amplitudes and determining the second order transfer
function which fits the best to the experimental data.
The dynamic response of the piezoelectric actuator is
independent of the voltage amplitude. The parameters
m
k and b

k of (4) are then determined in Table I,
3) the model of yB defined in (13) is tested without contact

and at different frequencies of sine waves. The results
are shown in Figure 6.

Fig. 5. Comparison between the Bouc-Wen static hysteresis model and
experimental results for many sine voltages with three different amplitudes
30V, 60V and 100V at a frequency 0.1Hz.

Fig. 6. Comparison between the displacement model of the end-effector tip
B yB given in (13) and experimental results for many sine voltages with an
amplitude of 100V and with different frequencies where no force is applied:
(a) 10Hz, (b) 50Hz, (c) 100Hz and (d) 500Hz.

Small errors (less than 10%) between the model and the
experimental result exist on the displacement/voltage model
due to the model of Bouc-Wen used where the dynamic
hysteresis is estimated using the static hysteresis determined
by the Bouc-Wen method, Hs(U), and the transient part of
the actuator, D(s) and the dynamic hysteresis is identified by
H(U,s) = Hs(U) ·D(s)

B. Force/Displacement Model of the Smart Finger
After validating the displacement/voltage model of the

smart finger, the electrodes of the piezoelectric actuator are

short circuited and a force is applied first at tip A and second
at tip B in order to test the force/displacement model of the
smart finger. The experiments are done in the following steps:

1) parameters sp and k are determined by applying a force
by moving the FemtoTools sensor towards tip A and
measuring the displacement at tips A and B,

2) a force is applied at tip B and the models defined in
(3) and (13) are tested without voltage (eliminating
parameters U and Hs). The comparison between the
models and the experimental results is shown in Figure
7 where the model fits the experimental results with an
error less than 2%.

Fig. 7. Comparison between the displacement model at tips A and B,
yA and yB, given in (13) and (3) and experimental results when a force is
applied at the end-effector’s tip B in static and with a short circuit on the
electrodes of the actuator: (a) comparison at actuator’s tip A, yA, and (b)
comparison at end-effector’s tip B, yB

C. Complete Force/Displacement/Voltage Model of the
Smart Finger

In this section, after validation the displacement/voltage
and force/displacement, the two models are combined to
test the complete displacement/force/voltage. Sine waves are
applied to the actuator’s electrodes. The smart finger starts
deforming and approaches the environment until entering in
contact with the environment and the force starts to increase.
Then, the smart finger returns back and separate the contact.
The action is repeated many times. The models of yB and
Fe given in (13) are compared to the experimental results
in Figure 8. The experimental results fit to the model with
errors less than 10%.

All the experimental results fit with the developed model
(13) with errors less than 10%. Thus, the developed model
in (13) is validated. The identified parameters of the smart
finger are shown in Table I.

VI. CONCLUSION

In this paper, a generic microscale problem is studied
where a sensorized end-effector is fixed on the tip of a
piezoelectric actuator. This problem is important at the mi-
croscale because it offers a force measurement of the applied
force by the actuator to a flexible environment which enables
to understand the interaction between the complete finger
(actuator + sensorized end-effector) and to design and control
the interaction between the finger and the environment. The



Fig. 8. Comparison between the model of the force, given in (13), applied
by the smart finger on the environment and the measured force.

Parameter Identified Values
dp 0.54µm/V
sp 3.57×10−4

α 0.316
β 0.019
γ 0.0033
m 1.347 × 10−4

b 0.469
k 2800

La 13.5mm
L 8mm
ks 130N/m

TABLE I
THE IDENTIFIED PARAMETERS USED IN THIS PAPER

effect of adding a sensorized end-effector influences the
behavior of the actuator and is not studied in recent works.

The complete finger, which is called in this paper smart
finger, consists of a piezoelectric actuator, an end-effector
and a novel piezoresistive force sensor. A complete model is
developed for both force and displacement at the finger’s tip
while interaction with a flexible environment. A nonlinear
model of the piezoelectric actuator is considered and a com-
plete model is developed taking into account the frequency
dependent hysteresis of the piezoelectric actuator. The model
of the hysteresis is based on the Bouc-Wen method which
simplifies the parameter estimation. The complete model
of the finger is validated experimentally with small errors
(less than 10%). These errors are due to the approach of
modeling the rate-dependent hysteresis which simplifies the
identification of the parameters and the implementation of the
method. These errors can be reduced by using more complex
and advanced models of the rate-dependent hysteresis which
is not the objective of the paper.

This paper offers a complete theoretical method for mod-
eling such systems where this method can be used to model
other types of actuators and actuated MEMS structures.
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