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ABSTRACT
We present a uniform verification method of safety proper-
ties for classes of parameterized protocols. Properties like
mutual exclusion or cache coherence are automatically ver-
ified for any number of similar processes communicating by
broadcast and rendez-vous. The communication protocols
are specified in a language of generalized substitutions on
array data structures. State configurations are expressed
by first-order formulae with equality. Predecessors are com-
puted by an iterative semi-algorithm. Reaching an initial
state or the fixpoint is shown to be decidable and an orig-
inal decision procedure is provided. As a running example
the MESI protocol illustrates this approach. Experimental
results show its applicability to various properties and pro-
tocol classes.

1. INTRODUCTION
A communication protocol is a piece of code executed in
parallel on many processes communicating with each other
in order to perform a global functionality like mutual ex-
clusion, leader election or cache coherence. Such a protocol
is parameterized [6] when it is the same for any number of
cooperating processes. The challenge is then to verify its
global effect uniformly, i.e. once for all its sizes.

Whereas the general question of verifying properties of pa-
rameterized protocols is undecidable [3], many recent works
[6, 8] have identified restricted classes of parameterized pro-
tocols with decidable properties. Works along the line of
rich-language symbolic model-checking [20] propose an ad
hoc combination of abstraction, fixpoint computation and
procedures deciding the inclusion of sets of states and the
emptiness of their intersection. One direction called reg-
ular model-checking [1, 20] takes profit of decision proce-
dures on word or tree automata. Another one [5, 9, 12, 21]
uses linear arithmetic constraints after a convenient count-
ing abstraction. Both assume there is some link between

the parameters and integers. However, for a finite network
of processes working in parallel, introducing a linear struc-
ture on the processes is not always natural, and counting
the number of processes in a given state does not always
preserve the properties of interest. For instance, the count-
ing approach prevents to distinguish a process among the
others. Predicate abstraction [19] combined with model-
checking has been successfully applied on systems where this
distinction is needed (e.g. [6]).

We suggest a more basic but unifying approach where the
parameter ranges over a finite set without any special struc-
ture. As a consequence, the global system is more directly
modelled by arrays indexed by this set. Our terminology and
point of view owe much to the logical approach of reacha-
bility, defined in [25] for guarded assignment systems. We
simply add indeterministic actions and remove arithmetic.
In this context, our main contributions are a proof that this
abstract point of view is nevertheless adequate to symbolic
model-checking, a description of many classes of commu-
nication protocols falling in this case, and an original im-
plementation based on a powerful tool combining a BDD-
or SAT-based propositional layer and an equational prover.
Sets of states are represented by assertions in a many-sorted
first-order language with equality. The adequacy arguments
use two non trivial decidability results. The first one is based
on equational reasoning modulo the first-order theory of ar-
rays. The second one is based on an adaptation of Herbrand
lemma to a many-sorted context.

The rest of the paper is organized as follows. Section 2
presents classes of protocols supported by this study. Sec-
tion 3 defines a language of generalized substitutions to
model their global behavior and a sublanguage of assertions
to model sets of states. The well-known symbolic backward
reachability semi-algorithms are revisited in Section 4. Sec-
tion 5 proves that the satisfiability and entailment checking
for the assertions built by these semi-algorithms are decid-
able. Finally, an implementation and its experimental re-
sults are described in Section 6. A running example illus-
trates the discourse throughout the sections.

2. PARAMETERIZED COMMUNICATION
PROTOCOLS

An operational model for a communication protocol is a
labeled transition system (S,L, T ), where S is a common



finite set of process states, L is a set of action labels and
T ⊆ S × L × S is a set of labeled transitions. Moreover,
this transition system is parameterized by the identifier i
of the process pi executing the protocol, in the sense that
transitions can also be guarded by conditions on process
identifiers (e.g. i and j with j 6= i) and on the current state
of some other processes.

There are three kinds of action labels, for three forms of
synchronization between processes. A local action changes
the state of a single process. It is denoted by a label l ∈ L.
A rendez-vous is a synchronization between two processes.
A first process sends a message according to an output tran-
sition (s, l!, s′) ∈ T and a second one receives it by moving
along an input transition (r, l?, r′) ∈ T . A broadcast ac-
tion changes all the process states. A single process sends
a broadcast message to all the processes along a transition
(s, l!!, s′) ∈ T . This process moves from the state s to the
state s′, whereas each other process in some state t moves to
some state t′ such that (t, l??, t′) is in T . For sake of clarity,
this study is restricted to deterministic broadcast reception
i.e. such that for each state t ∈ S and each broadcast label
l??, there exists exactly one state t′ such that (t, l??, t′) is
in T . Consequently, the transitions (q, l??, q) are not shown
in figures.

This operational model includes the classes of broadcast pro-
tocols [14] and of client-server protocols [13]. From the al-
gorithmic point of view, it can model mutual exclusion pro-
tocols [6] and cache coherence protocols [24], among others.

As a running example we use the MESI cache coherence pro-
tocol [24] which ensures that each process has access to the
same memory location. Its transition system is represented
in Figure 1. Each process has its own cache and can read
it by a local action read in any state except I in which the
cache is Invalid. In the Shared state S, cache contents of
all the processes are the same and identical to the mem-
ory copy. Before modifying its own cache content, a process
in the shared state asks the other caches to be invalid by
sending them the broadcast message writeInv. It enters the
state E which means that it owns the Exclusive cache al-
lowed to write into the memory and into the cache. After
a local writing step, its content is Modified (state M). An
invalid process (in state I) aiming to read the memory sends
the read broadcast message. Other processes in the states
M and E react to this message by moving into the state S.
Initially, all the processes have an invalid cache. We are in-
terested in checking (i) whether the system becomes data
inconsistent, i.e. the data being read is not identical to the
memory data and (ii) whether two processes write simulta-
neously into the memory.

3. MODELLING LANGUAGE
This section defines a language of generalized substitutions
suitable to model the global behavior of any number of com-
municating processes executing a protocol under considera-
tion. This language is defined as a many-sorted first-order
language of predicates. We start by defining expressions,
data types and the corresponding sorts. Then we introduce
first-order formulae and finally an operational formalism of
indeterministic substitutions.
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Figure 1: MESI transition system.

expr ::= arr | ele | ind ;

arr ::= wr(arr, ind, ele) | const(ele)

| block(arr, ele, ele, . . . , ele)

| a | z , where a ∈ Varr and z ∈ Carr ;

ele ::= rd(arr, ind) | e , where e ∈ Cele ;

ind ::= i | j , where i ∈ Vind and j ∈ Cind.

Figure 2: Array expressions.

3.1 Expressions
A global configuration is defined by the states of all the
processes. It is stored in an array of sort arr, indexed by
a (finite non empty) set of processes abstracted away by
the sort ind , and taking values in a set of protocol states
abstracted away by the sort ele. The sort ind abstracts away
the number and topology of processes. Thus the processes
become anonymous and can be distinguished only by a name
considered as a constant within a fixed set denoted by Cind.

Language expressions are generated by the grammar of Fig-
ure 2, parameterized by three finite disjoint sets Carr, Cele

and Cind of constants of sort arr, ele et ind respectively, and
by two disjoint sets Varr and Vind of variables of sort arr and
ind respectively. The constants will be written in the sans-
serif font, and the variables in italic as usual. Suppose that
card(Cele) = n and Cele = {e1, e2, . . . , en}.

Intuitively, given a term a of sort arr, a term i of sort ind and
a term e of sort ele, the term rd(a, i) stands for the element
of the array a at the index i. The term wr(a, i, e) stands for
the array obtained from a by setting the value at the index
i to e. The term const(e) denotes the constant array, whose
value at every index is the same element e ∈ ele. In the term
block(arr, ele, ele, . . . , ele), the sort ele appears n times. The
array block(a, e′1, e

′

2, . . . , e
′

n) is obtained from a by replacing
each value el by e′l. In other words, its value at the index i
is e′l if and only if the value of a at i is el.



i 6= j ⇒ rd(wr(a, i, e), j) = rd(a, j) (1)

rd(wr(a, i, e), i) = e (2)

rd(const(e), i) = e (3)

rd(a, i) = el ⇒ rd(block(a, e′1, e
′

2, . . . , e
′

n), i) = e′l (4)

Figure 3: Extended array theory axioms.

subst ::= skip | assign | choice | pred =⇒ subst

assign ::= x := expr |x := expr || assign

choice ::= subst[]subst | (@j . subst)

pred ::= litt | pred ∧ pred | pred ∨ pred | (quant j . pred)

litt ::= equa | ¬equa

equa ::= arr = arr | ele = ele | ind = ind

quant ::= ∀ | ∃

Figure 4: Syntax of predicates and substitutions.

All these definitions are formalized by the axioms of Fig-
ure 3, where all the small letters are universally quanti-
fied sorted variables, namely i and j of sort ind , e and e′i
(1 ≤ i ≤ n) of sort ele and a of sort arr. To avoid the quan-
tification on l (1 ≤ l ≤ n), the axiom (4) must be repeated
n times, once for each l = 1, 2, . . . , n, what is possible for
any given protocol with a fixed number of states n. Since
n is independent of the number of processes, this does not
restrict our uniform approach. These axioms can be con-
sidered as predicates written in the many-sorted first-order
language defined in the following section.

For convenience of notation, block(a, e′1, . . . , e
′

n) will be also
denoted by block(a, {(e1, e

′

1), . . . , (en, e
′

n)}), where the pairs
(ei, e

′

i) with the replaced and the new value can be written
in arbitrary order.

3.2 Predicates and Operations
The operational part of our language is defined by general-
ized substitutions along the grammar rules of Figure 4 based
on the syntactic elements expr, arr, ind and el of Figure 2.
In Figure 4 and all that follows, x ∈ Varr ∪ Vind ∪ Vele is
a variable of any sort whereas j ∈ Vind is only a variable of
sort ind .

Each kind of substitution specifies a command. Basic sub-
stitutions are skip which leaves all the variables unchanged
and simple assignment (:=) which changes a single variable
value. All the assignments are assumed well-sorted. Simul-
taneous assignment of two variables and more can be done
with the associative and commutative multiple assignment
operator ||. Substitutions can be guarded (=⇒) by a predi-
cate (pred).

Predicates are considered in normal negative form [22] (NNF
for short) i.e. negations operate only on equalities (equa).
Thus, each quantifier (∀, ∃) has the same polarity (universal
or existential) as in the prenex form of the predicate. This
point simplifies the exposure of our proof method in Sec-
tion 5. The predicate language is the fragment of the first-

swrite =def (@j . rd(a, j) = e =⇒ s := wr(a, j,m))
sinv =def (@j . rd(a, j) = s =⇒ s := wr(const(i), j, e))
sread =def (@j . rd(a, j) = i =⇒

s := wr(block(a, {(s, s), (e, s), (m, s), (i, i)}), j, s)

Figure 5: MESI substitutions.

order logic with equality and sorts arr, ind and ele where
only the variables of sort ind can be quantified. The propo-
sitional connectives ⇒ and ⇔ can be introduced as short-
cuts.

The indeterminism required to model the interleaved be-
havior of processes is modelled by two structures. The first
one is the associative and commutative bounded choice op-
erator [] between two substitutions. The second one is the
unbounded choice binder @, limited, like quantifiers, to vari-
ables of sort ind. This restriction is of importance for the
existence of a decision procedure (see Section 5). Conse-
quently, the syntax of quantifiers (∀, ∃) and of the choice
binder @ does not mention the sort of the bound variables.

As we shall see, this language is sufficient to model the pro-
tocols under consideration. As an example, Figure 5 shows
a model of MESI protocol. The substitutions of Figure 5
use a single variable a ∈ Varr representing the global con-
figuration whose domain is the set of processes hidden be-
hind the sort ind. The fact that a process pj is in a state
t ∈ Cele = {m, e, s, i} is represented by rd(a, j) = t.

An assertion is a predicate representing a set of states. In
the following, we consider two assertion languages. The lan-
guage of all the predicates defined by the syntactic element
pred in Figure 4 and a smaller language of constraints de-
fined as predicates without universal quantifiers.

3.3 Safety Properties
A safety property says that, in given circumstances, the sys-
tem should not evolve towards critical or error states. When
the context is reduced to a set of initial states I , such a prop-
erty says that some set of states E should not be reached
by the system starting from some state in I . Consequently,
this reachability question is modelled by a pair (I,E) of sets
of states, or, equivalently, by a (Source, Target) pair of as-
sertions.

The set of initial states for the MESI example is defined by
the assertion Source =def (∀j .rd(a, j) = i) which means that
all caches are initially in the I state. Two mutual exclusion
properties can be considered:

• Two processes cannot simultaneously write into the
memory, i.e. the assertion

Targetwrite =def (∃j1 . (∃j2 .
j1 6= j2 ∧ rd(a, j1) = m ∧ rd(a, j2) = m))

(5)

is not reachable.

• A process cannot share the memory for reading it while



〈P =⇒ S〉C = P ∧ 〈S〉C

〈skip〉C = C

〈x := E〉C = C(E/x)

〈assign〉C = C(z2/y2) . . . (zn/yn)(E1/y1)

(E2/z2) . . . (En/zn)

〈S [] T 〉C = 〈S〉C ∨ 〈T 〉C

〈(@j . S)〉C = (∃j . 〈S〉C)

Figure 6: 〈 〉 calculus.

another process is modifying it. Formally,

Targetread =def (∃j1 . (∃j2 .
j1 6= j2 ∧ rd(a, j1) = s ∧ rd(a, j2) = m))

(6)

is not reachable.

4. BACKWARD REACHABILITY
There are basically two kinds of reachability procedures:
the backward ones compute predecessors, whereas the for-
ward ones compute successors of a set of states. Section 4.1
presents a symbolic backward computation step as the syn-
tactic action of a generalized substitution on an assertion.
Section 4.2 explains why the backward method outperforms
the forward one for generalized substitutions. This calculus
is iterated in semi-algorithms presented in Section 4.3.

4.1 Computation of Predecessors
For an assertion C and a generalized substitution S, 〈S〉C
denotes the assertion characterizing the states that have a
successor by S satisfying C.

Figure 6 explicitly defines the action of the assertion trans-
former 〈S〉C as a syntactic calculus, derived from the defi-
nition [2] of its dual [S]C using the duality relation

[S]C =def ¬〈S〉 ¬C.

In this figure, S and T are two generalized substitutions, P
is a predicate, x is a variable and the expression C(E/x)
denotes the syntactic replacement in C of all the free occur-
rences of x by E. Moreover, assign stands for the parallel
assignment y1 := E1 || · · · || yn := En, where the variables
y1, . . . , yn are pairwise distinct, and z1, . . . , zn are pairwise
distinct fresh variables.

Removing of quantifiers in the assertions is a key of suc-
cess for their automatical discharging into a prover [7]. An
important remark for what follows is that the calculus of
〈S〉C can introduce only quantifiers over indexes, for any
assertion C and any substitution S from the language of
Section 3. The next part shows that the backward search
has an advantage over the forward one in terms of quantifier
handling.

4.2 Predecessors vs Successors
The strongest postcondition predicate transformer [ ]o [16]
can be used to compute the assertion C[S]o characterizing
the successors of C by the substitution S. Its computation

C[P =⇒ S]o = (P ∧ C)[S]o

C[skip]o = C

C[x := E]o = (∃x′ . C(x′/x) ∧ x = E(x′/x))

C[assign]o = (∃z1, . . . , zn . C(z1/y1) . . . (zn/yn) ∧

y1 = E1(z1/y1) . . . (zn/yn) ∧ · · · ∧

yn = En(z1/y1) . . . (zn/yn)

C[S [] T ]o = C[S]o ∨ C[T ]o

C[(@j . S)]o = (∃j . C[S]o)

Figure 7: [ ]o calculus.

rules are presented in Figure 7, with the same conventions
as for Figure 6.

Applied on an assertion C with the particular substitution
a := wr(a, i, e), where a is of sort arr, i of sort ind and e of
sort ele, the strongest postcondition yields the assertion

C[a := wr(a, i, e)]o = (∃a′ . C(a′/a) ∧ a = wr(a′, i, e)))

that contains a quantified variable a′ of sort arr. This kind
of quantification has been carefully excluded of our language
since it yields formulae whose satisfiability is generally un-
decidable.

We see that the backward procedure is more appropriate for
reachability analysis in this context than the forward one.
This point is to some extent similar to the applicability of
Theorem 1 in [5].

4.3 Backward Reachability
Two (semi)-algorithms computing the predecessors are given
in Figures 8 and 9.

In the first one, each rounded rectangle denotes a state and
the hexagon denotes an external decision procedure execu-
tion. The input (respectively, output) data is underlined
(respectively, overlined). By an iteration, we mean a cycle
beginning and ending in the state Updated and passing once
via compute and update transitions. The semantics of the
internal variables is as follows: i is the initial assertion, S is
the set of substitutions, v is the assertion defining predeces-
sors of the value v computed by the previous iteration and
B is the set of computed predecessors of v.

At each iteration the semi-algorithm sequentially

1. verifies the satisfiability of i ∧ v (in the positive case
the target is reachable),

2. computes the set B of predecessor assertions of v for
each substitution si (1 ≤ i ≤ p),

3. updates the assertion v.

Even if there exists a decision procedure for the i ∧ v sat-
isfiability (see part 5.1), this semi-algorithm can diverge for
two reasons. The first one is the non termination of the
fixpoint calculus, corresponding to the undecidability of the
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Updated GoBackward

i := Source
S := {s1, . . . , sp}
v := Target
B := ∅ v :=

∨
b∈B

b

(update)

i ∧ v satisfiable

Reachable

yes

no

B := {〈s1〉v, . . . , 〈sp〉v}
(compute)

Figure 8: Backward reachability.

invariance checking problem for general parameterized sys-
tems [3]. Well funded abstraction [17] or acceleration tech-
niques can sometimes prevent it but are out of the scope of
this study. The second one is the unreachability of the tar-
get: the algorithm never stops computing assertions even if
these one become constant. The next semi-algorithm elimi-
nates the later non termination cause.

The second semi-algorithm (Figure 9) refines the first one
by inserting into the (compute) transition a verification of
the target unreachability. Compared to the former semi-
algorithm, the k assertion characterizes the backward visited
states and v defines the predecessors of the v assertion of
the previous iteration that are not already into k. This
heuristic permits to reduce the proof obligations size of the
both termination conditions.

The next section establishes a scope in which the decidabil-
ity of the semi-algorithms conditions is proved.

5. DECIDING FIXPOINT CONDITIONS
This section studies the decidability of the conditions which
must be verified in the semi-algorithms of Section 4. We
assume the usual notions of formulae, satisfiability, validity
and theories. A formula ϕ is called satisfiable modulo a
theory T , or T -satisfiable, if T ∧ ϕ is satisfiable. Similarly,
a formula ϕ is called valid modulo a theory T , or T -valid, if
T ⇒ ϕ is valid. The conditions to verify can be expressed as
the satisfiability of some formulae modulo the many-sorted
theory of arrays defined by the axioms of Figure 3.

We establish the decidability of the satisfiability separately
for two classes of formulae. First we show the decidability by
superposition for constraints, i.e. predicates without univer-
sal quantifiers. Then we propose a new decision procedure
for a more general class: formulae in which no existential
quantifier is in the scope of some universal one.

5.1 Constraint Case
Recent results providing satisfiability procedures for some
theories [4, Section 7] allow us to state the following propo-
sition. We denote by As the many-sorted theory of arrays
defined by the axioms (1), (2).

Proposition 1 If ϕ is a constraint, then the As-satisfiabi-
lity of ϕ is decidable by superposition.

Proof The first step is skolemization of ϕ. Let ψ be the
obtained Skolem form, it is As-satisfiable iff ϕ is. To decide
whether ψ is As-satisfiable, construct its disjunctive normal
form θ and apply the decision procedure by superposition
given in [4, Section 7] to each conjunction of literals in θ.
Note that the skolemization of ϕ did not introduce any new
non-constant function symbol since ϕ does not contain any
universal quantifier, so the conditions of [4, Section 7] are
satisfied. 2

For a theory T different from As, the superposition compu-
tation provides a semi-decision procedure which terminates
if ϕ is not T -satisfiable. In case ϕ is T -satisfiable, the ter-
mination is not guaranteed.

Theorem 1 If C and the guards of the substitution S are
all constraints, then 〈S〉C is also one. Its As-satisfiability
is decidable by superposition.

Proof We see from Figure 6 that during the computation
of 〈S〉C, the quantifiers can only come either from @ in S,
or from the guards of S, or from C. All these quantifiers are
existential ones. It easily follows by induction that 〈S〉C is
a constraint, hence its satisfiability is decidable by Proposi-
tion 1. 2

Corollary 1 Suppose that in the semi-algorithms of Fig-
ures 8 and 9, Source, Target and the guards of the substi-
tutions s1, . . . , sp are constraints. Then the satisfiability of
the reachability condition i ∧ v is decidable by superposition
at each iteration.
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i := Source
S := {s1, . . . , sp}

k, v := Target,Target
B := ∅ v :=

∨b⇒k not valid
b∈B b; k := k ∨ v

(update)

i ∧ v satisfiable
∧

b∈B
(b⇒ k) valid

Reachable

yes

Unreachable

no

B := {〈s1〉v, . . . , 〈sp〉v}
(compute)

yes

no

Figure 9: Backward reachability and unreachability.

A R
p = t

SL

t ∈ SL =⇒ t := p

Figure 10: Dijkstra transition system.

Proof The initial values of predicates i and v are con-
straints. We show by induction on the number of iterations
that at each iteration, the new value of v is a constraint,
since it is the disjunction of 〈si〉 v which are constraints by
Theorem 1. Therefore i∧ v is a constraint at each iteration,
so its satisfiability is decidable by superposition. 2

The simplified Dijkstra example [6] is presented as an appli-
cation of this corollary. Each process p controlled by this
mutual exclusion algorithm follows the transition system
given in Figure 10, where SL, R and A denote the sets of
sleeping, ready and active processes, respectively. The cor-
responding process states are denoted by sl, r and a. The
variable t shared between processes indicates which process
has the right to be active.

The substitutions corresponding to this system are shown in
Figure 11. They are composed only of guarded local actions
on the variables a ∈ Varr and t ∈ Vind.

sask =def (@p .rd(a, p) = sl =⇒ a := wr(a, p, r))
sget =def (@p .rd(a, p) = r ∧ rd(a, t) = sl =⇒ t := p)

sactive =def (@p .t = p ∧ rd(a, p) = r =⇒ a := wr(a, p, a))
ssleep =def (@p .rd(a, p) = a =⇒ a := wr(a, p, sl))

Figure 11: Dijkstra substitutions.

In the classical mutual exclusion context, the initial state
would be characterized by the assertion

SourceDijkstra =def (∀p. rd(a, p) = sl) ∧ (∃q. t = q)

stating that all the processes are initially sleeping and that
the variable t is initialized with some index associated to a
process. The mutual exclusion property is similar to (5):

TargetDijkstra =def (∃p1 . (∃p2 .
p1 6= p2 ∧ rd(a, p1) = a ∧ rd(a, p2) = a)).

To illustrate the constraint case application, we consider now
the assertion

Source3 =def rd(a, j) = sl ∧ (∃q . t = q)

where j is a constant. Source3 states that t is initialized
as above and that the process associated to j is sleeping,
without providing the status of other processes. To verify
whether j and another process can be simultaneously active,
consider the assertion

Target3 =def rd(s, j) = a ∧ (∃i. i 6= j ∧ rd(s, i) = a).

The conditions of Corollary 1 are satisfied, so the first semi-
algorithm given in Figure 8 permits to check if Target3 is
reachable. Indeed, it detects that Target3 is reachable from
Source3, so j and another process can be simultaneously ac-
tive.

Nevertheless, the constraint case is not sufficient to ensure
the decidability of the satisfiability verification for all con-



ditions arising from our semi-algorithms. For example, the
constraint case does not allow to consider (in both semi-
algorithms) the initial assertions Source and SourceDijkstra

containing universal quantifiers. For the second semi-algo-
rithm, the decidability for the validity of the inclusion con-
dition b ⇒ k is not ensured by the constraint case either.
Indeed, if k contains at least one existential quantifier, b∧¬k
is not a constraint, and its unsatisfiability (which is equiv-
alent to the validity of b ⇒ k) is not necessarily detected.
Therefore the second semi-algorithm can diverge while call-
ing the superposition prover. The next section establishes
the decidability for a larger class of formulae which will allow
us to cover all the considered cases.

Moreover, notice that the simplified Dijkstra protocol is a
simple example where a counting abstraction is not possi-
ble without modifying the transitions: since the number of
process states is finite, it is easy to count the processes in
each of them. But to express the status of the distinguished
process t, it would be necessary to introduce another vari-
able expressing in which state is the process t. Its value
would be either sl, or r, or a. Then this value would need to
be changed in each operation contrary to the present case
where it is only modified in the substitution sactive.

5.2 Decision Procedure
Now we give a decision procedure based on the result [18] for
a much larger class of predicates. Let us recall the context
and a quantifier elimination result of [18].

Let L = 〈T,V,F,P, r, d〉 be a many-sorted first-order lan-
guage with equality such that T is a finite set of sorts, V

is the union of disjoint finite sets Vτ of variables of sort
τ ∈ T, F and P are sets of function and predicate sym-
bols respectively, r : F ∪ P → N assigns an arity to each
function and predicate symbol, d : F ∪ P → T

∗ defines the
signature d(f) ∈ T

r(f)+1 of each function symbol f ∈ F and

d(p) ∈ T
r(p) of each predicate symbol p ∈ F. The Herbrand

domain of the sort τ ∈ T is denoted by Hτ and is defined as
the set of all well-sorted terms of sort τ (if this set is empty
for L, we create a new constant symbol of sort τ in L).

Proposition 2 ([18, Cor. 1]) Let τ ∈ T be a sort such that

there is no function symbol f in L

of signature d(f) = (τ1 , . . . , τn , τ ), n > 1,
(7)

and let x be a variable of sort τ . Suppose that ∀x .Φ(x) is
a closed formula in Skolem form on L. Then ∀x .Φ(x) is
satisfiable if and only if the finite conjunction

∧
c∈Hτ

Φ(c)
is.

We can apply this result to the language introduced in Sec-
tion 3.

Theorem 2 Consider the many-sorted first-order predicate
language defined in Section 3 and a closed predicate ϕ in
which no existential quantifier is in the scope of a universal
one. Then the satisfiability of ϕ modulo the theory defined
by the axioms of Figure 3 is decidable.

Proof The considered language is a many-sorted first-order
language with equality, where

T = {arr, ele, ind}, F = {rd,wr, block, const},

d(rd) = (arr, ind, ele), d(wr) = (arr, ind, ele, arr),

d(const) = (ele, arr),

d(block) = (arr, ele, ele, . . . , ele, arr),

where ele appears n = card(Cele) times in d(block) (cf Sec-
tion 3.1).

We see that there is no function symbol of arity > 2 ending
in the sort ind, so the condition (7) of Proposition 2 for the
sort τ = ind is fulfilled.

Construct the Skolem form of ϕ. The skolemization of ϕ can
only introduce some constants since no existential quantifier
in ϕ is in the scope a universal one, so the condition (7) of
Proposition 2 for the sort τ = ind is still verified after the
skolemization.

Let ψ be the Skolem form of ϕ written in prenex form. Hence
ψ is a closed Skolem formula of the form

∀x1 . . . ∀xk .Φ(x1, . . . , xk)

for some variables x1, . . . , xk (k > 0) of sort ele and a
quantifier-free formula Φ(x1, . . . , xk). The result follows from
Proposition 2 by induction on k. 2

We can now show the decidability of the conditions in the
semi-algorithms of Section 4 for the considered properties.

Corollary 2 Suppose that Source, Target and all guards in
the substitutions s1, . . . , sp are closed predicates in which no
existential quantifier is in the scope of a universal one. Then
the satisfiability of the reachability condition i∧v is decidable
at every iteration for the semi-algorithms of Figures 8 and 9.

Proof We see from Figure 6 that during the computation
of 〈sl〉 v, new quantifiers can come either from @ in sl, or
from the guards of sl, or from v. Besides, the only external
quantifiers added during the computation of k are existen-
tial ones. It is easily seen by induction on the execution
length that the reachability condition i ∧ v has no existen-
tial quantifier under a universal one, so the result follows
from Theorem 2. 2

Corollary 3 Suppose that Target and all guards in the sub-
stitutions s1, . . . , sp are closed predicates without universal
quantifiers. Then the validity of the inclusion conditions
b ⇒ k is decidable at every iteration for the semi-algorithm
of Figure 9.

Proof The validity of b ⇒ k is equivalent to the unsatis-
fiability of b ∧ ¬k. As in the previous proof, we can show
by induction that at each iteration, the predicates b (b ∈ B)
and k contain no universal quantifiers. The predicate ¬k
contains no existential quantifier. Therefore the predicate
b∧¬k satisfies the conditions of Theorem 2 and its satisfia-
bility is decidable. 2

The properties Source, Targetwrite, Targetread and the guards
of the substitutions in the MESI example of Figure 1 satisfy



Model Property Size Steps Time
Pidset Mutual exclusion 4 1 0.7
Dijkstra Mutual exclusion 4 3 21.3
Mesi Cache-coherence 3 3 17.9
S. German Cache-coherence 10 4 29.4

Table 1: Experimental results.

the conditions of Corollaries 2,3. Therefore the verification
of all conditions in the backward reachability semi-algorithm
is decidable for the considered safety properties (5) and (6).

6. EXPERIMENTS
From the methodological point of view, backward reacha-
bility checking for an assertion and inductive invariant con-
structing for its negation are equivalent [20]. Our tool thus
takes benefit of existing invariant verification tools for the
B method. The input data of our tool is a B abstract ma-
chine [2] built as follows:

• array structures (that do not exist in B) are repre-
sented by total functions with the same domain and
codomain.

• The INITIALISATION substitution of the machine
corresponds to the Source assertion.

• The INVARIANT predicate of the machine is the con-
junction of ¬Target and the predicates assigning a type
to each state variable.

The semi-algorithms of Figures 8 and 9 are implemented in
Java. They send each evolution condition to the haRVey1 [11]
validity prover. This prover automatically decides the valid-
ity of a ground formulae ϕ modulo an equational theory T
by refuting the T -satisfiability of ¬ϕ. The Skolem form of
¬ϕ is represented by a BDD each branch of which is checked
to be satisfiable by a superposition theorem prover.

Table 1 summarizes the experimental results corresponding
to this study. The first column gives the name of the proto-
col under consideration. The second one describes the safety
property being checked. The third one gives the size of the
model that is the number of substitutions. The number of
iterations needed to establish the property is given in the
fourth column. The execution time2 is expressed in seconds
in the last column.

Pidset [15] is a mutual exclusion algorithm with synchro-
nization by rendez-vous already presented in [10]. S. Ger-
man [23, 13] is a cache coherence protocol with many clients
and one server. Notice that each example is amenable by
a predicate abstraction and finite model-checking method
that nevertheless requires the human effort to find the ab-
straction. Other examples are available at http://lifc.

univ-fcomte.fr/~couchot/specs/ web page.

1http://www.loria.fr/equipes/cassis/softwares/
haRVey/
2All experiments have been run on a Centrino 1.5 Ghz com-
puter with 512 Mb of RAM under Linux Mandrake 10.1.

7. CONCLUSION
This work addresses the question of the fast detection of
classes of parameterized protocols whose safety properties
can be verified by symbolic model-checking. Before devot-
ing time to look for an ad hoc abstraction or a tailor-made
combination of decision procedures, it is suggested to simply
translate the global system configurations into arrays and to
model data types by first-order axioms. Sets of states can
then be represented by assertions in a fragment of a many-
sorted first-order logic with equality whose adequacy to sym-
bolic model-checking can be stated by general arguments of
first-order logic.

This is a basic but original way to check safety properties
for many classes of communicating protocols, without ded-
icated methods. Moreover, it is now proved that reaching
an initial state or a fixpoint is decidable within a general
theory of array data structures. This decision procedure is
based on quantifier expansion and sorts and does not claim
for efficiency. Our experiments use a variant based on the
superposition capabilities of the haRVey prover for better
results. The decidability of this optimization remains to be
proved.

We intend to apply this deductive approach to other classes
of algorithms and data structures, combining experimental
implementations and theoretic investigations. Experimenta-
tions quickly answer the feasability question whereas finding
an ad hoc decision procedure is much harder work. When
our experimental laboratory shows that this deductive ap-
proach is too light to catch a termination argument, or when
more efficiency is required, we suggest to look for abstrac-
tions, approximations and a clever combination of decision
procedures like the Composite Symbolic Library [26] to find
a more specific procedure. In the other cases, it is satis-
factory to get a symbolic model-checking running above an
existing theorem prover and to dispose of all the theoret-
ical material of first-order logic with sorts and equality to
explain its success.
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