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Abstract 

Usually, starting of oscillation in a quartz crystal oscillator 
requires a resonator’s input power in the range of – 20 dBm, 
but under storage a phenomenon known as Drive Level 
Dependency (DLD) or Drive Level Sensitivity (DLS) may 
appear that prevents the starting of oscillation. Several studies 
performed in the past have shown that at low drive level some 
quartz resonators may exhibit a large increase of their series 
resistance preventing the starting of oscillation. This work 
reviews the studies and results obtained for nearly fifty years 
on very low drive level sensitivity of quartz. The various 
mechanisms and models based on the hypothesis of moving 
particles and surface defects in the resonator inducing 
resistance increase and its relation with noise mechanism are 
reviewed as well. Also, the paper describes several 
experimental set-ups, and measurement procedures used to 
obtain very low drive level motional parameters. This work is 
a contribution to understand the problem of starting quartz 
after a long storage period. Some preliminary results of the 
series resistance measured at very low drive level are also 
presented. 

1 Introduction 

For about fifty years, engineers and manufacturers have been 
faced with the particular behaviour of certain oscillators that 
do not start despite the fact that the resonator’s parameters 
meet the specifications at normal drive level [3]. It was found 
that the reason why this happens comes from a large increase 
of the resonator’s series resistance at low drive level that 
cannot be compensated by the negative resistance of the 
feedback amplifier [12]. The number of names this 
phenomenon has been given shows that it is very common: 

authors often refer to “Starting Resistance” [3], “Hard 
Starting Characteristics”, “Sleeping Sickness” [4], “Current 
Dependency of Crystal Resistance” [21], “Low Level Drive 
Sensitivity” [8], “Second Level of Drive” [15]. Although the 
name “Drive Level Dependency” [29] is widely used in this 
context, it is often used to mean the anisochronism effect 
occurring at high drive level, to avoid misunderstanding with 
this non-linear phenomenon that has a quite different origin, it 
seems wiser to use a different expression such as “Drive 
Level Sensitivity” (DLS) [10] used here. Very early, DLS has 
been attributed to surface defects coming from microscopic 
scraps of various origin often associated with a sticky surface 
coating [3] or surface scratches [8,21]. The increase of the 
resonator series resistance is one of the most obvious effects 
of these surface defects, but other parasitic effects should 
have the same origin such as intermodulation in monolithic 
filters [8,14], ageing [4,6], frequency jumps [10], or noise 
[2,10,30]. On the other hand, the extreme sensitivity of the 
resonator characteristics to a tiny surface modification has 
been turned to account by using it as a sensor for the 
characterization of bonding forces between a surface and gold 
particles [9], stainless steel [31], or polystyrene spheres [16]. 

2 DLS behaviour and characteristics 

Many experiments have been reported during several decades, 
some of the most demonstrative will be summarized here. For 
example, a monotonic decrease of the series resistance as the 
drive level increase (Fig. 1) [21], sometime, series resistance 
starts low, increases up to a maximum then decreases (Fig. 2) 
[21], most of the time, the phenomenon is not reversible, and 
exhibits an hysteresis with unpredictable threshold as shown 
in Fig. 3 [21]. Note that the resistance change is accompanied 
with a change of the resonance frequency either negative or 
positive as in this figure. Also, asymmetrical behaviour as 
shown in Fig. 4 has been reported [8]. 
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Figure 1: Monotonic decrease [21]. 
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Figure 2: Maximum resistance for a particular drive level 
[21]. 
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Figure 3: Hysteresis of the resonance frequency and series 
resistance [21]. 
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Figure 4: Peak and hysteresis of the series resistance [8]. 

A large number of experiments carried out for decades have 
led to the following observations: 
− Increase of the series resistance is always associated with 

a positive or negative frequency shift. 
− The DLS “signature” strongly depends on the 

temperature [21]. 
− The DLS behaviour can be modified or suppressed 

definitely or temporarily by overdriving the resonator 
[3,21], by polishing, etching or cleaning the crystal, this 
latter process being often considered as the most 
efficient [7,15]. 

− The most frustrating aspect of this phenomenon is its 
lack of reproducibility, hence crystals seemingly 
identical may be drive sensitive or not, and DLS of 
crystals apparently cured may reappear after a long time 
of inactivity. 

3 Origin of the DLS 

A lot of works and efforts have been put into understanding 
the origin of the phenomenon, and very early the attention has 
been focused on the surface imperfections as a possible cause 
of the DLS. Among the most often reported surface defects 
implicated one can cite: 
− Particles of metal or quartz or abrasive, 
− Thin coat of resin or oil, 
− Surface scratches, 
− Flaking of quartz surface or metal electrode, 
− Poorly adhesive electrodes or blisters, 
− Surface stresses. 
Various experiments have proved the relationship of cause 
and effect between the surface pollution and DLS. For 
example, talc blown in the vicinity of an unsealed quartz 
resonator may induce DLS [5]. Another interesting and 
dramatic demonstration of the correlation between surface 
contamination and DLS has been reported a few years ago 
[6]: small squares in Figure 6 is a record of the relative 
resistance vs. drive level of a 100 MHz 5th overtone AT-cut 
crystal that doesn’t exhibit a noticeable DLS. The same 
resonator has been opened and the surface has been sprinkled 
with alumina particles as shown in Fig. 5, after the resonator 
has been resealed, it presents an important DLS (small circles 
in Fig. 6). Once the resonator has been reopened, cleaned and 
resealed, it approximately recovered its original state (small 
triangles in Fig. 6).  

 
Figure 5: Particles of alumina on the surface of a resonator 
[6]. 
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Figure 6: Effect of a surface contamination [6]. 

4 Mechanism of the DLS 

Many attempts have been made to explain the mechanism 
responsible for the DLS. It should be noted first that a particle 
by oneself, that is without any bound with the surface, cannot 
induce the observed phenomena. On the other hand, if the 
particle were tightly bound to the surface, it would act as a 
mass loading and should induce a negative frequency shift 
which is often refuted by experiments. So, observed 
phenomena can be explained only if the particle is bound to 
the surface by an elastic force that can be due to a thin sticky 
coating of oil or resin, or any other attractive force such as 
Van der Waals, electrostatic, capillarity forces for example 
[31] (Fig. 7). In this case, as the surface moves back and forth 
under the shear motion, the bounded particle acts as a small 
oscillating system (Fig. 7c). 
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Figure 7: Particle bound to the surface by an elastic force. 
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Figure 8: Simple mechanical model [9]. 

 

4.1 Simple mechanical model 

A simple model of coupled oscillators has been proposed on 
the basis of a mechanical analogy represented in Fig. 8 [9]. 
The large spring–mass system at left mimics the resonator 
motion, while the small one at right represents the particle 
motion. The shear motion of the surface acts as an external 
driving force F. Using Newton’s law with the system 
parameters defined here, the motion of the two masses can be 
obtain under the form of a differential system [Equation (1)]. 
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Searching a harmonic solution of the system, the resonant 
frequency of the coupled system [Equation (2)] can be 
expressed as a function of the resonant frequencies of the 
isolated spring–mass systems and of the stiffness ratio α 
[Equation (3)]. 
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By plotting the coupled system resonant frequency as a 
function of the stiffness ratio, it turns out in Fig. 9 that for a 
weak particle binding the resonant frequency should increase 
while for a strong coupling, the frequency should decrease as 
for the mass loading effect. 

–600

–400

–200

0

200

400

600

 0.990  0.995  1  1.005  1.010 

∆
f/f

 (p
pm

) 

Coupling Constant Ratio k / K (ppm)

Weak particle binding 

Strong particle binding 
(mass loading) 

 
Figure 9: Resonant frequency of the coupled system. 

4.2 Surface trapped particle model 

Although the simple coupling system we just presented does 
explain that the resonant frequency can either decrease or 
increase, it doesn’t give information on the damping 
mechanism. Even if linear damping terms were introduced in 
the resonator and particle spring–mass equivalent systems, 
they would induce a linear equivalent damping term 
independent of the drive level. Thus, a drive level sensitive 
damping term must invoke some non-linear mechanism such 
as proposed by Dworsky [8] assuming that the particles 
trapped in some surface imperfections should experience 
inelastic collisions with scratch walls as illustrated in Fig. 10 
for example, thus inducing the required non-linear damping 
term. 
Figure 11 shows the mechanical equivalent coupled oscillator 
that looks like the previous one with damping terms added to 
the spring–mass system. 
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Figure 10: Surface trapped particle [8]. 
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Figure 11: Mechanical equivalent of a trapped particle [8]. 

Motion Equations (4) are derived from the Newton’s law 
where the particle damping factor has been given the form of 
Equation (5) suggested by some statistical and physical 
considerations. 
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The mechanical coupled system previously presented has an 
electrical equivalent circuit represented in Fig. 12 where the 
non-linear damping term of the particle is modelled by a non-
linear resistor the resistance of which depends on the driving 
current [Equation (6)]. 
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Figure 12: Electrical equivalent of a trapped particle [8]. 
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Figure 13: Modelling of a drive level sensitive resistance [8]. 

The equivalent resistance of the coupled system can be 
obtained from the real part of the equivalent impedance Z 
calculated by using numerical method. According to the value 
given to the linear particle damping term r0, Fig. 13 shows 
that the model satisfactorily depicts various behaviours 
observed experimentally except the hysteresis phenomenon. 

4.3 Physical model 

Up to now, the models used give only qualitative explanations 
on the observed phenomenon. By using a physical distributed 
model for the resonator [10] it is possible to express its 
electrical admittance under the form given by Equation (7) 
where the first term of the right hand side represents the 
series–branch admittance. The parameter Kq depends on the 
geometry, on the physical constants, on the orientation, and 
on the particular vibration mode of the crystal plate. The 
second term is the static or parallel capacitance of the 
resonator. In this model, the crystal losses are introduced 
under the form of an imaginary part in the expression of the 
series resonant frequency [Equation (8)]. 
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The influence of a particle located on the resonator can be 
calculated assuming it acts as a small spring–mass–dashpot 
system inducing an equivalent surface force F as shown in 
Fig. 14. 
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Figure 14: Action of a lumped spring–mass–dashpot particle 
on a distributed resonator model [10]. 

In this case, it can be shown that the particle introduces a 
perturbation term in the denominator of the series–branch 
admittance [Equation (9)], that has the form given by 
Equation (10). The perturbation term can be expressed as a 
function of the particle resonant frequency, and the mass ratio 
of the particle to the mass of the actively vibrating quartz 
region [Equation (11)]. 
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Figure 15 shows the relative series resistance change of the 
resonator as a function of the particle damping to mass ratio 
for two values of the particle to resonator mass ratio. Note 
that a mass ratio of only 1 ppm would induce a 100 % 
increase of the series resistance and this value would 
dramatically increase if the particle resonant frequency is 
close from the resonator one. 
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Figure 15: Physical modelling of a drive level sensitive 
resistance [10]. 

Besides of its influence on the pure shear mode equivalent 
admittance previously described, a localized irregularity can 
also be responsible for resonant mode distortions due to small 
parasitic flexural motions that induce additional vibration 
energy losses [11]. Furthermore, the strong dependence of the 
parasitic effect with the particular location of the irregularity 
should explain the hysteresis or other irreproducible 
behaviour of the DLS as well as the high drive level curing 
mechanism [10]. 

5 Experimental methods and results 

From the experimental point of view, several methods can be 
used to measure DLS. In the earliest experiments, the crystal 
impedance meter was the most common method used [3]. 
Then, an easier way was to use an oscillator with variable 
gain as schematically depicted in Fig. 16. At low gain, the 
negative resistance of the amplifier cannot compensate for the 
resonator loss so that the oscillator doesn’t start. By 
progressively increasing the amplifier gain up to reach the 
oscillation level it is possible to know if the crystal is drive 
level sensitive or not. Nevertheless, this fast and inexpensive 
method doesn’t give dependency with drive level and is 
mainly used for screening of crystals to specified acceptance 
limits. [17,29]. 
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Figure 14: Active method for DLS measurement [29]. 

More accurate measurement of DLS can be achieved by using 
passive transmission methods such as the popular IEC-444 Pi-
network (Fig. 17) widely used to measure the resonator 
motional parameters [13,20,32].  
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Figure 17: Simplified IEC-444 Pi-network crystal parameters 
measurement method [32]. 
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Figure 18: Crystal equivalent circuit. 

The parameters of the resonator equivalent circuit (Fig. 18) 
can be calculated from the amplitude and phase transfer 
function of the measurement network the crystal is inserted in 
[28]. For high frequency resonators, those parameters can be 
obtained from the scattering parameters measurement by 
using automatic network analysers [1,23,24,25].  
With the development of smart instrumentation and computer 
aided measurement techniques it is now very convenient to 
use network/impedance analysers that enable the user to vary 
several parameters such as the input signal magnitude and to 
calculate the equivalent circuit parameters from the 
impedance magnitude and phase records [18,19]. In the 
present case, the experiments have been performed by using 
an Agilent 4395A Network/Spectrum/Impedance Analyser 
and the 43961A Impedance Kit [22,33]. To improve the 
accuracy of the measurements, the resonator under test has to 
be isolated from the environmental perturbations mainly due 
to temperature fluctuations. To this end, the impedance test 
kit has been complemented with a precision oven keeping the 
crystal at its turnover point (Fig. 19, 20).  
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Figure 19: Low drive level crystal parameters measurement. 
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Figure 20: Experimental set-up. 



Besides, so as to lower the drive level range initially set 
between – 50 to + 15 dBm, the experimental set-up has been 
modified as shown in Fig. 19: A wide band 50 dB attenuator 
is inserted in the RF input signal and two dual-stage low noise 
amplifiers are inserted in the measuring ports of the test kit 
allowing measurements from approximately – 100 dBm to 
- 35 dBm. It should be noted that a careful attention has to be 
paid to the calibration procedure to guarantee the 
measurement accuracy. 
Figure 21 represents two typical records of the impedance the 
crystal parameters are calculated from. Of course, as the drive 
level decreases, the records become more and more noisy and 
several measurements are required to increase by averaging 
the signal to noise ratio. Figure 22 presents the drive level 
sensitivity of a 10 MHz SC-cut 3rd overtone quartz resonator. 
Nevertheless, the experimental set-up is not yet accurate 
enough to obtain satisfactory measurements of the crystal 
reactive parameters L1 and C1, and this plot is only a 
preliminary result that is still to be confirmed by additional 
experiments. 
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Figure 21: Low drive level crystal impedance records. 
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Figure 22: Low drive level sensitivity of a 10 MHz SC-cut 3rd 
overtone quartz resonator. 

6 Noise and DLS 

The main reason why these experiments are currently carried 
out is to check for a possible correlation between drive level 
sensitivity and noise of the resonators that should have the  
same origin. One of the possible mechanisms relating these 
two phenomena has been suggested in the past [30]. It 
assumed that some contaminant species are randomly trapped 
to and released from N possible surface sites at rates r0 and r1 
respectively, each trapped particle causing an average relative 
frequency shift ∆f/f (Fig. 23).  
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Figure 23: Noise induced by a contaminant species [30]. 

In this case it has been shown that the spectral density of 
phase fluctuations has the form given by Equation (12) 
represented in Fig. 24. 
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Experimental verification of the expected correlation between 
drive level sensitivity and resonator noise has also been 
investigated [2,6]. The result presented in Fig. 25 seems 
demonstrate that there is a positive correlation between DLS 
measured by the slope of the resistance change and the noise 
measured by the residual phase noise at 100 Hz from the 
carrier [2]. 
Nevertheless, these promising results have not been 
confirmed by another set of experiments performed on a large 
sample of resonators as shown in Fig. 26 [6]. 
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Figure 24: Spectral density of phase fluctuations for a 
525 MHz resonator [30]. 
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Figure 25: Noise vs. DLS of a 100 MHz AT-cut quartz [2]. 
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Figure 26: Noise vs. DLS of a 100 MHz AT-cut quartz [6]. 

Thus, the question of a possible correlation between noise and 
surface defects that could be disclosed by measuring DLS is 
still open. A theoretical noise model based on a non-linear 
series resistance R1 (Fig. 18) whose value is a function or the 
crystal current as shown in Equation (13) has been introduced 
in the past [27] and is still under consideration [26]. 
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In Equation (13): 
R10 is the normal drive level resistance, 
γ is the DLS coefficient, 
I is the resonator drive current amplitude, 
n is an integer number (1 ≤ n ≤ 4). 

7 Conclusion 

In summary, the low level drive sensitivity of quartz 
resonators is mainly expressed by a change of the series 
resonant frequency and series resistance that may exhibit 
various and often irreproducible behaviours. The correlation 
between DLS and surface defects is now well established and 
several models have been developed to describe the physical 
mechanism. Nevertheless, the question of the correlation 
between DLS and resonator noise is still open. Many other 
questions deserves careful attention such as: 
− What happens at very low drive level, near the thermal 

noise floor?  
− How behave the other motional parameters at these low 

drive level? 
− Are the mechanisms responsible for the DLS the same as 

for the noise? 
− How the assumed correlation can be demonstrated? 
The work in progress will try to give an answer to these 
questions. 
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