
Integration, the VLSI Journal 66 (2019) 44–59

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Actors with stretchable access patterns

Ke Du a,b,∗, Stéphane Domas b, Michel Lenczner b

a School of Science, Shandong Jianzhu University, Jinan 250101, China
b FEMTO-ST Institute (UMR 6174 CNRS), Univ. Bourgogne Franche-Comté (UBFC), Belfort 90000, France

A R T I C L E I N F O

Keywords:
Model based design
Static scheduling
Static data flow
FPGA

A B S T R A C T

In this article, we propose a new framework based on dataflow graphs to abstract and analyze designs for hard-
ware architectures. It is called Actors with Stretchable Access Patterns (ASAP). It can overcome some limitations
of all Static Data Flow (SDF) based models like mandatory buffering between actors. This article details the
fundamental contributions of ASAP. Firstly, it gives the definition of actors and their different patterns. It also
illustrates the link between these notions and components written in VHDL through several examples. Secondly,
it presents the main algorithms to check if a graph processes an input data stream correctly, which is called
compatibility checking. Thirdly, it summarizes the principles of graph modification to enforce this correctness
in case of some blocks are declared incompatible. Finally, it briefly describes our EDA tool called BlAsT which
integrates the above principles, before presenting an application on a realistic FPGA design. It shows that ASAP
overwhelms other models in terms of resources saving without any impact on the global latency. It also points
out the ability of BlAsT to compute and to propose graph modifications and to generate the VHDL code of the
whole design.

1. Introduction

On embedded systems, data processing applications that require
high efficiency and throughput are more and more relying on hardware-
based devices such as FPGAs and ASICs. But with the increase of the
system size, it becomes harder and harder to manage designs manu-
ally. Therefore, model based design is a well adapted approach. Among
the models, Data Flow (DF) has been extensively investigated and over
the years, it has been expressed under several kinds of assumptions. As
stated in 1987 at the beginning of the founding article [1]: “Data Flow
is a natural paradigm for describing DSP applications for concurrent
implementation on parallel hardware”. This remark was done when
the first FPGA emerged but thirty years later, even if FPGAs are far
more powerful and the field of applications much larger than DSP, the
same problem remains: how to build a hardware design by correct and
efficient connection of functional blocks? Indeed, since hand coding a
whole design in VHDL requires a great expertise and is a very long and
tedious task, building it as graph of blocks that consume and produce
data requires less efforts and knowledge, especially when a graphical
tool (like Simulink) is available to create and to connect blocks. In most
of specialized software packages, blocks are associated to real code and
a tool is able to generate the code for the whole design. Nevertheless, a

∗ Corresponding author. School of Science, Shandong Jianzhu University, Jinan 250101, China.
E-mail addresses: duke@sdjzu.edu.cn (K. Du), sdomas@univ-fcomte.fr (S. Domas), michel.lenczner@univ-fcomte.fr (M. Lenczner).

long process of simulation based on benchmarking is still necessary to
validate the results produced by a graph of blocks.

Another solution based on dataflow is brought by high level lan-
guages like CAL [2]. It allows to describe a graph of actors that rep-
resent the functional blocks. Each time an actor is fired (or executed,
triggered), it may consume and/or produce some data (tokens). It is
also possible to specify conditions to fire the execution. Nevertheless,
it is not possible to translate all CAL programs into VHDL (or Verilog).
Subset of CAL like RVC-CAL [3] or similar ones like CAPH [4] solve
this problem, mainly by setting constraints on the actor’s description
and assuming that they are linked with buffers. This is also the case of
Floh language described in Ref. [5]. A Floh program is translated into
a dataflow graph using a very small set of types of actor and buffer,
presented in details in Ref. [6]. Each type is associated to its coun-
terpart in Verilog which allows to easily produce synthesizable code.
Nonetheless, all these solutions have more or less problems. For exam-
ple, some propose to implement the link between actors as a FIFO but
there is generally no methodology to estimate their size. If the designer
chooses it too large, it constitutes a waste of resources. If it is too small,
it produces deadlocks or incorrect computations. In Ref. [6], actors can
be theoretically connected without buffers but a real design may pro-
duce deadlocks. Unfortunately, no principles are provided to decide if

https://doi.org/10.1016/j.vlsi.2019.01.001
Received 22 January 2018; Received in revised form 5 December 2018; Accepted 3 January 2019
Available online 23 January 2019
0167-9260/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.vlsi.2019.01.001
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2019.01.001&domain=pdf
mailto:duke@sdjzu.edu.cn
mailto:sdomas@univ-fcomte.fr
mailto:michel.lenczner@univ-fcomte.fr
https://doi.org/10.1016/j.vlsi.2019.01.001


K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Fig. 1. An example of SDF graph with two actors.

a design produces deadlocks and to determine the optimal number and
location of the buffers. There is also no guaranty that the code behaves
as expected after synthesis, notably when it contains operations that
have an architecture dependent time to complete. A typical example is
an actor that uses the multiply operator to produce a result. Indeed, the
actor’s implementation must signal when valid outputs are produced so
that the following FIFO avoids to store invalid values. It is generally
achieved through a boolean enable signal. Assuming the multiply oper-
ator is translated as a ∗ in VHDL, the following code snippet could be
obtained after translation:

dout <= op1 ∗ op2;
dout_enb <= ’1’;

Unfortunately, it yields different behaviors depending on the FPGA
architecture, the width of the operands and the choices of the synthesis
tool. On the Spartan 6 used for our experiments, DSPs are 18 bits in
width. Thus, as soon as an operand is larger than 18 bits, the result of
the multiplication is available only after two or more clock cycles, and
not just one. In this case, the enable signal is not synchronized with the
valid output and the FIFO stores invalid values.

Prior to the definition of these languages, analyzing and enforcing
the processing correctness in dataflow graphs thanks to models has been
a highly investigated subject. Nevertheless, proposed approaches suf-
fer from the same problems. They are based on the original one pre-
sented in Refs. [1,7] named Static/Synchronous Data Flow (SDF). They
rely on the fact that the number of tokens consumed and/or produced
during the execution of an actor and the execution time are fixed and
known a priori. The graph in Fig. 1 shows two actors linked by a channel
regarded as a FIFO. Each time a1 is executed (or triggered), it produces
one token. During its execution, a2 consumes two tokens and produces
one. It is worth noting that the duration of the executions is not taken
into account.

In order to obtain a relevant behavior, all produced tokens must
be consumed over a finite period of time. In Fig. 1, a1 must execute
twice as often as a2, so that a2 can consume enough tokens (two tokens
of each execution polled from the buffer) for its own execution. This
principle is called the sample rate consistency and it can be checked for
any SDF graph. It represents a necessary but not sufficient condition
to have FIFOs between actors that do not grow infinitely. The remain-
ing problem is to determine when actors can start their execution. An
obvious answer to reach maximal throughput is as soon as possible, as
proposed by Geilen in the timed actor interface theory “the earlier the
better” in Ref. [8]. Unfortunately, this proposition may also lead to infi-
nite buffers. Nevertheless, it is possible to compute a valid and optimal
schedule with finite ones by setting up assumptions like:

• Tokens are all produced at the end of the execution, in a single
“shot”, then stored in a buffer,

• An execution can start only if there are a sufficient number of input
tokens in the buffer.

These assumptions yield a model quite distant from the behavior of
real designs in VHDL. Indeed, output data are usually produced sequen-
tially and sometimes in the middle of the execution. Furthermore, input
tokens are generally consumed as soon as possible because waiting for
them is a waste of time and resources.

Other variants have been proposed with different assumptions mak-
ing them self-timed scheduled [9], such as CSDF [10,11], Heterochronous
Data Flow (HDF) [12,13], Core Functional Data Flow (CFDF) [14],
Scenario-Aware Data Flow (SADF) [15] and Static Data Flow with

Access Patterns (SDF-AP) [16,17]. Synthesis and comparisons between
these different approaches can be found in Refs. [18–21] but the latest
one, SDF-AP, is taken as a reference in this article because it models
the actor’s behavior in a fashion close to that of real cores on FPGAs.
Indeed, access patterns represent the pace of consumption and produc-
tion of an actor. They are sequences of 1 and 0, with a length equal
to the duration of the actor’s execution. A 1 signals a clock cycle at
which a token is consumed or produced. Compared with basic SDF
approaches on real applications [22], it yields a reduction of buffer sizes
and latency together with a possibly drastic increase of the throughput
rate.

Nevertheless, SDF-AP suffers from limitations inherited from SDF
principles. For example, buffering is mandatory but it could be avoided
when delays are sufficient to synchronize several inputs of a single
actor. Even if a delay is functionally similar to a FIFO, there is a com-
plexity gap between their VHDL implementations and logic resources
consumption. Source actors (i.e. actors with no inputs) are also a prob-
lem because they are taken into account in schedule computation. If
the graph matches a real design, such actors would surely represent
peripherals. But a lot of peripherals have a fixed (or nearly) execution
schedule. Thus, this schedule is a constraint and cannot be freely set or
computed. There is also a problem that is specific to SDF-AP because
of the new constraints implied by patterns. Indeed, very simple designs
lead to infinite buffer growth.

These limitations are discussed in details in the next section, and
they inspired us to propose a new formalism called Actors with Stretch-
able Access Patterns (ASAP), that also relies on actors and patterns but
with other definitions and usages. We assume that the data consump-
tion rate of an actor is represented by a maximum value but it can vary
under this value while conserving the correctness of the production. The
notion of rate variability already exists in the Variable Rate Data Flow
model (VRDF) [23] but with another definition. Indeed, VRDF assumes
that an actor may consume (and produce) more or less data during
each execution, which, over time, effectively yields a rate variability. In
ASAP, the volume of consumed data never changes between executions.
The rate variability expresses the fact that the consumption rate of an
actor is directly determined by the production rates of its precursors in
the graph and if they are lower than the actor’s maximum, its produc-
tion is still correct though slower. This constraints actor’s implementa-
tion but does not increase its coding complexity, as shown in Section
3.1.7. ASAP represents the maximum consumption rate by a pattern
that is only theoretical. A real execution pattern may be a stretched ver-
sion of the theoretical one. This constitutes the origin of the expression
“Actors with Stretchable Access Patterns”. Regarding channels imple-
mented as FIFOs and controllers, they are highly resource consuming.
Thus, we replace the buffer size optimization approach by an analysis
of the real actor’s patterns considering the graph without any buffer.
If the analysis detects a problem, we will search for the minimum set
of delays, decimators and if needed, buffers to be added between some
actors so that the graph processes data produced by the sources cor-
rectly. To summarize, our contribution is not only a new model but a
whole framework with the three main features:

• A model for actor’s executions that allows to take a wider range of
behaviors into account than previous models,

• A static analysis procedure that allows to detect if a design processes
input streams correctly, without simulations,

• A modification procedure of the design when correctness is not
reached.

This approach serves as a basis of an EDA tool called BlAsT (Block
Assembly Tool). It integrates all the above principles to help non-expert
users in producing FPGA designs.

The rest of the paper is structured as follows. Section 2 recalls
the SDF-AP model properties and behaviors before illustrating some
of its limitations through simple examples. The novel model of actors
is elaborated in Section 3, where their properties and their patterns

45



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Fig. 2. An example of SDF-AP graph with two actors.

Fig. 3. The general structure (FIFO + controller) to interconnect two actors in
SDF-AP.

are discussed in details. Examples illustrate the fundamental algorithms
related to the model. Section 4 presents a case to introduce the princi-
ples of graph modifications yielding correctness. It must be noticed that
the whole procedure is complex and requires too much detailed expla-
nations to fit in the present article. So, only the main lines are given.
Section 5 presents a realistic test case that points out the efficiency and
advantages of ASAP compared with SDF-AP. It also presents some ele-
ments of BlAsT. Finally, we draw the conclusions and perspectives in
Section 6.

2. The SDF-AP model

2.1. Principles

Static Data Flow with access patterns is a SDF based model using
additional access patterns to describe the clock cycles at which tokens
are produced or consumed by actors during their executions [16,17].
Both kinds of patterns are sequences of 1 and 0, and are called con-
sumption pattern and production pattern respectively. Their length
is equal to the duration of the actor’s execution. Fig. 2 shows an exam-
ple of SDF-AP graph, based on the example in Fig. 1. Each time a1 is
triggered, its execution lasts two cycles. It produces nothing during the
first clock cycle and one token during the second one. When a2 is trig-
gered, its execution lasts three cycles. It consumes one token at each
clock cycle of the first two and produces one at clock cycle 3.

It is worth noting that consumption pattern must be matched strictly
to ensure the result correctness. In this example, if a valid data is pre-
sented on the input of a2 at the third clock cycle of its execution, or
if there are no valid data at clock cycle 1 or 2, the actor will pro-
duce incorrect results. To enforce this constraint, as in other SDF based
models, SDF-AP assumes that the channel between two actors is a
buffer. In Refs. [16,24], the same group of authors propose a realis-
tic representation (from the hardware point of view) of these buffers:
a FIFO with a controller that manages the store and poll requests.
This general structure is shown in Fig. 3. The actor’s implementation
must define additional ports data_o_enb and data_i_enb to man-
age FIFO accesses. Generally, a store request is issued as soon as a
token is produced by a1 on data_o, that is when data_o_enb is
asserted. Poll requests occur at clock cycles computed by the access
patterns and the scheduling. In order to make the global latency shorter
and to minimize the size of the buffer, tokens must be polled as soon
as possible but in a sequence that matches the consumption pattern
of a2.

To illustrate this behavior, we take the design in Fig. 2 and
assume that a1 produces a result every two clock cycles. The couple
FIFO/controller is supposed to behave as a VHDL implementation syn-
chronized on a global clock. It means that for a poll request at clock
cycle t, the result is available on the FIFO’s output at clock cycle t + 1
(same with store requests). Under these conditions, the SDF-AP model
implies the following schedule:

Fig. 4. An example of entity compliant with SDF-AP.

• At t = 2: a1 produces its first token and the controller issues a store
request.

• At t = 3: the first token is available in the FIFO.
• At t = 4: a1 produces its second token and the controller issues a

store request. It also issues a poll request.
• At t = 5: the second token is available in the FIFO and the first

token is available on data_in of a2. This latter starts its execution
and consumes it. The controller issues a poll request.

• At t = 6: the second token is available on data_in of a2, that
consumes it. a1 produces its third token and the controller issues a
store request.

• At t = 7: the third token is available in the FIFO and a2 produces
its result.

• …

This leads to an execution of a2 every four clock cycles, the first
being at t = 5 and a minimum size of 2 for the FIFO. With a SDF
model, the throughput would be the same but with the first execution
at t = 6 (or even more depending on the access policy of the buffer)
and a minimum buffer size of 4. The gain is moderate but for actors
consuming hundreds of tokens, it may be huge [16,22].

It can be noticed that it is theoretically useless to associate an enable
signal data_o_enb to data signal data_o. Indeed, once the clock
cycles at which a1 is triggered are known, the store requests schedule
can be determined from its production pattern. Nevertheless in prac-
tice, it is simpler to use such an enable signal because the store requests
are simply driven by its assertion to true. Similarly, data_i_enb is
useless since a2 is supposed to follow a fixed consumption policy given
by its consumption pattern. But there must be at least one input sig-
nal that triggers its execution. The FIFO controller is in charge to emit
this signal and the poll requests so that a2 effectively receives valid
values at the correct clock cycles according to its consumption pat-
tern. Under these conditions, patterns can be deduced directly from the
code of the cores. In order to illustrate these remarks, Fig. 4 describes a
VHDL entity called simpleCoreSDFAPwith two inputs and one output
port.

Assuming that the architecture part of simpleCoreSDFAP contains

the code given in Fig. 5, the consumption pattern is

[
1 1 0

1 0 0

]
, the

production pattern is
[
0 0 1

]
and the execution time is equal to 3

clock cycles. Indeed, it stays in idle state until start is asserted to 1.
This condition triggers the execution of the actor, the consumption of
values received on both inputs to compute the result of function fun1.
It corresponds to the first column of the consumption pattern (contain-
ing only 1). Then, state changes to step1. During the next clock cycle,
the actor only consumes the value on the first port to compute the
result of fun2 that is assigned to d_out. It corresponds to the second
column of the consumption pattern. Then, it returns to the idle state
and notifies that the final result will be available at the next clock cycle
by asserting d_out_enb to 1. It yields an execution time of 3 clock
cycles.

46



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Fig. 5. An example of architecture compliant with SDF-AP.

This example clearly shows that both functions are called even if
the validity of received data does not strictly match the consumption
pattern, yielding an incorrect result. As said above, the FIFO controller
prevents such dysfunction.

It can also be noticed that two subsequent executions may overlap:
the second one could be triggered at the third clock cycle of the first
one while it produces its result.

2.2. Limitations

As described above, the principles of SDP-AP model are those of SDF
enriched by the concept of pattern. Even if it brings a major improve-
ment, the underlying assumptions yields a waste of resources and a
restricted representation of core behaviors. This section describes the
three main limitations inherent to these assumptions and introduces
potential solutions.

2.2.1. Strict pattern conformance and buffering
This first limitation has already been described using Fig. 3. It comes

from the condition that actor’s consumption patterns must be matched
strictly for actors to produce correct results. In the best case, when the
production pattern of an actor is equal to the consumption pattern of
the next actor, no buffering is needed. But in the general case, FIFOs
with controllers must be used.

In the illustrating example shown in Fig. 6, a source emits frames
of 16 data at each execution followed by a decimator that keeps one
data out of two to feed an average filter with a mask of size 3. Pat-
terns use the standard regular expression syntax to specify groups (with
parenthesis) and repetitions (with embraces). For example, (01){8}
means that 01 is repeated 8 times. Assuming that the source exe-
cution starts at clock cycle 1, the decimator produces data at clock
cycles 2n (n ∈ ℕ∗). Applying a strict pattern conformance, the filter
must consumes 8 data during 8 consecutive clock cycles. The SDF-
AP solution is to store a certain amount of data in a FIFO after
the decimator before triggering the filter execution. In this example,
the earliest time to start the filter is at clock cycle 11 with a FIFO

size of 4 (or 5 depending on the priority between store and poll
requests). More generally, for a decimator producing N data, the fil-
ter can start its execution at clock cycle N + 3 and the buffer size
is ⌈N

2 ⌉.
This behavior is not a problem in itself but yields a waste of

resources. Indeed, buffering can be totally avoided if the filter is able to
consume data without strictly matching its consumption pattern, that
is only when the decimator produces data. In terms of implementation,
this represents minor changes in the code of cores as shown in Section
3.1.7.

2.2.2. Auto-concurrency
In Ref. [17], authors use the notion of auto-concurrency in SDF-AP

graphs to describe the fact that “multiple instances of an actor can exe-
cute simultaneously”. They define a parameter ii that represents the
minimum number of clock cycles between two executions of the same
actor. They also add that: “this may be not feasible in practice due to
restrictions like finite resources, IP properties, etc.”. Despite the fact
that they do not give precisions about what they consider to be a real
auto-concurrent actor (at the implementation level for example), we
notice that actors using a sliding window on input data are in this
case.

To point out the limitation with such actors, we take the following
example: an 1D average filter with a mask of size 3. Denoting its input
data as: d1, d2, d3, …, it produces d1+d2+d3

3 , d2+d3+d4
3 , …, where, for

simplicity, we omit the averages at bounds.
If the filter has an “internal” knowledge on its processing

end, the definition of ii is relevant. For example, if the filter
is implemented to operate on sequences of 5 data, its consump-
tion pattern is

[
1 1 1 1 1 0

]
and its production pattern is[

0 0 0 1 1 1
]

(N.B.: this assumes that the last sum and the
division by 3 can be done in a single clock cycle). In this case, the actor
cannot execute once again before five inputs have been consumed (i.e.
ii ≥ 5), otherwise it would produce incorrect results. This is a weak
auto-concurrency since the overlap occurs only when all needed input
data have been consumed. Thus, the same input data is not used by
several concurrent executions.

The problem arises when the processing end is driven externally. For
example, there may be a boolean input that is asserted to specify that
end. Expressing a pattern with an unpredictable length is not a relevant
solution. Auto-concurrency allows to express it for a single average.
For example, if we assume that the filter is able to compute the sum
and the division by 3 in a single clock cycle, its consumption pattern is[
1 1 1 0

]
and its production pattern is

[
0 0 0 1

]
.

In order to compute a sequence of averages correctly, this filter must
execute once again as soon as there is a valid input data. This yields
strong concurrency since the same input data will be used for three con-
current executions (except at the bounds). With such an actor, ii = 1
is the single possible value, and not a minimum. In conclusion, auto-
concurrency, as defined in SDF-AP model, is inadequate and another
definition must be given to match a larger range of actor’s behav-
ior.

2.2.3. Infinite buffering
The third limitation comes from the combination of the two previ-

ous ones and is illustrated by the example given in Fig. 7. The design is

Fig. 6. A decimator connected to an average filter with fixed size data flows modeled by SDF-AP.

47



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Fig. 7. A decimator connected to an average filter with an infinite data flow
modeled by SDF-AP.

functionally equivalent to the previous example, but actors operate in
a pipelined way, on an infinite data flow. In this case, patterns must
be expressed for a single decimation and average, with actors trig-
gered at each clock cycle. Since patterns must be strictly matched in
SDF-AP model, it also implies that the filter must be fed at each clock
cycle with a valid data. Unfortunately, no matter what the rhythm of
source production is, the decimator will never produce data at contigu-
ous clock cycles. The single solution is to put a FIFO after the decimator
with an infinite number of data before polling them, which is impossi-
ble.

Similarly to the previous one, the problem with an infinite buffer
can be solved by modifying the filter to consume data only when they
are available.

Based on the above analysis, interesting propositions can be done
to limit resource consumption and to obtain a valid schedule on a
larger class of designs. They mainly rely on a new definition of the
auto-concurrency property, an optional buffering and a relaxed pattern
conformance. This leads to our model that is presented in details in the
next section.

3. The ASAP model of actors

Even if ASAP aims to overcome the limitations of previous models,
it keeps the principle of static analysis that implies some unavoidable
constraints. For example, some actors have a variable behavior because
it depends on the consumed values. A one-to-N switch with an input
that selects which output is chosen is a perfect example of such an
actor. Under some conditions, it is possible to conduct a static anal-
ysis, as proposed in Refs. [25,26]. Nevertheless, it is not possible in
the general case and it implies the use of simulations to retrieve the
behavior under specific execution conditions. This is why we consider,
in the following, only actors with a behavior independent from input
values.

As mentioned in the introduction, our final objective is to inte-
grate our model and its related algorithms in a software tool that
allows to create functional FPGA designs. Thus, ASAP has been designed
to be applicable to new cores development (for example in VHDL).
We have also taken the possibility to model existing cores into
account provided they follow some simple constraints. Since there
are many ways to implement a functionality, we have defined pat-
tern properties to encompass a large range of behaviors, even those
that could be considered as inefficient or nearly useless in practice.
Moreover, as with many models, the possible results are wider than
what can be used in real designs. This is why ASAP allows some
cases that are unrealistic or even unfeasible in term of implementa-
tion.

Even though we have a practical goal, the following sections
presents ASAP from a theoretical point of view, as in the majority of
related works about models. For example, unfeasible cases are deter-
mined and explained. Some examples of patterns may be considered as
unrealistic in practice but we use them to present some particularities
of the model and their implications. It is also the case for algorithms
that are not constrained by realistic assumptions. Nevertheless, some
propositions of implementation and practical examples will be given
to help the reader to catch the link between the model and our final
objective.

Section 3.1 describes an actor considered alone and Section 3.2 dis-
cusses about a graph of actors.

3.1. Actor’s structure and behavior

ASAP relies on a very simple structural constraint for actors and
a small set of notions to describe their behavior. The following sec-
tions give their theoretical definition and a tiny illustration. The tight
relations between these notions are explained in Section 3.1.6. Finally,
Section 3.1.7 presents some examples to illustrate these notions and to
describe their link with real implementations in VHDL.

3.1.1. Clock and ports
We assume that an actor is synchronized on a global clock signal that

is always enabled. Clock cycles are numbered from 1 to ∞. When the
execution of an actor is triggered at a given clock cycle, it consumes and
produces data on its ports. An actor has PI ∈ ℕ∗ input ports and PO ∈ ℕ∗

output ports. Actors without inputs or outputs are called sources or sinks
respectively.

Each input and output port corresponds to a couple of signals
(data, validity). The type of data is left undefined and validity
is a boolean signal. An input group is the set of values of the data sig-
nal received on the inputs, at a given clock cycle. Similarly, an output
group is for the outputs.

It is worth noting that existing cores may already match these con-
straints, as those that comply with the AIX4-stream protocol in non-
blocking mode. Thus, such cores can also be modeled with ASAP.

3.1.2. Execution and concurrency
An actor is self-triggering. For source actors, their first execution

starts at clock cycle 1 of the global clock. A new execution is automat-
ically triggered at the clock cycle following the end of the current one.
For other actors, their execution is triggered by the first input group
with validity values that conform to a particular state. For example, in
Fig. 9, both inputs must be valid to trigger the execution. The execu-
tion is considered to be completed when the last result has been pro-
duced.

Moreover, depending on how the actor is implemented, it can be
triggered again even if it is already executing, which yields concur-
rent executions. The most extreme case is when a new execution starts
while the previous has not totally consumed all needed groups. In that
case, if different executions consume the same input group, it yields
concurrent consumptions. These notions are essential to model the
behavior of actors that process input streams in a pipelined way. The
average filter mentioned in Section 2.2.2 that operates on a sliding win-
dow is in that case.

3.1.3. Consumption
Since an actor is able to wait, its execution time is not fixed. It

depends on the actors that produce the data to be consumed. Neverthe-
less, there exists a minimum execution time corresponding to the fact
that the actor never has to wait and that guaranties of correct results.
The consumption pattern (CP) represents the consumption policy of
all input ports at each clock cycle of the minimal execution time. It is
quite similar to the one defined in SDF-AP model but it takes the auto-
concurrency into account. For convenience, it is expressed as a matrix
but should be interpreted as a sequence of column vectors. The tth col-
umn describes the consumption policy of the actor at the clock cycle t,
relatively to the beginning of its execution. If LCP is its length, then:

CP =
[
CPi,t

]
, for i ∈ {1,… ,PI}, t ∈ {1,… , LCP}, CPi,t ∈ {1,0,×},

and

• CPi,t = 1, if the actor must consume the data on the input i to com-
pute a correct result,

• CPi,t = 0, if the actor does not need the data for the current execu-
tion, but a next execution may consume it,

• CPi,t = ×, if the actor must not consume the data for any current
execution.

48



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

The × corresponds to the 0 used in to SDF-AP. The 0 is a new
notion introduced to represent certain actors with concurrent consump-
tions. Together with the trigger delay notion presented in the follow-
ing section, they are necessary to obtain a correct behavior analysis of
such actors when they are used within a graph. An example is given in
Section 3.1.7.

If the tth column contains one or several 1, it means that the actor
consumes at least one data. It is called a valid column because it corre-
sponds to a set of data for which at least one validity signal is equal to
1 (NB: this notion is also used for the other types of patterns defined in
ASAP). By extension, the associated set of data is called a valid input
group. VCP represents the number of valid columns in CP, i.e. the num-
ber of valid input groups that must consumed to complete an execution.

For instance, CP =
[

1 × 1 0 0 0 1

1 × 0 0 1 0 ×

]
corresponds to

PI = 2, LCP = 7, and VCP = 4. It presents a possible (even though
unrealistic) CP with different combinations of 1, 0 and × in a single
column.

3.1.4. Triggering delay
The delay between two executions of an actor is noted as Δ. It cor-

responds to the number of valid input groups (not the clock cycles as
in SDF-AP) that must be consumed by an actor before it starts another
execution. Consequently, 1 ≤ Δ ≤ VCP. From the consumption point of
view, Δ is a fixed value. Thus, if the Δ+ 1 valid input group has validity
values that do not conform to the first column of CP, the next execution
will not start and the actor will eventually produce incorrect results.

3.1.5. Production
The production pattern (PP) is the counterpart of CP but for results.

The tth column of PP describes if the actor produces valid results or not
on its outputs at clock cycle t relatively to the beginning of its execution.
If LPP is its length, then:

PP =
[
PPo,t

]
, o ∈ {1,… ,PO}, t ∈ {1,… , LPP}, PPo,t ∈ {1,0}, and

• PPo,t = 1, if the actor produces a valid result,
• PPo,t = 0, otherwise.

VPP represents the number of valid columns (i.e. with at least a 1 in
the column) in PP.

Moreover, an actor produces results in a logical order, that is as
soon as possible after a sufficient number of valid groups have been
consumed. The production counter (PC) represents this property. It
defines the number of valid input groups that are necessary to produce
a valid output group. It is expressed as a vector PC =

[
PCo

]
, with o ∈

{1,… ,VPP} and PCo ∈ {1,VCP}. It is also assumed that if i < j then
PCi ≤ PCj.

For instance, PP =
[

0 0 1 0 1 0

0 0 1 0 1 1

]
corresponds to PO = 2,

LPP = 6, and VPP = 3. A possible production counter could be PC =[
2 4 5

]
3.1.6. Origins and relationships between these notions

Some definitions given above, notably PP, are quite obvious because
they match the behavior of components implemented on hardware-
based devices like FPGAs. Other definitions require clarifications to be
fully understand.

Concurrent executions are an abstraction. They do not corresponds
to a physical reality implemented, for example, with several identical
VHDL processes that run concurrently. They are used to represent a
pipelined execution of an actor. In the most common case, such an
actor consumes data at each clock cycle to initiate the first stage of the
pipeline, which triggers a new execution. Depending on the actor’s task
and the number of concurrent executions, this input group may also be

Fig. 8. An example of entity compliant with ASAP.

used in other stages of the pipeline, which yields concurrent consump-
tions. Nevertheless, ASAP actors are able to wait for valid input groups.
Thus, there may be several clock cycles between the triggering of two
concurrent executions. This justifies definition of Δ, based on a number
of consumed groups and not clock cycles. In practice, a pipelined actor
has generally Δ = 1, which corresponds to a new execution each time
a valid input group is consumed. But ASAP allows other values. It can
be noticed that Δ = VCP corresponds to an actor without pipeline.

PC allows to differentiate the behavior of actors that have the same
consumption and production patterns. For example, an average filter
with a mask of size 3 and a threshold filter that operate on a sequence
of 5 values have:

CP =
[
1 1 1 1 1

]
,PP =

[
0 0 1 1 1 1 1

]
.

Nevertheless, they have a different production counter:
PCthre. =

[
1 2 3 4 5

]
,PCavg. =

[
2 3 4 5 5

]
.

This differentiation is necessary when such actors are used in a
graph and they have to wait for some input groups during their exe-
cution. For example, assuming that the second input group is delayed,
it has no influence on the threshold filter to produce its first result. It is
not the case for the average filter because it needs two input groups to
produce its first result.

There are also relationships between all these notions. In practice,
CP, Δ, PP and PC are given by the actor’s implementation, as shown in
the next section. But in purely theoretical examples, it is impossible to
choose their value freely.

Firstly, there may be impossible combinations of Δ and CP. For

instance, CP =
[

1 × 1

1 1 0

]
and Δ = 1 are inconsistent. Assuming that

the first data group triggers the first execution at clock cycle t, since
Δ = 1, the second data group automatically triggers the second exe-
cution at t + 1. For that execution, the actor must consume a valid data
on both inputs to produce a correct result. However, for the first execu-
tion, the consumption policy is given by the second column of CP with
an × that forbids consumption on input 1 for any execution. These two
constraints are in contradiction thus Δ cannot be equal to 1 (but 2 and
3 are possible).

Secondly, certain combinations of PP, PC, CP and Δ are forbid-
den, as for example, CP =

[
1 1

]
,Δ = 1,PP =

[
0 0 1 1

]
and

PC =
[
2 2

]
. Indeed, since Δ = 1, two successive executions yield a

result at the same clock cycle, which is not physically feasible. Never-
theless, Δ = 2 or CP =

[
1 0 1

]
would be correct.

3.1.7. Illustrative examples
In order to illustrate the notion of ports, Fig. 8 describes an entity

called simpleCoreASAP with two inputs and one output port. In this
example, d1_in and d2_in represent the data signals of the input
port, while d1_in_enb and d2_in_enb the validity signals. The
same principle applies for the output.

49



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Fig. 9. An example of architecture compliant with ASAP.

When the validity signal is asserted to be 1 on some ports, the
associated data signals carry a value that must be consumed and used
for the current actor’s execution. If the actor is not ready to consume
them, the data will be lost and the actor will produce incorrect results.
When the validity signal is asserted to be 0 on a given port, the
actor must not consume the value on data. Nevertheless, it may be
in a state where it really needs a value on that port and maybe more.
In that case, the actor must be able to wait an unbounded number of
clock cycles until the validity signal becomes equal to 1 for all these
ports.

Fig. 10. Illustrative example 1.

Fig. 11. Illustrative example 2.

Fig. 9 illustrates these properties. It is an example of VHDL code that
could be found in simpleCoreASAP. In a core compliant with ASAP,
the execution is always triggered by a condition on the validity of inputs
but not by a dedicated signal as in SDF-AP. In this example, the core
stays idle until a valid data is received on both input ports. Then, it
consumes these data to compute something and passes in step1 state.
Contrarily to SDF-AP, it can stay indefinitely in that state, until another
condition on the input validity is met. In this case, it waits a valid
data only on the first port. Then, the actor consumes it to compute the
final result. After that, it returns to the idle state. Consequently, if the
consumption conditions are not respected, some input data will be lost
and the actor will either not start its execution or compute correctly.
Such a case is discussed in Sections 3.2.2 and 3.2.3.

As mentioned above, patterns and related notions are deduced from
the actor’s implementation. For the code in Fig. 9, it is very easy
to determine the characteristics of the output. Indeed, a single port
produces a single result at clock cycle 3 of the execution, after two
input groups have been consumed. It gives PP =

[
0 0 1

]
,PC =

[
2
]
,

PO = 1, LPP = 3, and VPP = 1.
Δ is also quite straight forward to determine. An execution can start

only if the state is idle. Since the process returns to idle only if two
input groups have been consumed, it implies that Δ = 2. It also implies
that there are no concurrent consumptions.

Finally, CP can be deduced from the conditions on validity signals
and changes of state. Since it is possible to change of state at each

clock cycle, it gives CP =
[

1 1

1 ×

]
,PI = 2, LCP = 2, and VCP = 2. It

is worth noting that the × represents the condition d2_in_enb = ‘0’,
which forbids to consume a data on the second port when state is
step1. Nevertheless, since there are no concurrent consumptions, a
0 would be equivalent.

This assertion raises the question of the usefulness of × in con-
sumption patterns. Actually, they are necessary when there are concur-
rent consumptions and the following examples present a proof of this.
Figs. 10 and 11 contain VHDL codes that carry out the same functional-
ity but implemented in two different ways. They use three functions f,
g and h to produce a single result from two inputs that are consumed at
most every two clock cycles. In the following, a is the actor that models
the first code, and b the second.

50



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

From the code in Fig. 10, we deduce that Δa = 1 because a
new execution starts after each consumption. CPa is easy to deduce
from the very first execution. As soon as there is a valid input,
there are two consumptions separated by at least two clock cycles.
It implies that La

CP = 3 and CPa
0 = CPa

2 = 1. Determining CPa
1 is also

easy because at the init state, a waits for a valid input that is
not used for the first execution but that is consumed to trigger the
second one. Thus, by definition CPa

1 = 0, yielding CPa =
[
1 0 1

]
.

Finally, PPa =
[
0 0 0 1

]
and PCa = 2 because the result is

released after the consumption of two groups at the fourth clock
cycle.

From the code in Fig. 11, we deduce that Δb, Lb
CP , CPb

0, CPb
2, PPb

and PCb have the same values as those of a. A new execution starts
after each consumption and the result is produced from two consump-
tions. Nevertheless CPb

1 is different. When the process is in the step1

state, no input is consumed by any execution. If a2 is used within a
graph and receives a valid data while it is in this state, the data will
be lost and the graph will produce incorrect results. The graph analy-
sis must be able to detect such a case. If C1 = 0, the analysis would
consider that the data may be used by another execution and would
conclude that there is no problem. If C1 = ×, the presence of a valid
data during the step1 state is considered to be a faulty case by the
analysis.

It is worth noting that a is able to execute and to produce a result
at each clock cycle whereas it is at most every two clock cycles for b.
Consequently, the question of the usefulness of taking the case of b into
account could be raised. But as said previously, ASAP does not rely on
such a criterion but on the fact that it can model the largest number of
behaviors.

3.2. The graph of actors and its analysis

As in SDF based models, a design is abstracted by a connected and
oriented graph of actors. The main constraint is that the graph must
not contain cycles. Such a case would prevent to apply the analysis
principles presented below. Indeed, for a given actor a, it is necessary
to know what is sent by its direct predecessors to determine what it
produces for its direct successors. A cycle towards a implies that one of
its inputs comes from one of its successors. Thus, it would be impossible
to compute what it produces.

3.2.1. Input and output patterns
Since the first clock cycle of the global clock, source actors execute

repeatedly and produce data groups that must be consumed by their
successors in the graph. These successors are themselves producing data
groups that must be consumed by their own successors, and so on until
actors with no successors. Thus, the pace at which a given actor receives
valid input groups is given by the pace of production of its predecessors
and not by CP. This pace is called the input pattern (IP). It corresponds
to the variations of the validity signal received by the input ports and
is represented by a matrix of 0 and 1.

Assuming we only consider global clock cycles ranging from 1 to T,
the input pattern is noted

IP =
[
IPi,t

]
, i ∈ {1,… ,PI}, t ∈ {1,… ,T}, where IPi,t is the value of

the validity signal received by the input i at the clock cycle t.
The pace of production is called the output pattern (OP). It cor-

responds to the variations of the validity signal emitted by the output
ports and is noted

OP =
[
OPo,t

]
, o ∈ {1,… ,PO}, t ∈ {1,… ,T}, where OPo,t is the

value of the validity signal produced by the output o at the clock
cycle t.

For instance, IP =
[

1 0 1 1 0 1 0 0

1 0 0 1 0 1 0 1

]
is for an

actor with 2 inputs (PI = 2) and T = 8 clock cycles, and

OP =
⎡⎢⎢⎢⎣
0 0 1 0 0 1

0 0 1 1 0 1

0 0 0 1 0 0

⎤⎥⎥⎥⎦ is for an actor with 3 outputs (PO = 3)

and T = 6 clock cycles.

3.2.2. Admittance pattern
An additional notation is necessary for patterns, notably in the fol-

lowing algorithms. For a given type XP of pattern, XP∗,t represents the
state of validity signal for the data group at clock cycle t, which is
the tth vertical vector in XP.

The distinction between CP and IP is at the origin of the word
“stretchable” in ASAP. Indeed, considering a single execution of an
actor a without concurrent consumption, we can determine the part
of IP that encloses the valid input groups received by a during this
execution. If that part corresponds to CP exactly, a produces correct
results by definition. If it is not the case, a may still produce correct
results if that part is a stretched version of CP, i.e. with additional null
columns. Since these columns represent invalid groups and a is able
to wait for valid input groups, they have no impact on the execution
correctness. For example, in the case of the average filter in section
2.2.3, CP =

[
1 1 1

]
but if it receives IP =

[
1 0 1 0 0 1

]
from the decimator, it can work as well.

IP is considered to be compatible with a consumption pattern CP
if all the actor’s executions implied by IP produce correct results. Due
to the structure of CP and the value of Δ, checking that compatibility
may turn out to be a non-trivial task in practice, notably when there
are concurrent consumptions. The admittance pattern (AP) presented
below is at the heart of the solution provided by the compatibility
check algorithm detailed in Section 3.2.3.

The simplest case is when there are no concurrent consumptions.
Then, AP is simply constituted of several concatenations of CP. If
removing some of the null columns of IP leads to AP, then IP is
compatible with CP. For instance, for PI = 2, LCP = 4, VCP = 3, and

Δ = 3, IP =
[

0 0 1 0 0 0 0 1 0 1 0 0 0 1

0 0 0 0 1 0 0 1 0 0 1 0 0 1

]

and CP =
[

1 0 0 1

0 1 0 1

]
are compatible.

It is obvious that removing columns 1,2,4,6,9,12 leads to the con-
catenation of two CP.

In case of concurrent consumptions, checking the compatibility
requires a similar process of removing null columns and matching with
a reference. Nevertheless, this problem is more complex because it
raises up some questions about the number of compatible patterns and
their structures.

For a given number of complete executions nexe, there exists at least
one admittance pattern. For a better understanding, the principles of
its construction are firstly described with a basic case in Fig. 12 and
Example 1, and further exposed in details in Algorithm 1.

Example 1. CP =
[

0 1 1

1 0 0

]
, PI = 2, LCP = 3, VCP = 3, Δ = 1,

and nexe = 4.

In Example 1, the admittance pattern is built by copying nexe times
the pattern CP on a graph where the columns represent the clock cycles
and the rows represent the sequence of executions. Assuming that the
first execution starts at the clock cycle 1 and that the data groups are
available as soon as possible, we can copy CP in the first row, first
column. Since Δ = 1, a new execution is triggered by each valid data
group. Thus, we copy CP in the second and third rows, respectively at
columns 2 and 3. This copy process is done nexe times by determining for
each execution when it must (or can) start to compute correct results.

Even if there are different consumption policies at each clock cycle
for concurrent consumptions, they can be unified by doing a logical

51



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Fig. 12. Building the admittance pattern for Example 1.

OR element by element of the associated columns of CP. For example,
at clock cycle 3, the first execution consumption is specified by CP∗,3,
the second by CP∗,2 and the third by CP∗,1. The logical OR makes the
input pattern compatible with the three executions. Doing this opera-
tion for each clock cycle yields the admittance pattern. For Example 1,

it produces AP =
[

0 1 1 1 1 1

1 1 1 1 0 0

]
.

The general process to build AP is given by Algorithm 1. For conve-
nience, the algorithm starts by allocating and initializing an array with
LCP × nexe as its maximum theoretical size (line 1 to 4). As explained in
Example 1, we assume that the first execution starts at the clock cycle
1, thus CP is copied at the beginning of AP (line 2). For each following
execution i, the algorithm searches for its triggering, which corresponds
to the next insertion point of CP, named t. This is simply done by count-
ing Δ valid columns (line 8 to 13). If at this point there are columns
with only ×, they are skipped (line 14 to 16) because they forbid a new
trigger.

Then, each column of CP must be combined with a column of AP,
starting at t′ = t (line 17 to 36). For each couple of columns, there are
four possible cases:

1. The insertion point t′ is after the current end of AP, thus the column
of CP is just copied (line 19 to 22).

2. The columns of CP and AP can be combined directly by a logical OR
(line 23 to 25), as in Fig. 12 and Example 1. This occurs when there
are no operations × OR 1.

3. The column of CP is composed of × only (line 26 to 31). If AP is not
a ×-column, it implies to shift to the next column of AP, then copy
the column of CP in the empty space.

4. The column of AP is composed of only × (line 32 to 35). The
insertion point is incremented by one and no combination is
needed.

Finally, the result is shrunk to its minimal size and all × are turned
into 0 (line 38). This simplifies the further comparison between AP and
IP. Indeed, both 0 and × represent an invalid data in AP so it is simpler
to use 0 as in IP.

Algorithm 1 and these four cases are illustrated by Example 2 and
Fig. 13.

Example 2. CP =
[

0 1 × 1 1

1 0 × 1 1

]
,PI = 2, LCP = 5,VCP = 4,Δ =

1, and nexe = 3.

The first row in Fig. 13 is the initial copy of CP that corresponds to
the first execution. Then, the algorithm enters into the main loop (line
7) and searches (line 9 to 16) for the triggering of the second execution
(i = 2), which is at t = 2. The new insertion point t′ has been found
and thus, CP can be combined with current AP (line 18 to 36) with the
four possibilities mentioned above.

Fig. 13. Building admittance pattern for Example 2.

At t′ = 2, case 2 applies: CP∗,1 and AP∗,2 can be directly com-
bined with a logical OR. At t′ = 3, case 4 occurs. This leads to
search for a possible insertion of CP∗,2 in the next indexes, and
it is effectively possible at t′ = 4, where case 2 applies. Case 3
occurs at t′ = 5. Since AP∗,5 is a valid column, AP is shifted
right from t′ (the next column figured by the small arrows), leav-
ing an empty space where CP∗,3 can be copied. Case 2 occurs
once again at t′ = 6 and finally, case 1 occurs at t′ = 7. At the
end of the j-loop, columns 1 to 7 of AP have been modified, as
shown in the row of Fig. 13 entitled result 1. The same principles
are applied for the third execution that starts at t = 4. It yields
the row entitled result 2. The bottom row shows the resulting AP
after × transformations.

By construction, AP is unique and contains a cyclic part repeated a
number of times depending on nexe. Lines 9 to 16 determine an incre-
ment of t that may be different for several iterations of i. Since the
latency between two executions is fixed and driven by Δ, the increment
value is cyclic. It yields a cyclic sequence in AP, except at its begin-
ning and/or end. The length of this sequence is simply equal to the
sum of the increment values over a cycle. In Example 2, the increment
is always 2 and this corresponds to the length of the cyclic part of AP,

which is

[
0 1

0 1

]
. For the same example, Δ = 2 would result in a fixed

increment of 3, and a cyclic part is

[
0 1 1

0 1 1

]
.

This building process is not totally correct when there are concur-
rent consumptions and CP contains null columns. In this case, for a new
execution, there may be several choices of column to combine CP with
AP. For example, if CP =

[
1 0 1

]
and Δ = 1, Algorithm 1 starts

by initializing AP to CP. Then, the loop in lines 9 to 13 determines
that the second execution starts at t = 2. Nevertheless, it corresponds
to a null column in CP and means that the actor can receive a valid
input group at that clock cycle but it is not mandatory. It could also
be at t = 3. Consequently, there are two possible values of t to com-
bine CP and AP but the algorithm given here explores only the first
one.

More generally, such cases lead to several possible admittance pat-
terns. If nexe = ∞, there may even be an infinite number of admittance
patterns if such choices occur repeatedly. Nevertheless, sources are
assumed to produce cyclic output patterns so each actor also receives
a more or less complex cyclic input pattern. For a complete cycle, it is
possible to determine the number of executions of the actor and thus
to generate all possible admittance patterns by a recursive version of
Algorithm 1 that explore all combinations. For concision, this version is
not presented here. Moreover, it has nearly no impact on the following.

52



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Algorithm 1 Admittance generation.

3.2.3. Compatibility check
When the patterns AP are available (at least one), we can check

whether IP is compatible with each of them using Algorithm 2. The
process is similar to the one that removes null columns of IP described
at the beginning of this section, but here, CP is replaced by AP. In
practice, there are usually some invalid data groups in the front of
inputs. Thus, the algorithm firstly searches for the first valid column
(line 2). Then, if IP is the same as AP or if it just contains additional
null columns between two valid columns compared with AP, they are
compatible (returning true). Otherwise, they are incompatible (return-
ing false).

For example, Algorithm 2 applied to Example 2 with

IP =
[

0 0 0 0 0 1 0 1 0 0 1 0 1 0 1

0 0 1 0 0 1 0 1 0 0 1 0 1 0 1

]

Fig. 14. The process of output pattern computation.

returns that it is compatible with AP. Indeed, it is easy to notice that
if columns 1, 2, 4, 5 and 10 are removed, IP becomes equal to AP
(with × turned into 0).

3.2.4. Output pattern generation
If IP is compatible with AP, OP can be computed using Algorithm 3.
For each execution i, it searches the triggering clock cycle t (line

6). Then, it builds a vector II that contains the clock cycles of the next
LCP groups that must be consumed during i relatively to t (line 7). After
that, it loops over the valid columns in PP (line 8 to 14) determining
the clock cycle at which they are produced. The idea is to determine
the gap between the normal behavior given by CP and the real one
given by IP (line 10 and 11). For example, if it needs to consume two
consecutive input data to produce one output and if there is in fact an
idle clock cycle between these data, the output will be delayed by one
clock cycle. Thanks to the gap, OP is updated by combining its actual
value with the current valid column in PP. Then, the current clock cycle
t is incremented until the next execution. Finally, Δ valid columns are
skipped (line 15).

An illustration is given by Fig. 14, completing Example 2 with PP =[
0 0 1 0 0 1

0 0 0 0 1 0

]
, LPP = 3 and PC =

[
1 3 4

]
.

For clarity, IP is recalled on top of the figure and the clock cycles
where an execution is triggered are surrounded by a circle. The algo-
rithm starts by computing CI =

[
1 2 4 5

]
and PI =

[
3 5 6

]
according to CP and PP. Then, for each execution, groups of PP are
reported on a different row at the clock cycle computed by the algo-
rithm.

The first execution starts at t = 3. According to IP, the next
four data groups are at t = 3,6,8 and 11. Thus, relatively to
t, II =

[
1 4 6 9

]
. For the first output group, PC1 = 1, thus

gap = II1 − CI1 = 0. It leads to update OP at clock cycle t + PI1 −
1 + gap = 3 + 3 − 1 + 0 = 5. For the second output group,
PC2 = 3, thus gap = II3 − CI3 = 2 and OP is updated at clock cycle
3 + 5 − 1 + 2 = 9. For the third and last output group, PC3 = 4,
thus gap = II4 − CI4 = 4 and OP is updated at clock cycle 3 + 6 −
1 + 4 = 12.

The second execution starts at t = 6. According to IP, it gives II =[
1 3 6 8

]
. Applying the same principles leads to update OP at

clock cycles 8, 12 and 14. Nevertheless, at t = 12, OP already contains
a 1. In this case, this is not a problem since that 1 is produced on the

53



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Algorithm 2 Checking compatibility.

Algorithm 3 Output pattern generation.

first output, while the 1 of the second execution is produced on the
second output. Thus, updating OP is actually done with a logical OR.
As said in Section 3.1.5, producing two 1 on the same output port and
at the same clock cycle is physically impossible or in other words that
the patterns are inconsistent. Fortunately, a real core correctly modeled
cannot lead to such a situation. This is why Algorithm 3 does not check
inconsistent cases.

3.2.5. Whole graph analysis
We consider a graph of N actors each labeled with a unique iden-

tifier id ∈ {1,N}. Since the graph is acyclic, an algorithm of topologi-
cal sort can be used to find a traversal order O =

[
Oi
]
, i ∈ {1,… ,N},

where Oi is the identifier of the ith actor to evaluate. Following
this order guaranties that all predecessors of any actor are evalu-

ated before the actor itself. It is a necessary condition for check-
ing the compatibility. Indeed, for a given actor, the compatibility
check relies on the availability of IP. Since it is an aggregation of OP
(or a part of) of its predecessors, it is mandatory to evaluate them
before.

The whole procedure is summarized in Algorithm 4. For the ith actor
in the traversal order (except the sources), it consists in computing IP,
determining its number of execution to build AP, checking the compat-
ibility, and finally computing OP. As soon as an incompatible actor is
detected, modification techniques presented in the following section are
used to enforce the compatibility. Then, the analysis is resumed until
the whole graph has been processed.

54



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Algorithm 4 Analyzing the whole graph.

4. Principles of graph modification

As shown above, ASAP solves some of the limitations of SDF-AP
model discussed in Section 2.2. Nevertheless, some very simple designs
may lead to incompatible patterns. In this section we present such a
case and a general sketch of the developed solutions. To summarize,
ASAP follows a novel approach that operates at the stream structure
level contrarily to SDF models that are focused on finding a sched-
ule and using buffers to enforce processing correctness. Since patterns
reflect this structure, they can be used to find the sources of incom-
patibilities. Thus, it is possible to compute modifications to apply to
chosen stream structures to enforce the compatibility. Since the stream
structure is assumed to be cyclic, these modifications are also cyclic
and can be easily translated into a VHDL process based on a state
machine.

The purpose of the design given in Fig. 15 is to process a stereo sig-
nal with different filters (clipper, average and compressor) on left and
right channels, before joining them to produce a mono signal. For each
actor, CP, PP, PC, and Δ are given. These characteristics are perfectly
plausible for the clipper and the average filter but have been chosen for
the sake of illustration for the compressor. We investigate two configu-
rations for the source S.

Firstly, we assume that S produces a data at each clock cycle, i.e.
PPS = [1]. In this case, IP and CP of the compressor are incompatible
and it can be detected without the compatibility check. Indeed, if we
compare what is produced by S and what is consumed by the compres-
sor over a finite number of clock cycles, it is obvious that S produces
more than the compressor consumes. We call such a situation a sample
rate inconsistency. It can be noticed that it is not the case for the clip-
per and the average filter but the join is also inconsistent. Moreover,
it is not possible to use a buffer to solve the problem because it would
grow infinitely. A possible solution is to decimate some data streams so
that all sample rates are consistent.

From a matrix Γ called topology matrix that describes the relation-
ship between actors and what they produce/consume on their channels,
we are able to check if the sample rates are consistent for each actor. If it

Fig. 15. A design of a stereo signal filter modeled by ASAP.

is not the case, an algorithm crosses the graph to find the downsampling
rate that must be applied on each channel to enforce the consistency.
It yields a downsampling matrix that is used further in the process of
modification. For the first configuration example, this algorithm deter-
mines a downsampling rate of 2

3 for the streams before the compressor
and between the average filter and the join.

The next step is to determine what kind of modification must be
applied on input ports in case of incompatibility. In its present state,
ASAP only considers two possibilities: delays and decimations. This is
sufficient for a large number of incompatibility cases. The principle is
the following. For each 1 in IP of an incompatible actor, a second algo-
rithm determines if it must be delayed, decimated or kept as it is. A dec-
imation is decided according to the donwsampling matrix and a delay
to the fact that it comes before its expected place given by AP.

For the first configuration, this algorithm determines that the last
data out of three must be decimated before the compressor, and the
second out of three after the average filter. It yields:

OPcom. =
[
0 0 1 0 1 1 0 1 1 …

]
OPavg. =[

0 0 0 0 1 0 1 1 0 1 1 …
]
.

Then, for the join, the algorithm determines that every 1 produced
by the compressor must be delayed by two clock cycles.

The second configuration assumes that the source S produces a data
every two clock cycles, i.e. PPS =

[
1 ×

]
. In that case, the sample rates

are consistent. Nevertheless, the join actor is still incompatible because
some 1 are misplaced in its input pattern. Indeed, we have:

OPcom. =
[
0 0 0 1 0 1 0 1 0 1 0 …

]
OPclip. =[

0 0 1 0 1 0 1 0 1 0 …
]

OPavg. =

[0 0 0 0 0 1 0 1 1 0 0 → 1 0 1 1 0 0 …]
In this configuration, the second algorithm determines that for each

sequence of two 1 in OPcom., the first one must be delayed by two clock
cycles and the second one by three.

In the most simple case, delays are constant for all valid input which
is very simple to translate into VHDL. Such a case occurs in the exper-
iments presented in the following section. In other cases, since input
patterns are cyclic, the decimations and delays are also cyclic. They can
be represented by a state machine that uses counters on valid inputs to
decide a change of state and to initiate a decimation or a delay. Thus,
it is also quite easy to generate automatically their VHDL code.

5. Experiments

In order to prove the efficiency of our framework compared to
the SDF-AP approach, we conducted experiments on a real application
based on image processing. The design has been created with BlAsT,
which is briefly described in the following section. It contains parallel
processing branches and operates with two different clock domains. It
is sufficiently complex to illustrate the ASAP principles and their inte-
gration in BlAsT. Moreover, even if there are few actors with relatively
simple patterns, it demonstrates the huge gain in terms of resource con-
sumption on a real architecture.

5.1. Block Assembly Tool

BlAsT proposes a graphical interface to create designs. It is quite
similar in its form to Simulink because it relies on panels where blocks
chosen from a library can be laid and connected. The main panel repre-
sents the top group of the design and it is possible to create subgroups.
Fig. 16 illustrates the graphical interface for a dummy design with two
groups.

The comparison stops here because BlAsT integrates all analysis
principles of ASAP presented above. It is able to test the compatibility
of all blocks and to compute the modifications to apply on faulty inputs.
It is also able to generate the VHDL code for the whole design and the

55



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Fig. 16. The graphical interface of BlAsT.

benchmark files for its simulation. Moreover, this code is really synthe-
sizable and can be placed and routed on a target FPGA, as demonstrated
in the following section.

5.2. Example case

In this section, a realistic design is tested to show the resource saving
brought by the ASAP model. It is worth noting that this design does not
require complex processings and actors have quite simple patterns. This
is a deliberate choice to emphasize that even a simple design may be
unfeasible on a given FPGA when its implementation is based on SDF-
AP and buffers, while there are no problems with an implementation
based on ASAP. However, this design contains parallel branches of pro-
cessing that are not synchronized, which is yet more complicated than
the linear processing chains used in related works. This characteristic
is used to point out the ability of ASAP to enforce a correct processing
through graph modification.

Experiments are carried out on an FPGA for both ASAP model and
SDF-AP model. The consumption and latency are compared. The pre-
sented case was originally implemented on a Raspberry Pi board. For
the occasion, it has been adapted to the APF27 + SP Vision development
board from the Armadeus company. The board hosts an iMX processor,
physically linked to a Spartan 3, which can be used as it is, and also
as a bridge to a Spartan 6 (in LX100 version) hosted on the SP Vision
extension board. Both FPGAs are fed with an external signal at 100 MHz
used to clock the design. Several jumper banks are linked to the FPGA
IO pins of the FPGAs, allowing to bind peripherals.

The project is based on robot cars equipped with CMOS cameras.
The video frames are communicated to a computation unit that detects
the wheels of other cars by identifying their colored elliptic shapes.
The pattern recognition starts with image manipulations before appli-
cation of a Canny filter and an ellipse detector. The proof of concept
presented in this section is only based on these primary manipula-
tions because it is sufficient to clearly exhibit the advantages of our
model. Fig. 17 describes this first phase, slightly modified to take the

constraints of an FPGA processing into account. Its goal is to pro-
vide exploitable data to the Canny filter by converting frames into
grayscale and keeping only the pixels corresponding to the wheels’
color.

This process starts with a camera controller that grabs the frames
from the camera. It outputs pixels in RGB24 format as a sequence of
three 8 bit values (one for each component). In order to explore any
desired camera configuration, we have implemented a fake version of
this controller that generates a camera clock and frames of any size
and any rate. Since the camera clock may differ from the external
clock, the controller is followed by a FIFO to change the clock domain
when necessary which enforces the rest parts of the design to work at
100 MHz. After the FIFO, pixels are converted in parallel into grayscale
and YCbCr format. The latter is used as the first step to select pixels in
a range of colors and luminosities. After the conversion, a deserializer
outputs the three components in parallel. Each component is sent to a
block that just tests if the input is greater or lesser than a parametric
value and outputs true/false depending on the result of the test. The
boolean values are combined by a logical AND. A threshold receives
the grayscale pixels and keeps their values as they are or sets them
to 0, depending on the logical AND result. Finally, a blur filter with a
3 × 3 mask is applied to prevent an incorrect behavior of the Canny
filter.

The design in Fig. 17 has been created and analyzed with BlAsT
according to the principles of ASAP. Whatever may be the camera
clock, the analysis detects an incompatibility for the threshold block. As
shown in the video demonstration available at [27], the valid inputs on
its data_in interface are in advance compared to those on keep_in
interface. The principles exposed in Section 4 are applied by BlAsT
and yield a delay of 6 clock cycles to add on data_in. After this
modification, the threshold block inputs are synchronized. Finally, the
VHDL code is generated automatically by BlAsT. A benchmark file is
also generated thanks to a block that figures the camera outside the
top group. This block allows to read an image converted in a csv for-
mat and to feed the top group with a new data at each clock cycle of
the camera clock. A makefile allows to compile all the sources and to
launch a simulation under ISim. The whole procedure is presented in
the video.

Starting from the sources generated by BlAsT, it is very easy to
produce the version for SDF-AP. It merely consists in removing the
validity signals and all the tests associated to them. The same prin-
ciples apply for other blocks. Nevertheless, blocks that operate on
a sequence of data (format conversions and blur filter) must also
have a control input that indicates the beginning of the sequence.
This is why there are no significant differences in terms of resource
consumption between the two versions when synthesizing a single
block.

Fig. 17 gives CP and PP for the ASAP version of the design. The
numbers W and H are the width and height of the frames. It is worth
noting that the consumption pattern of the SDF-AP version is equal to
CP right padded with 0 until the length of PP. Moreover, the production
pattern of the SDF-AP version is strictly equal to PP. This is because both

Fig. 17. Demonstration case: a graph of blocks for real-time image processing on an FPGA.

56



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Table 1
Production counters of blocks.

Blocks PC

Grayscale conv. 3
YCbCr conv. 3,3,3
Deserializer 3
Checker 1
AND 1
Threshold 1
Blur filter W + 2, W + 3, …, W × H − 1, (W × H){W + 2}

Table 2
Production patterns for different camera
clocks.

Camera clocks PPs of FIFOs

50 MHz (10){W × H × 3}
66 MHz (101){W × H × 3∕2}
75 MHz (1011){W × H}
80 MHz (10111){W × H × 3∕4}
100 MHz 1{W × H × 3}

versions are based on the same code and have the same behavior when
the input pattern correspond to the consumption pattern. However, if it
is not the case, the SDF-AP version is not able to produce correct results,
implying the use of buffers, as shown in the following.

Table 1 gives the production counters of different actors for the
ASAP version. They can be deduced directly from their behavior and/or
simulations. For example, the deserializer takes three serial inputs to
produce three parallel outputs. Thus, it is logical that PC = 3. For
the blur filter, outputs starts as soon as W + 2 inputs have been con-
sumed. This is why PC starts with W + 2. But it also implies that
when W × H pixels have been consumed, the filter must still pro-
duce W + 2 outputs. This is reflected by the end of PC that is equal to
(W × H){W + 2}.

Tests have been conducted using the following frame sizes:
128 × 128, 256 × 256, 512 × 512 and 1024 × 1024. We also con-
sidered five different camera clocks with five different PPs for the
FIFO (for a single frame of size W × H) summarized in Table 2.
Taking into account that the camera controller produces sequentially
the three pixel components (R,G and B), the camera clock corre-
sponds to the component rate and not the pixel rate. For exam-
ple, at 50 MHz, a new component is produced every 20 ns, so the
FIFO outputs a component every two clock cycles. This gives a PP
equal to 10, repeated W × H × 3 times for a whole frame. At
75 MHz, the FIFO outputs three components every four clock cycles
(with the second idle). Since the output pattern of the FIFO is
directly linked to the ratio between the camera clock and the exter-
nal clock, the camera controller is not taken into account in the fol-
lowing experiments and the FIFO is considered to be the true source
actor.

The most important result is that the version with stretchable access
patterns does not need any extra FIFO whatever the camera rate and
frame size are. Nevertheless Algorithm 2 reports an incompatibility for
the threshold block because its two inputs are not synchronous. This
problem is solved by inserting a simple delay of 6 clock cycles after
the grayscale converter, which is totally negligible in term of resources
consumption. After this light modification, all the blocks become com-
patible with their input streams. After synthesis and routing the design
with Xilinx ISE, we obtained the results of the ASAP version shown in
Table 3.

In fact, three RAM blocks are used by the blur filter to store image
rows and one for the FIFO to make the clock domain conversion.

Results are totally different for the SDF-AP version. Indeed, for
all camera rates except 100 MHz, a FIFO is needed before the image

Table 3
Resources consumption with stretchable patterns.

ASAP version

FPGA resources Any camera clock/image size

Slice registers 283 out of 126576 (<1%)
Slice LUTs 296 out of 63288 (<1%)
8Kbits RAM blocks 4 out of 536 (<1%)
Best achievable clock period 6.886ns

Table 4
Min. and max. combination of test parameters for SDF-AP version.

SDF-AP version

FPGA resources 128 × 128, 100 MHz 512 × 512, 66 MHz

Slice registers 390/126576 (<1%) 577/126576 (<1%)
Slice LUTs 558/63288 (<1%) 2414/63288 (4%)
8Kbits RAM blocks 16/536 (3%) 432/536 (80%)
Best achiev. clock per. 7.66ns 9.85ns

conversions to ensure that pixel components are streamed in three
consecutive clock cycles, which is not the case just after the clock
domain conversion. Furthermore, another FIFO is needed before the
blur filter because the grayscale conversion leads to a pixel every three
cycles.

The minimum size of these two FIFOs is directly linked to
the image size (in bytes) and camera rate. For example, assum-
ing a camera rate at 75 MHz within four clock cycles, there is an
idle cycle without valid data, which has to be “removed”. With
an image size of 1024 × 1024 × 3, it requires a FIFO of size
(1024 × 1024 × 3)∕4 = 786432 bytes. Since the Spartan 6 has only
536 RAM blocks of 1 Kb, it means that it is impossible to process
such an image. Moreover, since the second FIFO (before blur filter)
is needed even with a camera rate at 100 MHz, the same type of com-
putation leads to a need of 684 RAM blocks, which is once again too
many.

Table 4 summarizes the metrics given by ISE for the minimal and
maximal combination of test parameters. Even in the minimal con-
figuration, SDF-AP version consumes more resources than the ASAP
version. Moreover, maximum configuration leads to a very stressed
design with a lot of RAM blocks used and the maximum clock path
(9.85 ns) very close to the clock period (10 ns). Thus, a complete design
including the Canny filter and ellipse detector could easily reach this
limit.

In terms of latency, the two versions are equivalent within a few
clock cycles, which is totally consistent. Even if FIFOs greatly delay the
pixels, they also allow the format converters and blur filter to consume
them at each clock cycle. In the ASAP version, there are no FIFO, but
the blocks consume pixels slower when they are available. Thus, in
both cases, the last filtered pixels are produced at nearly the same clock
cycle. Taking the behavior of the blur filter into account, the global
latency is roughly equal to (W × H × 3 + W) × (100∕camera_rate).
Table 5 gives two examples of timings in elapsed clock cycles to process
an image (as reported by a simulation in ISim).

These results are consistent with the above remarks. The gap
between the two versions is constant and very small (5 cycles for

Table 5
Test results for two examples of timings.

128 × 128 512 × 512

ASAP SDF-AP ASAP SDF-AP

75 MHz 65679 65687 1049103 1049111
100 MHz 49296 49301 786960 786965

57



K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

100 MHz). The formula given above is also verified. For example, for
a size of 512 × 512 and at 75 MHz, it gives 1049258 cycles, which is
very close from the simulation result.

6. Conclusions

We have recalled the SDF-AP model that constitutes a major
improvement compared with the elementary SDF model. Then, we
have pointed out some of its limitations through illustrative exam-
ples regarding concurrency, strict pattern conformance and buffer-
ing. They result in a limited model of actors’ behaviors and possi-
bly infeasible designs after analysis. They also cause waste of logic
resources when implementing a design on a real architecture. Then,
we have introduced the concept of Actors with Stretchable Access
Patterns (ASAP), a novel way to address the scheduling problem of
actors. It allows to model and analyze the actors’ behaviors tak-
ing their implementation on a real architecture into account. This
modeling approach solves the limitations of concurrent executions
and buffering problems. Some algorithms for patterns generation and
checking compatibility are provided. The ease of transposition of the
model into VHDL codes and the saving of logic resources are proved
through experiments conducted with BlAsT, a new EDA tool that
allows to create and to analyze FPGA designs with the principles of
ASAP.

Future works will focus on addressing the problem of loops in the
graph. Indeed, there are a lot of scientific applications based on designs
with feedbacks, notably in the domain of control. The principles of
graph modifications can also be improved. For example, some cases
lead to increasing delays on a bounded sequence of valid inputs. It
could be solved by a simple buffer with a size given by the maximum
delay. Moreover, the modifications are searched at the actor level but
better solutions could be found taking the whole graph into account.
Finally, BlAsT is in a prototype state and should be enriched with a
large library of blocks and a better integration of the existing FPGA
architectures.

Acknowledgment

This work is supported by the EIPHI Graduate School (contract ANR-
17-EURE-0002) and Doctoral Research Fund of Shandong Jianzhu Uni-
versity (XNBS1850). The authors would also like to thank the reviewers
for their helpful suggestions to improve the quality of this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.vlsi.2019.01.001.

References

[1] E.A. Lee, D.G. Messerschmitt, Synchronous data flow, Proc. IEEE 75 (9) (1987)
1235–1245.

[2] J. Eker, J.W. Janneck, Cal Language Report: Specification of the Cal Actor
Language, Tech. rep., University of California at Berkeley, 2003.

[3] M. Wipliez, G. Roquier, J.-F. Nezan, Software code generation for the rvc-cal
language, J. Signal Process. Syst.

[4] J. Serot, F. Berry, High-level dataflow programming for reconfigurable computing,
in: 2014 International Symposium on Computer Architecture and High
Performance Computing Workshop (SBAC-PADW), vol. 00, 2014, pp. 72–77,
https://doi.org/10.1109/SBAC-PADW.2014.18, http://doi.ieeecomputersociety.
org/10.1109/SBAC-PADW.2014.18.

[5] R. Townsend, M.A. Kim, S.A. Edwards, From functional programs to pipelined
dataflow circuits, in: Proceedings of the 26th International Conference on
Compiler Construction, CC 2017, ACM, New York, NY, USA, 2017, pp. 76–86,
https://doi.org/10.1145/3033019.3033027.

[6] S.A. Edwards, R. Townsend, M.A. Kim, Compositional dataflow circuits, in:
Proceedings of the 15th ACM-IEEE International Conference on Formal Methods
and Models for System Design, MEMOCODE ’17, ACM, New York, NY, USA, 2017,
pp. 175–184. http://doi.acm.org/10.1145/3127041.3127055.

[7] E.A. Lee, D.G. Messerschmitt, Static scheduling of synchronous data flow programs
for digital signal processing, IEEE Trans. Comput. 100 (1) (1987) 24–35.

[8] M. Geilen, S. Tripakis, M. Wiggers, The earlier the better: a theory of timed actor
interfaces, in: Proceedings of the 14th International Conference on Hybrid
Systems: Computation and Control, ACM, 2011, pp. 23–32.

[9] S. Stuijk, M. Geilen, T. Basten, Throughput-buffering trade-off exploration for
cyclo-static and synchronous dataflow graphs, IEEE Trans. Comput. 57 (10) (2008)
1331–1345.

[10] M. Engels, G. Bilson, R. Lauwereins, J. Peperstraete, Cycle-static dataflow: model
and implementation, in: Signals, Systems and Computers, 1994. 1994 Conference
Record of the Twenty-Eighth Asilomar Conference on, vol. 1, IEEE, 1994, pp.
503–507.

[11] G. Bilsen, M. Engels, R. Lauwereins, J.A. Peperstraete, Cyclo-static data flow, in:
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International
Conference on, vol. 5, IEEE, 1995, pp. 3255–3258.

[12] A. Girault, B. Lee, E.A. Lee, Hierarchical finite state machines with multiple
concurrency models, IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 18 (6)
(1999) 742–760.

[13] W. Liu, M. Yuan, X. He, Z. Gu, X. Liu, Efficient sat-based mapping and scheduling
of homogeneous synchronous dataflow graphs for throughput optimization, in:
Real-Time Systems Symposium, 2008, IEEE, 2008, pp. 492–504.

[14] W. Plishker, N. Sane, S.S. Bhattacharyya, A generalized scheduling approach for
dynamic dataflow applications, in: Proceedings of the Conference on Design,
Automation and Test in Europe, European Design and Automation Association,
2009, pp. 111–116.

[15] S. Stuijk, M. Geilen, B. Theelen, T. Basten, Scenario-aware dataflow: modeling,
analysis and implementation of dynamic applications, in: Embedded Computer
Systems (SAMOS), 2011 International Conference on, IEEE, 2011, pp. 404–411.

[16] S. Tripakis, H. Andrade, A. Ghosal, R. Limaye, K. Ravindran, G. Wang, G. Yang, J.
Kornerup, I. Wong, Correct and non-defensive glue design using abstract models,
in: Hardware/Software Codesign and System Synthesis (CODES+ ISSS), 2011
Proceedings of the 9th International Conference on, IEEE, 2011, pp. 59–68.

[17] A. Ghosal, R. Limaye, K. Ravindran, S. Tripakis, A. Prasad, G. Wang, T.N. Tran, H.
Andrade, Static dataflow with access patterns: semantics and analysis, in:
Proceedings of the 49th Annual Design Automation Conference, ACM, 2012, pp.
656–663.

[18] M. Benazouz, O. Marchetti, A. Munier-Kordon, T. Michel, A new method for
minimizing buffer sizes for cyclo-static dataflow graphs, in: Embedded Systems for
Real-Time Multimedia (ESTIMedia), 2010 8th IEEE Workshop on, IEEE, 2010, pp.
11–20.

[19] S. Stuijk, M. Geilen, T. Basten, Throughput-buffering trade-off exploration for
cyclo-static and synchronous dataflow graphs, IEEE Trans. Comput. 57 (10) (2008)
1331–1345.

[20] H. Kee, S.S. Bhattacharyya, J. Kornerup, Efficient static buffering to guarantee
throughput-optimal fpga implementation of synchronous dataflow graphs, in:
Embedded Computer Systems (SAMOS), 2010 International Conference on, IEEE,
2010, pp. 136–143.

[21] K. Ravindran, A. Ghosal, R. Limaye, G. Wang, G. Yang, H. Andrade, Analysis
techniques for static dataflow models with access patterns, in: Design and
Architectures for Signal and Image Processing (DASIP), 2012 Conference on, IEEE,
2012, pp. 1–8.

[22] G. Wang, R. Allen, H.A. Andrade, A. Sangiovanni-Vincentelli, Communication
storage optimization for static dataflow with access patterns under periodic
scheduling and throughput constraint, Comput. Electr. Eng. 40 (6) (2014)
1858–1873.

[23] M. Wiggers, M. Bekooij, M. Bekooij, G. Smit, Computation of buffer capacities for
throughput constrained and data dependent inter-task communication, in: Design
Automation and Test in Europe, No. 1, EDA Consortium, 2008, pp. 640–645,
https://doi.org/10.1109/DATE.2008.4484749.

[24] S. Tripakis, R. Limaye, K. Ravindran, G. Wang, H. Andrade, A. Ghosal, Tokens vs.
signals: on conformance between formal models of dataflow and hardware, J.
Signal Process. Syst. 85 (1) (2016) 23–43.

[25] G.R. Gao, R. Govindarajan, P. Panangaden, Well-behaved dataflow programs for
dsp computation, in: [Proceedings] ICASSP-92: 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 5, 1992, pp.
561–564, https://doi.org/10.1109/ICASSP.1992.226558.

[26] J. Boutellier, J. Wu, H. Huttunen, S. Bhattacharyya, Prune: dynamic and decidable
dataflow for signal processing on heterogeneous platforms, IEEE Trans. Signal
Process. PP (2017) 1, https://doi.org/10.1109/TSP.2017.2773424.

[27] A demonstration of BlAsT: Block assembly tool, http://bilbo.iut-bm.univ-fcomte.
fr/staff/sdomas/blastdemo.mkv.

Ke Du is currently a lecturer of Information and Comput-
ing Science at Shandong Jianzhu University. He received the
Dual B.S. degree in Computer Science and English Language
from Shandong Normal University, in 2012, the M.S. degree in
Electronic and Communication Engineering from Harbin Insti-
tute of Technology, China, in 2014, and the Ph.D. degree in
Computer Science from the Univ. Bourgogne Franche-Comté
(UBFC), in 2018, France. He has worked in the Time and Fre-
quency department and DISC department at the FEMTO-ST
Institute for four years and in Hisense Research and Devel-
opment Center for a period. His research interests is in sig-
nal processing, including image processing, FPGA processing
chain modeling and analysis, and EDA tools development.

58

https://doi.org/10.1016/j.vlsi.2019.01.001
https://doi.org/10.1016/j.vlsi.2019.01.001
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref1
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref2
https://doi.org/10.1109/SBAC-PADW.2014.18
http://doi.ieeecomputersociety.org/10.1109/SBAC-PADW.2014.18
http://doi.ieeecomputersociety.org/10.1109/SBAC-PADW.2014.18
https://doi.org/10.1145/3033019.3033027
http://doi.acm.org/10.1145/3127041.3127055
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref7
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref8
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref9
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref10
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref11
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref12
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref13
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref14
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref15
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref16
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref17
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref18
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref19
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref20
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref21
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref22
https://doi.org/10.1109/DATE.2008.4484749
http://refhub.elsevier.com/S0167-9260(18)30035-X/sref24
https://doi.org/10.1109/ICASSP.1992.226558
https://doi.org/10.1109/TSP.2017.2773424
http://bilbo.iut-bm.univ-fcomte.fr/staff/sdomas/blastdemo.mkv
http://bilbo.iut-bm.univ-fcomte.fr/staff/sdomas/blastdemo.mkv


K. Du et al. Integration, the VLSI Journal 66 (2019) 44–59

Stéphane Domas is an Assistant Professor of Computer Sci-
ence at the Univ. Bourgogne Franche-Comté (UBFC), France,
and is a researcher in the DISC department at the FEMTO-
ST Institute. His domain of research is the high performance
computing on parallel/distributed architectures like, clusters,
GPUs, or FPGAs. His works focus essentially on two points:
creating efficient algorithms and optimized implementations
for linear algebra, image processing, etc. and creating develop-
ment and execution environments to help non expert scientists
to implement their applications.

Michel Lenczner is a Professor of Mechanical Engineering at
the Univ. Bourgogne Franche-Comté (UBFC), France, and is
a researcher in the Time and Frequency department at the
FEMTO-ST Institute. His research focuses on multi-scale mod-
eling and control of distributed mechatronic systems. One of
the applications is to micro-system arrays. His previous posi-
tion was as an associate professor in applied mathematics.

59


	Actors with stretchable access patterns
	1. Introduction
	2. The SDF-AP model
	2.1. Principles
	2.2. Limitations
	2.2.1. Strict pattern conformance and buffering
	2.2.2. Auto-concurrency
	2.2.3. Infinite buffering


	3. The ASAP model of actors
	3.1. Actor's structure and behavior
	3.1.1. Clock and ports
	3.1.2. Execution and concurrency
	3.1.3. Consumption
	3.1.4. Triggering delay
	3.1.5. Production
	3.1.6. Origins and relationships between these notions
	3.1.7. Illustrative examples

	3.2. The graph of actors and its analysis
	3.2.1. Input and output patterns
	3.2.2. Admittance pattern
	3.2.3. Compatibility check
	3.2.4. Output pattern generation
	3.2.5. Whole graph analysis


	4. Principles of graph modification
	5. Experiments
	5.1. Block Assembly Tool
	5.2. Example case

	6. Conclusions
	Acknowledgment
	Appendix A. Supplementary data
	References


