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Time-delayed systems are found to display remarkable temporal patterns the dynamics of which split

into regular and chaotic components repeating at the interval of a delay. This novel long-term behavior for

delay dynamics results from strongly asymmetric nonlinear delayed feedback driving a highly damped

harmonic oscillator dynamics. In the corresponding virtual space-time representation, the behavior is

found to develop as a chimeralike state, a new paradigmatic object from the network theory characterized

by the coexistence of synchronous and incoherent oscillations. Numerous virtual chimera states are

obtained and analyzed, through experiment, theory, and simulations.
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Chimera states were first highlighted theoretically in the
beginning of the 2000s [1–4] and soon after attracted great
interest, giving rise to a flurry of theoretical activity [5–9].
Only recently was the first experimental evidence of a chi-
mera obtained, independently in optical [10] and chemical
[11] setups. The essenceof the chimera phenomenon consists
of hybrid-type dynamics when identical oscillators evolve
into distinct groups, synchronous and incoherent, despite
homogeneous coupling. The conditions under which chime-
ras are expected are usually concerned by a population of
dynamical nodes characterized by extended nonlocal con-
nections. Chimeras manifest then as coexisting clusters with
different dynamical motions, e.g., phase locked and chaotic,
which can be interpreted as different parts of a whole body—
the network—referring to different animal species, similarly
to the creature ofGreekmythology.Motivated by both recent
applied [12,13] and fundamental [14] results on delay dy-
namics, as well as by their space-time analogy [15,16],
particular conditions were numerically and experimentally
explored, with the aim to reveal the existence of chimeralike
motions in time-delayed systems.

Our particular system is an experimental realization of a
modified Ikeda time-delayed equation [17]. It is modeled
by a so-called bandpass nonlinear delay dynamics [18],
and it gained recently sustained interest in the literature for
many singular or unusual features compared to standard
delay dynamics [19,20], such as chaotic breathers [21],
excitability and broadband chaos [22–25], and stable one-
delay periodic oscillations [14], to name only a few. In
physical terms, the dynamics are described by an integro-
differential time-delay equation which can be analyzed as
corresponding to a strongly damped harmonic oscillator
(with damping factor m � 1 and resonant angular fre-
quency !0), which is subject to a nonlinear delayed self-
feedback term [26]. The generic equation of concern in this
Letter is as follows:

�
dx

dt
ðtÞ þ xðtÞ þ 1

�

Z t

t0

xð�Þd� ¼ �f½xðt� �DÞ�; (1)

where � ’ ð2m!0Þ�1 is the limited rate of change for the
dynamical variable x (fast time scale present in the Ikeda
dynamics) and � ’ 2m=!0 is the characteristic time for the
x-integral term (supplementary slow time scale compared
to Ikeda dynamics). �D is the time delay, and f½x� is the
nonlinear transformation ruling the delayed self-feedback
term weighted by parameter �. Equation (1) can be rewrit-
ten in a more convenient 2D vectorial form, with a time
scale s ¼ t=�D normalized to the delay:

"x0 ¼ ��y� xþ �f½xðs� 1Þ�; y0 ¼ x; (2)

where " ¼ �=�D and � ¼ �D=� are practically small quan-
tities with "� ’ ð2mÞ�2, since the delay time is both much
larger than the characteristic response time and much
smaller than the integral time. The slow-fast system con-
figuration modeled by Eq. (2) gives rise to many different
types of asymptotic oscillatory behavior both in our experi-
ments [see Fig. 1(a)] as well as in the corresponding
simulations [see Fig. 1(b)].
Following a standard procedure [15,27], the delayed-

feedback system given by Eq. (2) is analyzed in a virtual,
spatially extended representation—by viewing every time
moment t as being t ¼ �cðnþ �Þ with integer n and real
positive number � smaller than unity. This writing of the
time allows us to reveal the intrinsic multiple time scale
features of a delay dynamical system within a space-time
representation, as used in Figs. 1(c) and 1(d): First, a long
time scale of the order of the delay is considered as a
discrete time variable n 2 N; second, a short time scale
of the order of � (or " in dimensionless units) is considered
as a virtual continuous space variable � 2 ½0; 1�. The time
�c is defined as �Dð1þ �Þ, with � being a small quantity of
the order of ". � is practically determined such that the
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virtual space-time plots actually feature pattern dynamics
(as n increases) that have a nearly stationary average
position along the �-horizontal axis.

A more detailed analysis on the scaling of � is given in
Refs. [16,27] based on the reduction of the delay dynamics
to space-time dynamics. In particular, the rigorous equiva-
lence between the Ikeda time-delayed model and the
Ginzburg-Landau equation is obtained in the vicinity of a
Hopf bifurcation, where parameter � corresponds to the
velocity of the moving frame [27]. With the help of this
construction, purely temporal phenomena in delayed sys-
tems admit a transparent visualization in terms of spatio-
temporal patterns. Applying it to a recently observed and
analyzed new one-delay periodic square wave solution of
Eq. (2) [14], one can interpret this solution as two clusters
of oscillators continuously distributed in the � space: The
clusters are expected to correspond to alternated plateaus
with constant amplitude. As time n is iterated, these two
clusters are maintained in the virtual space, since the global
motion is indeed found to be stable, in the presence of the
integral term [28].

In this Letter, the virtual cluster concept is pushed even
further, showing much more differentiated (incongruous,
as expressed in Ref. [2]) motions: One or several clusters
manifest themselves as quiet plateaus (as in Ref. [14]),
whereas other ones exhibit chaotic fluctuations. This coex-
isting incongruous behavior becomes possible due to
strong asymmetry of the nonlinear transformation f½x�.
The usual shape involved in the standard Ikeda delay
dynamics is indeed symmetric, as in Ref. [14]. As shown
in Figs. 1(c) and 1(d), a virtual chimera state arises in the
space-time representation of Eq. (2). It is worth noticing
that these exotic spatial patterns are maintained over thou-
sands of time steps n, although their cluster frontiers, as
reported later, exhibit small chaotic wandering (cf. [6]).

Our results are supported by experiments, modeling, and
simulations. The physical experiment corresponds to a
bandpass frequency modulation (FM) delay oscillator
whose setup is depicted in Fig. 2(a) and whose modeling
can be derived as corresponding to Eq. (2). The setup is
directly inspired by the FM chaotic oscillator initially
reported in Refs. [18,30]. Its modeling in the form of
Eq. (1) can be analyzed as follows. The left-hand side of
the equation appears as the linear dynamics of a strongly
damped harmonic oscillator, from a physics interpretation;
from a more signal theory viewpoint, it corresponds to a
broadband bandpass second-order filter. The filter is char-
acterized in the Fourier domain by a low cutoff fl ¼
ð2��Þ�1 (responsible for the integral term and the slow
motion) and a high cutoff fh ¼ ð2��Þ�1 (responsible for
the differential term, the fast motion; see [26] for modeling
details). The right-hand side consists of the nonlinear
delayed contribution. The advantage of our FM delay dy-
namics consists in the possibility for an easy and accurate
design of the nonlinear function shape, as already used in
Ref. [30] in the context of subcritical Hopf bifurcation in
Ikeda-like dynamics. In order to observe virtual chimera, a
key issue is to design a nonlinear transformation with two
strongly asymmetric successive extrema: A broad mini-
mum is connecting a sharp maximum, via a positive (feed-
back) slope, as illustrated in Fig. 2(b). This asymmetry
feature can be easily designed with the FM delay dynamics,
in which the nonlinear function is reduced to an amplitude-
filtering profile in the frequency range of the FM carrier
signal. As depicted in Fig. 2(a), the setup involves a voltage
controlled oscillator (VCO), whose output frequency is
proportional to the input voltage xðtÞ (	 ¼ 	0 þ S	x vary-
ing in [150; 800] kHz). The FM signal at the VCO output
is thus filtered by a dual resonance filter (resonances at
	1 ¼ 210 kHz and 	2 ¼ 600 kHz). A dual-wave rectifier

FIG. 2. Experiment. (a) Setup of the electronic FM nonlinear
delay oscillator. (b) Physical nonlinearity, as a function of the
VCO output frequency 	, with the first bisector (dashed line)
revealing the fixed points of the associated map.

FIG. 1 (color online). Virtual chimera in delay dynamics.
(a) Asymptotic temporal waveform of a chimera (arbitrary units
in amplitude are encoded in color for the space-time plots).
(b) Similar plots from numerical simulations of the experiment
model, � ¼ 0:6 and x0 ¼ 1. (c),(d) Virtual space-time represen-
tation of (a) and (b), respectively, for 1000 steps, from the
transient birth (lower) to the asymptotic state (upper). Left plots
are experimental; right plots are numerics.
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followed by a low-pass filter (LPF) allows for the amplitude
demodulation of the filtered FM signal. The corresponding
transformation fromVCO input to LPF output performs the
desired function f½x� in Eq. (1), as it can be theoretically
derived:

f½	� ¼
��������

g12i
	
	1

1� ð 		1
Þ2 þ i

Q1

	
	1

þ i 	
	2

1� ð 		2
Þ2 þ i

Q2

	
	2

��������: (3)

The resulting experimental nonlinear function is plotted in
Fig. 2(b), together with the first bisector (dashed) line high-
lighting the fixed points of the associated map xn ¼
f½xn�1�. A central unstable fixed point is revealed, sur-
rounded by two other ones: one potentially stable around
a broad minimum, and another potentially unstable around
a sharp maximum.

The nonlinear transformation is then delayed in time by
an electronic delay line based on a first in first out memory
(4096 depth, 3.2 MHz sampling rate), providing a delay of
�D ¼ 2:53 ms. The delayed signal is then filtered by a
second-order bandpass filter having low and high cutoff
frequencies of fl ¼ 1 Hz and fh ¼ 12:5 kHz, respectively.
This filter rules the integro-differential dynamics for xðtÞ in
the left-hand side of Eq. (1). According to thismodeling, the
normalized parameters characterizing the slow and fast
motion in Eq. (2) are " ’ 5:0� 10�3 and � ’ 1:6� 10�2,
respectively (leading to a corresponding damping of
m ’ 56). Before applying xðtÞ to the VCO, amplification
and offset can be adjusted, thus controlling the overall
feedback gain � and an offset x0. These two important
parameters are setting theweight for f½x� and the horizontal
position of the graph in Fig. 2(b) relative to the bisector line.

Numerical simulations were conducted by using the dy-
namics in Eq. (2) and the nonlinear function in Eq. (3) by
explicit Runge-Kutta methods for delay differential equa-
tions with random initial conditions over a delay interval.
Various parameter conditions for � and x0 were scanned,
with fixed normalized parameters for the nonlinear function
shape (½Q1;	1� ¼ ½6; 6�, ½Q2;	2� ¼ ½2; 1:8�, g12 ¼ 1, x 2
½3:4; 7:4�). These conditions led to very good qualitative
agreement between experiments and numerics.

Figures 1 and 3 represent typical examples of the virtual
chimeras and other dynamical regimes that have been
observed with our model and experiment. Among them, the
particular space-time plots from Figs. 3(a)–3(d) have been
called multiple-headed chimera, following further the Greek
mythology analogy. They were again observed from both
experiments and numerics, as coexisting with the single-
headed solution in Fig. 1. The different states are obtained
by fixing the system parameters and by consecutively reset-
ting the initial conditions (corresponding to a small noise
amplitude of xðsÞ, s 2 ½�1; 0�). As in Figs. 1(c) and 1(d), the
space-timeplots show that eachchimeralike pattern stabilizes
after a transient motion, lasting then over several thousand
units of n. The shape of the virtual chimera state is deter-
mined by the relative spatial length of the regular and chaotic

intervals in the space-time representation. The single-headed
chimera has only one interval of chaoticity whose asymptotic
length does not depend on the initial conditions. The two-
headed chimera [Figs. 3(a) and 3(b)] contains two different
chaotic intervals. However, their accumulated length is found
to be invariant in the sense that it does not depend on the
initial conditions either, but it does depend on the system
parameters. Evenmore exotic, three- and four-headed virtual
chimera states [Figs. 3(c) and 3(d)] can be observed, although
their appearance is essentially less probablewhen starting the
dynamics from randomly chosen initial conditions. This
occurrence probability has been found to be gain dependent:
For low � values, essentially single-headed chimera are
obtained, whereas multiple-headed chimeras become more
probable for higher � values. We believe that there should
also exist multiheaded virtual chimera states with order
higher than 4. However, their probability to occur seems to
be so small that one needs specially prepared initial condi-
tions to obtain them.
If � is further increased, the virtual chimeras disappear,

giving rise to space-time turbulence as illustrated inFigs. 3(e)
and 3(f) from experiments and numerics, respectively.
Interestingly, other known solutions have been found to

coexist with chimeras [Figs. 3(g) and 3(h)], the so-called
chaotic breathers [21], whose occurrence essentially
depends on initial conditions. In the space-time represen-
tation these are long waves, where nonconstant regular and
growing chaotic behaviors are alternated, resembling neu-
ronal chaotic bursting [31].
Alternatively, decreasing the gain below the single-

headed chimera threshold results eventually in the asym-
metric square-wave dynamics described previously in

FIG. 3 (color online). Diversity of motions. Two-headed chi-
mera, (a) experiment and (b) numerics. Three-headed
[(c) experiment] and four-headed [(d) numerics with � ¼ 0:6
and x0 ¼ 1] chimera. Turbulent motion, (e) experiment and
(f) numerics. (g),(h) Chaotic experimental breathers; time
trace in (g) with colored amplitude scaling for the space-time
plot in (h).
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Ref. [14]. A crucial role for the virtual chimera existence
and stability is also played by the magnitude of the integral
term in Eq. (2) (parameter � ¼ �D=�). Indeed, as �
decreases, the probability to obtain chimeralike behavior
in both experiment and simulations drops down, which
means apparently that its basin of attraction shrinks. The
virtual chimera state loses stability at some value �bif > 0

(as we assume, in an inverse subcritical Hopf bifurcation),
such that for � < �bif the system trajectories start to

approach either the lower equilibrium or the upper chaotic
attractor given by the nonlinear transformation f½x�
[shown in Fig. 2(b)]. Interestingly, as � approaches the
bifurcation value �bif, the transient times grow so fast that

accurate numerical identification of the bifurcation value
becomes nontrivial and time consuming. Here are a
few identified bifurcation values: �bif ¼ 3� 10�4; 10�4;

3� 10�5 for " ¼ 0:03; 0.02; and 0.01, respectively [other
parameters are as in Fig. 1(d)]. Wewere not able to observe
this bifurcation in experiment because of the limited ex-
perimental �-tuning range (difficulties to set small values).

In the two-dimensional phase space given by Eq. (2), the
chimeralike dynamics are localized in a narrow stripe
around the y ¼ 0 axis related to the nullcline �y ¼ �xþ
f½x� (see Fig. 4). The trajectory is here revealed as succes-
sive fast jumps from the left to the right and back, follow-
ing the slow nullcline branches, but only over the short
time interval given by a fraction of the time delay �D
[Figs. 4(b) and 4(d)]. The chimeralike behavior arises
due to different dynamics on the left and on the right:
The behavior is monotonic when sliding down the left
nullcline branch (regular part of the chimera) and chaotic
on the right (irregular chimera part). The behavior is
different from those of the chaotic breathers [Figs. 4(a)
and 4(b)]: The latter indeed follows the entire nullcline

contour passing close to its two extrema. As is also illus-
trated in Figs. 4(c) and 4(d), the two-dimensional chimera
contour is not periodically repeating at each iteration of n,
but it is slowly moving randomly back and forth along the
�y axis. This causes the property of chaotic wandering of
the virtual chimera state, which is typical for chimeras in
oscillatory networks [6,32]. However, in our case, the
wandering does not lead to chimera collapse, as it usually
takes place in oscillatory networks [32,33].
The analogy of our virtual chimera state with the origi-

nal chimera state introduced by Kuramoto and Strogatz can
be drawn as follows, using the already recalled spatiotem-
poral interpretation of delay dynamics. The integro-
differential dynamics in Eq. (1) can be reformulated as a
‘‘spatially global’’ convolution equation ruling the discrete
time update of oscillator xnðsÞ, from time step (n� 1) to
time step n:

xnðsÞ ¼
Z s

0
hð�Þf½xn�1ðs� �Þ�d�; (4)

where hðsÞ is the (causal) impulse response of the linear
bandpass filter described by the left-hand side of Eq. (1). In
the previous convolution product, one clearly sees that the
updated oscillator at time n for the position s depends
nonlinearly, through the function f, on itself and its neigh-
bors at the previous time (n� 1). The weighting function
defining the coupling radius with adjacent neighbors at
position � from s appears as hð�Þ. In the case considered,
the coupling radius in s can be evaluated as the zero
crossing of hð�Þ, which is approximately ðm!0Þ�1 �
lnð2mÞ ¼ � lnð�=�Þ ¼ ��D" lnð"�Þ. At fixed ", the cou-
pling radius would decrease as (� ln�).
In conclusion, we have identified a novel mechanism for

the structure emergence in time-delayed systems by
exploiting the correspondence with the one-dimensional,
spatially extended system. It consists in the appearance of
multistable virtual chimera states of different modality
observed in both experiment and simulations, with very
good qualitative agreement. The reported results are found
to be robust with respect to system parameters. This indi-
cates a common, probably universal phenomenon in
delayed-feedback systems of a very different nature.
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