

Differentially Private De-Identification of Clinical Textual Documents: application to ICD10 codes association

Yakini TCHOUKA¹, Jean-François COUCHOT¹, David LAIYMANI¹ Philippe Selles², and Azzedine RAHMANI²

¹Université de Franche-Comté, CNRS, France

²Hôpital Nord Franche-Comté, Trevenans, FRANCE

NCHE~COMT

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy

Application of de-identification to ICD-10 codes association

7

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy

Application of de-identification to ICD-10 codes association

Legal context of de-identifying clinical textual document

Considered data type

Unstructured data: clinical textual documents with name, age, location ...

- Natural Language Processing (NLP) task
- Neither images nor tabular data

Legal Requirement

- Make medical data accessible to researchers whilst preserving patients privacy
- Legal requirement imposed by legislation: before sharing
 - ► GDPR: Delete any data that could identify an individual ~→ de-identification

Researchers with de-identified data can

- provide models for other medical tasks (clinicalBERT¹, a BERT² particularisation)
- Can apply further NLP Task: text summarizing, or here multi-label classification task (ICD-10 codes association)

¹Alsentzer, E., Murphy, J. R., Boag, W., Weng, W. H., Jin, D., Naumann, T., & McDermott, M. (2019). Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323.

² Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

De-identifying: with Differential Privacy

Motivation for ϵ differential privacy $^{\rm 3}$

- Method proven on the Sanitization mechanism: robust whatever the data (and therefore the attacks)
- Probabilistic approach valid in the worst-case situation

Definition (ϵ -local differential confidentiality for a mechanism \mathcal{M})

$$\begin{array}{l} \mathcal{M} \text{ verifies the } \epsilon\text{-LDP if} \\ {}^{4} \ \forall v_1, v_2 \in \text{Domain}(\mathcal{M}), \forall o \in \text{Image}(\mathcal{M}), \\ \Pr[\mathcal{M}(v_1) = o] \leq e^{\epsilon} \cdot \Pr[\mathcal{M}(v_2) = o]. \end{array}$$

³Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3 (pp. 265-284). Springer Berlin Heidelberg.

⁴J. C Duchi, M. I Jordan, and M. J Wainwright. Local privacy and statistical minimax rates. In2013 IEEE 54th Annual Symposium onFoundations of Computer Science, pages 429–438. IEEE, 2013.

Plan

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy De-Identification: a Twofold Method Named Entity Recognition, First Attempt Entity Substitution, First Attempt Named Entity Recognition, Continuation Entity substitution, Continuation Medical Document De-identification Related Work

Application of de-identification to ICD-10 codes association

De-Identification: a Twofold Method

2 steps

- 1. Detection of sensitive information contained in the document
 - Efficiency issue: maximising named entity detection scores
- 2. Sanitization of detected information
 - Optimisation issue: minimising leakage whilst preserving utility.

Thread Example:

Mr. Durand born in Dijon, 40 years old was admitted to the hospital from 12/02/2020 to February 26, 2020 following a road accident in Dijon.

Plan

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy De-Identification: a Twofold Method Named Entity Recognition, First Attempt Entity Substitution, First Attempt Named Entity Recognition, Continuation Entity substitution, Continuation Medical Document De-identification Related Work

Application of de-identification to ICD-10 codes association

NER: Searched Entities

Searched Entities: reduced to HIPAA⁵ ones (U.S. Dpt. of Health and Human Services)

- 1 Names
- 2 All geographic subdivisions smaller than a state, including street address, city, county, precinct, zip code, and their equivalent geocodes
- 3 All date elements [...] for dates directly related to an individual including, birth date ...
- 4,5,6 Telephone; Fax numbers; E-mail addresses
- 8 Medical record numbers
- 7, 9, 10 Social security numbers; Health plan beneficiary numbers; Account numbers
- 11,13 Certificate/license numbers; Device identifiers and serial numbers
- 12 Vehicle identifiers and serial numbers, including license plate numbers
- 14; 15 Web universal resource locators (URLs); Internet Protocol (IP) address numbers
- 16 Biometric identifiers, including fingerprints and voice prints
- 17 Full face photographic images and any comparable images
- 18 Any other unique identifying number, feature, or code.

⁵Cohen, I. G., & Mello, M. M. (2018). HIPAA and protecting health information in the 21st century. Jama, 320(3), 231-232.

NER: issue in French Language

Issues with French language

Recommandations par PocketEn savoir plus

- WikiNer French⁶: only 4 categories LOC, PER, ORG, and MISC
- MEDINA⁷⁸: rule based and statistical learning, dedicated to French lang.
- Building of an hybrid system:

For ML evaluation: need of a French labelled dataset

⁶Nothman, J., Ringland, N., Radford, W., Murphy, T., & Curran, J. R. (2013). Learning multilingual named entity recognition from Wikipedia. Artificial Intelligence, 194, 151-175.

⁷Grouin, C., Griffon, N., & Névéol, A. (2015, September). Is it possible to recover personal health information from an automatically de-identified corpus of French EHRs?. In Proceedings of the Sixth International Workshop on Health Text Mining and Information Analysis (pp. 31-39).

⁸Grouin, C., & Zweigenbaum, P. (2013). Automatic de-identification of French clinical records: comparison of rule-based and machine-learning approaches. In MEDINFO 2013 (pp. 476-480). IOS Press.

HNFC-NER-EVAL labelled dataset

Methodology: 6 h., @HNFC, 6 people of medical staff

- 1. Input data: 375 texts of deceased pers., annotated with the hybrid tool
- 2. Manually annotated by the hospital staff with Doccanno⁹
 - Each annotator completes/corrects errors: "ds. 3 j." vs. "3 x p. j."
 - Merging of pairs of annotation results into a unique annotated file.
- ightarrow 9993 sentences, 23829 labels

nto-st

⁹Nakayama, H.; Kubo, T.; Kamura, J.; Taniguchi, Y.; Liang, X. doccano: Text Annotation Tool for795Human, 2018. Software available from https://github.com/doccano/doccano.

NER: Evaluating NER Hybrid system¹²

- Training dataset for all ML learning approaches: WikiNer
- Highest recall score: our hybrid proposal
- Micro Average results: hybrid system detects entities most often (highest recall) without neglecting precision (highest F1-score).
- Privacy perspective: issue with miss detection of Dates that are QID...

Labels	S	pacy ¹	LO	Can	nemB NER	ERT	М	EDIN	IA	FLA	UBEI NER	RT ¹¹		Hybri	d
	Р	R	F_1	P	R	F_1	Р	R	F_1	P	R	F_1	P	R	F_1
PERson ORGanisat. LOCation	59 2.2 40.3	76.8 10.9 11.9	67 3.6 18.4	89 7. 46	99 21.8 67.2	93.8 11.1 54.6	98.2 32.6 98.8	97.7 24.8 81.1	98.2 28.1 89.1	91.8 16.9 75.7	97.6 34.1 66.3	94.6 22.6 70.7	96.3 41.1 88.4	99.8 57.3 95.8	98 47.8 92
Date Age Phone N.							97.7 91.5 99.5	86.6 66.9 97.9	91.9 77.3 98.7				97.7 91.5 99.5	86.7 66.9 97.9	91.9 77.3 98.7
Micro Av.	54.9	54.8	54.9	70.8	51.5	59.6	98.2	91.2	94.5	85.8	86.7	86.3	94.6	94.9	94.7

¹⁰Montani I spaCy, H. M. (2021). 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. 2017.

¹¹Le, H., Vial, L., Frej, J., Segonne, V., Coavoux, M., Lecouteux, B., ... & Schwab, D. (2019). Flaubert: Unsupervised language model pre-training for french. arXiv preprint arXiv:1912.05372.

¹²Yakini Tchouka and Jean-François Couchot and Maxime Coulmeau and David Laiymani and Philippe Selles and Azzedine Rahmani and Christophe Guyeux 2022. De-Identification of French Unstructured Clinical Notes for Machine Learning Tasks

Plan

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy

De-Identification: a Twofold Method Named Entity Recognition, First Attempt

Entity Substitution, First Attempt

Named Entity Recognition, Continuation Entity substitution, Continuation Medical Document De-identification Related Work

Application of de-identification to ICD-10 codes association

Entity Substitution: Motivation & Purpose

Depending on the entity relevance to medical task

- ▶ Without medical "utility": phone, fax numbers, REF ... → pure random approach
- ▶ With possible internal links: names ~→ random approach whilst preserving affiliation
- With direct impacts on the medical analysis: age, antecedents (DATEs), patient's LOCation

Thread Example:

PER: Durand \Rightarrow Julien (by random approach)

Applying ϵ -local differential privacy on DATEs

Main idea: bounded Laplace Mechanism¹³ on intervals

- 1. Order all normalized dates (d-m-y) $E = [e_0, \ldots, e_n]$, incl. the current one and associate a category (short, medium, long term) to each
- 2. Compute intervals $I = [e_0 e_1, \dots, e_{n-1} e_n]$ between consecutive dates
- 3. Bounded Laplace mechanism to each interval I_i , w.r.t. category range
- 4. Reconstitute dates from the current date

Related Work on dates substitution: uniform shifting of dates

MIMIC2¹⁴, MIMIC3¹⁵, I2B2¹⁶ datasets, a survey ¹⁷ or whitebook¹⁸

Attack on HNFC-NER-EVAL dates WITH uniform shifting

▶ $I = [I_1, ..., I_{n-2}]$ is NOT modified and is unique in 98% in this dataset

¹³H OLOHAN, Naoise ; A NTONATOS, Spiros ; B RAGHIN, Stefano ; M AC AONGHUSA, Pól : The bounded Laplace mechanism in differential privacy. In arXiv preprint arXiv :1808.10410 (2018)

¹⁴Douglass, M., Clifford, G. D., Reisner, A., Moody, G. B., & Mark, R. G. (2004, September). Computer-assisted de-identification of free text in the MIMIC2 database. In Computers in Cardiology, 2004 (pp. 341-344). IEEE.

¹⁵ Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. W. H., Feng, M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC3, a freely accessible critical care database. Scientific data, 3(1), 1-9.

¹⁶https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

 17 Uzuner, Ö., Luo, Y., & Szolovits, P. (2007). Evaluating the state-of-the-art in automatic de-identification. Journal of the American Medical Informatics Association, 14(5), 550-563.

Applying ϵ -local differential privacy on LOCations

Main idea: geo-indistinguishability¹⁹ on coordinates

- 1. Given a location Z expressed as its polar coordinates
- 2. Apply a bounded Laplace noise to these coordinates (to reduce sensitivity) and translates this into Y its city name
- 3. Memoïzation: for each Z, use Y in this document to avoid averaging attack

¹⁹Andrés, M.E.; Bordenabe, N.E.; Chatzikokolakis, K.; Palamidessi, C. Geo-indistinguishability:811Differential privacy for location-based systems. In Proceedings of the Proceedings of the 2013812ACM SIGSAC conference on Computer & communications security, 2013, pp. 901–914

Analysis of Applying *e*-LDP

Motivation for ϵ -local differential privacy

- For an output o and two inputs v₁ and v₂: both v₁ and v₂ "may be" the preimage of o → strong guaranty for the patient.
- Applying LDP mechanism on Jan. 8, 1942 and March 14, 2018 (birth and death dates of St. Hawking): has to generate approximately the same dates

Thread Example:

- **DATES**: all are in the long term category (with large sensitivity)
 - February 26, 2020 \Rightarrow Oct. 05 2020
 - ▶ $12/02/2020 \Rightarrow 23/06/2015$ (very long stay: utility?)
 - 40 years old \Rightarrow 30 years old
- ► LOC: a regional capital DIJON ⇒ a charming village BEZE (with completely opposite epidemiological data)

Plan

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy

De-Identification: a Twofold Method Named Entity Recognition, First Attempt Entity Substitution, First Attempt

Named Entity Recognition, Continuation

Entity substitution, Continuation Medical Document De-identification Related Work

Application of de-identification to ICD-10 codes association

Deep Learning vs other models in NLP

Comparing NER scores of Dutch medical records de-identification²⁰

 Combining BiLSTM-CRF in deidentifications is accurate, but it always remains errors

Metrics on GLUE²¹ benchmark when BERT² was introduced

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

- Outperforms all other approaches
- Requires larger training dataset

²⁰Trienes, J., Trieschnigg, D., Seifert, C., & Hiemstra, D. (2020). Comparing rule-based, feature-based and deep neural methods for de-identification of dutch medical records. arXiv preprint arXiv:2001.05714.

²¹Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, Samuel R. Bowman. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding.

HNFC-NER-TRAIN labelled dataset for DL training

Methodology: 25 h., @HNFC, 1 people.

- 1. Input data: 1500 texts (14925 sentences) of deceased pers., first deidentified and next pre-annotated by previous hybrid approach
- 2. Manually annotated @HNFC with Doccanno again

NER results

Methods	Hy	/brid Syst	12	P	ROPOSA	۸L	Denon	em (RNN) ²²	
Dataset			HNFC-N		i2b2				
Metrics	P	R	F_1	P	R	F ₁	P	R	F_1
PER	96.3	99.8	98	97.2	98.9	98	98.2	99.1	98.6
ORG	41.1	57.3	47.8	90	51	65.6	92.9	71.4	80.7
LOC	88.4	95.8	92	99.4	94.4	96.9	95.9	95.7	95.8
DATE	97.7	86.7	91.9	99.2	95.7	97.4	99	99.5	99.2
AGE	91.5	66.9	77.3	98.2	91.8	95	98.9	97.6	98.2
TEL	99.5	97.9	98.7	99.4	99.8	99.6	98.7	99.7	99.2
REF		-		96.1	79.5	87		-	
Micro av.	94.6	94.9	94.7	98.5	96.4	97.4	98.3	98.5	98.4

Improved results for almost all metrics

But still not as strong as English-language results

²²F. Dernoncourt and J. Lee and O Uzuner and P. Szolovits 2016. De-identification of Patient Notes with Recurrent Neural Networks

Plan

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy

De-Identification: a Twofold Method Named Entity Recognition, First Attempt Entity Substitution, First Attempt Named Entity Recognition, Continuation Entity substitution, Continuation Medical Document De-identification Related Work

Application of de-identification to ICD-10 codes association

ϵ .*d*-privacy²³: a ϵ -LDP relaxation

Motivation

- 2 distant elements: should not be confused by a random mechanism
- Need of mechanism taking into account the distance between elements

Definition (ϵ .*d*-privacy for a mechanism \mathcal{M})

$$\begin{split} \mathcal{M} \text{ verifies the } \epsilon.d\text{-privacy if, } \forall v_1, v_2 \in \mathsf{Domain}(\mathcal{M}), \forall o \in \mathsf{Image}(\mathcal{M}), \\ \mathsf{Pr}[\mathcal{M}(v_1) = o] \leq e^{\epsilon.d(v_1, v_2)} \cdot \mathsf{Pr}[\mathcal{M}(v_2) = o], \text{ with } d \text{ metric on } \mathsf{Domain}(\mathcal{M}) \end{split}$$

²³Chatzikokolakis, Konstantinos, et al. "Broadening the scope of differential privacy using metrics." International Symposium on Privacy Enhancing Technologies Symposium. Springer, Berlin, Heidelberg, 2013.

Applying $\epsilon.d$ -privacy on DATEs

Date Value

- ▶ Date conversion by unit (year, day, month, ...): $E = [e_0, e_1, \ldots, e_n] \Rightarrow I = [I_1, I_2, \ldots, I_n]$
- ▶ Dates becoming numeric values $\rightsquigarrow d(d_1, d_2) = |d_1 d_2|$

Application to

- ▶ ϵ .*d*-privacy on distance $|x| \Rightarrow$ Laplace distribution centered at 0 with scale parameter $1/\epsilon$
- With some post-processing (rounding interval duration)

Thread Example:

- February 26, 2020 \Rightarrow March 01, 2020
- ► 12/02/2020 ⇒ 20/02/2020
- 40 years old \Rightarrow 37 years old

Applying ϵ -d privacy on LOCations

city	overall population	cancer incidence rate	stroke	distance	scores	normalized distribution		
DIJON	160204	182.252004	273.184785	0.000000	1.000000	0.133468		
BESANCON	119249	134.135495	218.375283	0.418721	0.581279	0.120203		
CHALON SUR SAONE	46603	52.730489	108.706972	1.170695	-0.170695	0.099602		
DOLE	24606	57.437117	55.290112	1.349742	-0.349742	0.095242		
LONS LE SAUNIER	18023	42.070599	40.497996	1.450857	-0.450857	0.092865		
LE CREUSOT	21935	24.819073	51.165964	1.466909	-0.466909	0.092493		
VESOUL	15728	42.069461	33.302482	1.475195	-0.475195	0.092301		
BEAUNE	21747	24.739921	37.083653	1.497015	-0.497015	0.091799		
MONTCEAU LES MINES	18789	21.259429	43.827550	1.504867	-0.504867	0.091619		

 Epidemiological data of each location: as a vector, further normalized

Randomization: like exponential mechanism

Scoring function U(j, i) = 1 - d(i, j)

Substitutes limited to the *k* closest locations w.r.t. the distribution $P_j = [a.e^{\epsilon U(j,i_1)}, \dots, a.e^{\epsilon U(j,i_k)}, 0, \dots, 0]$

Thread Example:

Distance between locations

LOC: Dijon \Rightarrow Besançon

Result on the Thread Example

Plan

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy

De-Identification: a Twofold Method Named Entity Recognition, First Attempt Entity Substitution, First Attempt Named Entity Recognition, Continuation Entity substitution, Continuation Medical Document De-identification Related Work

Application of de-identification to ICD-10 codes association

A short history to be continued

- C. Grouin's work on de-identification in French²⁴
- i2b2¹⁶, MIMIC3¹⁵ public dataset de-identified by Stubbs²⁵
- Recent work on de-identification²⁶ with GPT-4

Figure: An history of de-identification²⁶

²⁴Grouin, C. and Névéol, A. 2014. De-identification of clinical notes in French: towards a protocol for reference corpus development

²⁵Stubbs, Amber and Uzuner, Özlem and Kotfila, Christopher and Goldstein, Ira and Szolovits, Peter 2015. Challenges in synthesizing surrogate PHI in narrative EMRs

²⁶Liu, Zhengliang and Yu, Xiaowei and Zhang, Lu and Wu, Zihao and Cao, Chao and Dai, Haixing and Zhao, Lin and Liu, Wei and Shen, Dinggang and Li, Quanzheng and others 2023. Deid-gpt: Zero-shot medical text de-identification by gpt-4

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy

Application of de-identification to ICD-10 codes association

ICD-10 Codes

- ICD-10 (International Classification of Diseases, Tenth Revision) codes : standardized system used for classifying and coding diseases, injuries, and other health-related conditions
- Assigned to medical diagnoses and procedures to facilitate accurate and consistent recording and reporting of health information
- Each healthcare stay: manual summarized into ICD-10 codes (stat., remuneration)
- Computing: a multi-label classification of unstructured data

ICD-10-HNFC dataset for multi-label classification

Very private dataset, @HNFC

- Input data: 56,014 patient stays composed of medical texts with their associated ICD-10 codes
- Output: 56,014 (very long) lines, concatenation results and their associated binary vector of labels
- Second output: same text and ICD-10 codes group by families (class reduction)

ICD-10-HNFC dataset : challenging metrics

Descriptive statistics of ICD-10-HNFC dataset

	Dataset	Dataset with class reduction
Documents	56014	-
Tokens	41868993	-
Average sequence length	747	-
Total ICD codes	416125	415830
Unique ICD codes	6160	1564
Codes with less than 10 examples	3722	523
Codes with 100 examples or more	641	471

Two issues in ICD-10 codes association

- 1. Input patient file : usually a long sequence:
 - Average sequence length (747) > maximum input size for Transformers (512): scalability issue
- 2. Large number of different codes, labels, but sparse
 - 6160 unique ICD codes, 3722 of whom have only been less than 10 times: scalability and sparsability issue

ICD-10-DEID-HNFC (ICD-10-TAG-HNFC): working dataset

Two de-identified datasets, @HNFC, we can work with

- Input data: ICD-10-HNFC dataset
- Output 1: ICD-10-DEID-HNFC with aforementioned de-identification approach
- Output 2: ICD-10-TAG-HNFC with tag only substitution (baseline)
- 10,000 lines are removed (everywhere) due to errors in date format or not found locations in optimal de-identification

ICD-10 codes association model

Approach with FLAUBERT

- Long sequence processing: Hierarchical Transformers²⁷
 - 1. Document divided into segments \rightarrow representation of each segment with pre-trained Transformers layer
 - 2. Aggregation ~ Document representation
- Large and sparse label set: Label-Aware Attention mechanism (LAAT)²⁸
 - Labels are integrated into the document representation

Model Architecture

to-st

²⁷Pappagari, R., Zelasko, P., Villalba, J., Carmiel, Y., & Dehak, N. (2019, December). Hierarchical transformers for long document classification. In 2019 IEEE automatic speech recognition and understanding workshop (ASRU) (pp. 838-844). IEEE.

²⁸Huang, C. W., Tsai, S. C., & Chen, Y. N. (2022). PLM-ICD: automatic ICD coding with pretrained language models. arXiv preprint arXiv:2207.05289.

Evaluating ICD-10 codes association on (de-identified) datasets

Automatic association of ICD-10 codes on different corpora (de-identified or not)

Results on the evaluation dataset

Dataset	Labels	Precision	Recall	F ₁ -score
ICD-10-TAG-HNFC		0.43	0.41	0.42
ICD-10-DEID-HNFC	6160	0.44	0.43	0.44
ICD-10-HNFC		0.47	0.46	0.47

► ICD-10-DEID-HNFC: enabled us to prototype the whole ML approach

 ICD-10-DEID-HNFC vs ICD-10-TAG-HNFC: most accurate, close to original ones

State of the art of ICD-10 codes association

Experimental results

Models	Language	Dataset	Labels	F ₁ -score
DI M ICD ²⁹	English MIMIC2		5,031	0.5
PLIVI-ICD	Linglish	MIMIC3	8,922	0.59
		own datacat	6,116	0.39
Bau=:11a30	French	OWIT GALASEL	1,549	0.52
Douzille			6,161	0.27
		ICD 10 HNEC	1,564	0.35
DDODOGAL		ICD-10-IIIII C	6,161	0.45
PROPUSAL			1,564	0.55

- Bouzille: same parameter than the ones in³⁰
- All codes (Bouzille and ours) will be (very soon) on github
- State-of-the-art ICD-10 codes association model³¹ in French language

²⁹Huang, C. W., Tsai, S. C., & Chen, Y. N. (2022). PLM-ICD: automatic ICD coding with pretrained language models. arXiv preprint arXiv:2207.05289.

³⁰BOUZILLE, G., & GRABAR, N. (2020). Supervised learning for the ICD-10 coding of French clinical narratives. Digital Personalized Health and Medicine: Proceedings of MIE 2020, 270, 427.

³¹Tchouka, Y., Couchot, J. F., Laiymani, D., Selles, P., & Rahmani, A. (2023). Automatic ICD-10 Code Association: A Challenging Task on French Clinical Texts. arXiv preprint arXiv:2304.02886.

Introduction on De-Identification

De-Identification: an Incremental Approach with Differential Privacy

Application of de-identification to ICD-10 codes association

Conclusion

Contributions on De-identification

- Complete accurate differentially private de-identification method
 - State-of-the-art NER model for de-identification in French language
- Substitution method that combines utility and safety
 - Not location-specific Method
 - Solution available on github³²

Contributions on ICD-10 codes association task

- Deep learning system that combines the latest advances in Natural Language Processing
- State-of-the-art ICD-10 codes association model in French language

Future work

- Using this deidentification method to provide a clinicalBERT à la française
- Evaluating the security of the approach against membership inference attack

³²Surrogate Generation in De-identification. 2022