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Ref.	 [1]	proposes	 to	 increase	by	 photon	 subtraction	 the	
sensitivity	of	interferometry	for	thermal	 light.	We	prove	
that	 this	 is	 possible	 only	 with	 a	 low	 success	 rate,	
rendering	the	method	 less	efficient	 than	detection	of	 all	
the	photons©	2017	Optical	Society	of	America	
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The	increase	of	interferometry	sensitivity	demonstrated	in	
[1]	 lies	 on	 a	 photon	 subtraction	 obtained	 by	 diverting	with	a	
beam-splitter	 a	 small	 part	 (10	%)	 of	 the	 thermal	 light	 at	 one	
output	port	of	the	interferometer,	see	fig.	1,	and	heralding:	only	
events	where	one	photon	is	measured	by	APD1	are	retained.		

 

 
Fig.1:	 Heralding	 scheme:	 measurements	 on	 APD2	 are	

retained	 if	 and	 only	 if	 a	 single	 photon	 is	 detected	 on	 APD1	
(reproduced	from	[1])	

	
This	heralding	scheme,	named	photon	subtraction	in	[1],	is	

claimed	 to	double	 the	mean	number	of	photons	measured	on	
APD2.	For	a	photon	thermal	state	after	action	of	an	annihilation	
operator,	this	is	a	straightforward	result:	it	is	proved	in	[2]	that	
for	 every	 state	 the	 average	 number	 of	 photons	 𝑛"#	 after	 the	
action	of	the	annihilation	operator	is	given	by:	

	
  𝑛"# = 𝑛%"""/𝑛" − 1    (1)  
where	𝑛"		 is	 the	mean	 number	 of	 photons	 in	 the	 thermal	

state	 corresponding	 to	 one	 temporal	mode.	The	 variance	 of	 a	
thermal	state	is	given	by:		

	
𝑛%""" − n"% = 𝑛"% + 𝑛"		 	 	 	 (2) 
	
leading	to	
	
	𝑛"# = 2𝑛"			 	 	 	 	 (3)		
	
On	 the	one	hand,	 this	 result	 is	not	 surprising	at	 low	 flux.	

Indeed,	the	second	order	coherence	function,	whose	value	is	2	
for	 a	 thermal	 beam,	 can	 be	 interpreted	 as	 a	 conditional	
probability.	 	 Hence	 detecting	 a	 photon	 is	 a	 rare	 event,	 that	
increases	 the	 probability	 of	 detecting	 in	 the	 same	 temporal	
mode	more	photons	 than	 the	mean,	because	 thermal	photons	
are	bunched,	even	at	very	low	fluxes	[3].		On	the	other	hand,	the	
doubling	 in	 Eq.	 (3)	 does	 not	 depend	 on	 the	 average	 flux	 𝑛",	
which	 is	 troubling.	 Indeed,	 at	 high	 flux	 the	 probability	 of	
detection	 by	 APD1	 of	 at	 least	 one	 photon	 tends	 to	 unity	 and	
doubling	the	conditional	average	means	doubling	the	average.	
The	fact	that,	most	often,	more	than	one	photon	is	detected	by	
APD1	does	not	improve	the	plausibility	of	Eq.	(3):	it	is	proved	in	
[1]	that	the	conditional	average	at	APD2	is	even	higher	than	2𝑛"	
for	multiple	detections	at	APD1.	Hence,	it	is	necessary	to	avoid	
using	 a	 model	 lying	 on	 an	 annihilation	 operator	 for	 the	
experimental	 scheme	of	 [1]	and	 to	use	rather	 the	well-known	
physics	 of	 the	 beam-splitter.	We	 will	 see,	 as	 foreseen	 above,	
that	both	models	are	equivalent	at	very	 low	flux	but	differ	 for	
higher	flux.		

Let	be	R=rr*	the	reflection	coefficient	of	the	beam	splitter,	
corresponding	 to	 the	 part	 of	 the	 flux	 diverted	 to	 APD1,	 and	
T=tt*=1-R	its	transmission	coefficient.	The	state	of	the	thermal	
beam	in	the	mode	before	the	beam	splitter	can	be	written	as	a	
diagonal	density	function:	
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The	 state	 after	 the	 beam-splitter	 is	 obtained	 [4]	 by	

applying	 the	 same	 input	 creation	 operators	 on	 the	 output	
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modes	 o1	 and	 o2,	 corresponding	 respectively	 to	 APD1	 and	
APD2:	
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|	𝜓/,MOP ⟩	appears	 as	 a	 coherent	 superposition.	 However,	

we	are	interested	only	in	the	element		corresponding	to	exactly	
one	photon	in	o1.	This	not	normalized		projected	wave	function	
reads:	
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which	 gives	 	 a	 normalized	 diagonal	 output	 density	

operator	after	heralding	:	
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	(7)	
	
Eq.	(7)	can	be	translated	in	a	more	intuitive	way	by	using	

conditional	probabilities:	
	
𝑃((𝑛 − 1)M%|1M3) =

/"1

(34/")167
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In	(8)	and	in	all	the	following	P	means	"probability	of"	and	

the	vertical	bar	means	"given".	The	division	by	𝑃(1M3)	ensures	
the	normalization	of	Eq.	(7)	.	𝑃(1M3)		is	therefore	given	by:		

	
𝑃(1M3) = ∑ 𝑃((𝑛 −8
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Eq.	 (8)	 means	 that	 the	 quantum	 formalism	 is	 rigorously	

equivalent	 to	 a	 semi-classical	 model	 where	 the	 conditional	
probabilities	at	the	output	are	given	by	the	Bayes	theorem:		

	
𝑃((𝑛 − 1)M%|1M3) = 𝑃(𝑛./|1M3) =

b(3V7|/E1).b(/E1)
b(3V7)

  (10) 
	
with		
	
𝑃(1M3|𝑛./) = 	𝑛./	𝑅	𝑇/E1#3	,	  
𝑃(𝑛./) = 	

/"1E1
(34/")1E167

	 											 										 									 (11)	
	
The	first	eq.	(11)	means	that	there	is	as	many	possibilities	

of	 obtaining	 one	 photon	 in	 1	 as	 the	 number	 𝑛./	 of	 input	
photons,	 each	 one	 occurring	 with	 a	 probability	 𝑅	𝑇/E1#3.	
Because	R+T=1,	𝑛./	𝑅	𝑇/E1#3	is	clearly	smaller	than	1	whatever	
𝑛./ .	

It	 is	now	straightforward	to	calculate	all	 the	quantities	of	
interest	by	using	well-known	formulae	on	series.	We	find:		

	

𝑃(1M3) =
/"	d

(34/"d)W
									 	 	 	 (12)	

	
Note	 that	 this	 result	 can	be	established	more	 directly	by	

observing	 that	 the	 number	 of	 photons	 in	 mode	 o1	 can	 be	
viewed	 as	 resulting	 from	 a	 random	 deletion	 from	 a	 Bose-
Einstein	 statistics,	 hence	 obeys	 also	 a	 Bose-Einstein	 statistics	
with	a	reduced	mean	𝑛"	𝑅	[5].	The	conditional	mean	reads:	
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	 					 	 	 	 	 					(13) 
	

For	 𝑛"𝑅 << 1,	 we	 retrieve	 the	 limit	 2𝑛".	 The	 one-photon	
subtraction	model	appears	as	correct	only	in	this	limit.	With	the	
values	of	ref.	1,	R=0.1	and	𝑛" = 1.14,	we	find	(𝑛M%"""""|1M3) = 1.84,	in	
good	 agreement	with	 the	experimental	 value	 of	 1.81	given	 in	
the	supplementary	material	of	[1],	and	quite	far	of	the	value	2	
𝑛" =2.28.	We	conclude	that	the	discrepancy	between	this	value	
and	 the	 experimental	 one	 is	 not	due	 to	 loss,	 as	 argued	 in	 the	
supplementary	material	of	[1],	but	rather	to	the	use	of	a	model	
based	 on	 the	 annihilation	 operator	 for	 a	 not	 sufficiently	 low	
value	of	𝑛"𝑅.	

A	key	point	is	the	rate	of	heralding	success.	It	is	argued	in	
[1]	 that	 the	 heralding	 scheme	will	 have	a	 practical	 interest	 if	
one	is	able	to	reduce	the	subtraction	loss	to	at	least	50	%.		What	
is	actually	relevant	is	the	mean	
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The	 coefficient	 multiplying	 𝑛"	 in	 the	 right	 hand	 side	 of	

inequality	(14)	has	a	maximum	value	of	0.30,	obtained	for	𝑛"𝑅 =
0.5.	Hence,	the	number	of	"useful	photons"	cannot	be	increased	
beyond	𝑛".	This	property	has	a	simple	physical	interpretation:	a	
passive	linear	beam	splitter	cannot	increase	the	total	number	of	
photons,	and,	if	we	do	not	consider	the	detector	noise,	the	best	
strategy	is	to	use	all	photons	without	heralding.	This	issue	has	
been	 extensively	 discussed	 in	 the	 context	 of	 weak	 value	
amplification	 [6]:	 selecting	 the	 temporal	 modes	 with	 the	
highest	signal-to-noise	ratio	has	an	interest	only	if	the	detector	
noise	 is	 so	 high	 that	 the	 signal	 does	 not	 emerge	 beyond	 this	
detector	noise	for	the	other	modes.	

One	 may	 wonder	 about	 the	 possibility	 of	 using	 all	 the	
temporal	modes	where	at	 least	 a	 click	 is	 registered	 on	 APD1.	
Indeed	a	double	click,	for	example,	induces	a	higher	conditional	
mean	than	a	simple	click	[1].	Rather	than	a	lengthy	calculation	
of	the	conditional	mean	for	each	number	of	clicks,	we	present	in	
the	following	a	simple	argument	which	shows	that	the	result	is	
worse	 than	a	non-conditional	detection,	 at	 least	 in	 absence	of	
detector	 noise.	 We	 consider	 in	 the	 following	 the	 use	 at	 the	
output	 of	 the	 total	 number	 of	 photons	𝑛M,	 detected	 either	 by	
APD1	 or	 by	 APD2.	 This	 number	 is	 equal	 to	 𝑛./ ,	 and	 we	 can	
write:	

 
𝑛" = (𝑛M"""|0M3)𝑃(0M3) + (𝑛M"""|(𝑛 > 0)M3)𝑃((𝑛 > 0)M3)

               (15) 
 
leading	to:	



 

(𝑛M"""|(𝑛 > 0)M3) =
/"#(/V""""|:V7)b(:V7)

b((/m:V7))
      (16) 

 
All	the	terms	in	(16)	are	easy	to	calculate	using	series	like	

in	Eq.	(9)	and	(13),	with	the	results:	
 
 
(𝑛M"""|0M3) =	

/"d
(34/"d)

	 , 𝑃(0M3) =
3

34/"d
 , 

 𝑃((𝑛 > 0M3)) = 1 − 𝑃(0M3) =
/"d
34/"d

         (17) 
 
which	gives:	
 

(𝑛M"""|(𝑛 > 0)M3) =
%/"4/"Wd43
34/"d

        (18) 
 
As	expected,	 the	 result	 tends	 to	2𝑛" + 1	 if	𝑛"𝑅 << 1.	 For	

higher	 𝑛"𝑅,	 the	 result	 is	 smaller	 than	2𝑛" + 1,	 though	 greater	
than	the	conditional	mean	for	one	click		2 e/"

34/"d
+ 1.	Moreover,	

the	 conditional	 mean	multiplied	 by	 the	 success	 rate	 remains	
smaller	than	𝑛",	by	construction	of	Eq.	(15).	

All	these	results	are	valid	whatever	the	quantum	efficiency	
of	 the	 photodiodes.	 Indeed,	 a	 non	 unity	 quantum	 efficiency	
keeps	 the	 statistics	of	 	𝑛M	Bose-Einstein,	with	a	reduced	mean	
[5].	Then,	all	the	above	computations	concern	the	repartition	of	
these	detected	photons	between	the	photodiodes.	Because	the	
detection	 in	 a	 reference	 experiment	 without	 beam-splitter	 is	
also	performed	with	 the	 same	non-unit	quantum	efficiency,	 it	
can	be	considered	that	the	total	mean	photon	number	𝑛"	refers	
to	 a	 number	 of	 detected	 photons.	 With	 this	 convention,	 the	
quantum	efficiency	has	no	role	in	the	computations.	

We	 have	 validated	 all	 the	 above	 results	 by	 generating	 a	
million	 of	 random	 numbers	 obeying	 a	 Bose-Einstein	
distribution.	 Each	 of	 these	 numbers	 represents	 a	 number	 of	
photons	 at	 the	 input	 and	 each	 photon	 is	 randomly	 either	
reflected	 with	 a	 probability	 R	 or	 transmitted,	 using	 random	
numbers	 obeying	 a	 uniform	 distribution.	 Last,	 they	 are	
randomly	 detected	 or	 not,	 depending	 on	 the	 quantum	
efficiency.	 Results	 are	 in	 perfect	 agreement	 with	 the	 above	
analytical	results.	

As	quoted	in	[1],	other	schemes	were	proposed	in	order	to	
subtract	exactly	a	photon	from	a	field.	As	explained	in	[7],	such	
a	 scheme	 does	 not	 correspond	 to	 applying	 an	 annihilation	
operator,	 since	 the	 probability	 of	 success	 is	 ideally	 unity,	
whatever	 the	 nonzero	 number	 of	 photons	 in	 the	 field.	 Hence	
there	 is	 no	 multiplication	 of	 the	 elements	 of	 the	 density	
operator	by	the	number	of	photons,	unlike	for	the	annihilation	
operator.	 This	 multiplication	 comes	 fundamentally	 from	 a	
probability	of	success	proportional	to	the	number	of	photons.	It	
seems	 difficult	 to	 imagine	 other	 schemes	 that	 are	 compatible	
with	 this	 feature	 than	 heralding	 at	 very	 low	 flux.	 Hence,	 the	
above	 conclusions	 seem	 general,	 and	 the	 realization	 with	 a	
beam-splitter	seems	generic.	

To	conclude,	the	increase	of	the	conditional	mean	obtained	
by	heralding	is	by	principle	not	sufficient	to	compensate	for	the	
low	 heralding	 success	 rate.	 Hence,	 in	 the	 absence	 of	 a	 strong	
detector	noise,	using	all	photons	is	preferable.	
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