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Abstract. Let GS be the Galois group of the maximal pro-p-extension QS of Q unramified
outside a finite set S of places of Q not containing the prime p > 2. In this work, we develop a
method to produce some examples of mild (and thus FAB) pro-p-groups GS for which some
relations are of degree three (according to the Zassenhaus filtration). The key computation are
done in some Heisenberg extensions of Q of degree p3. With the help of GP-Pari we produce
some examples for p = 3.

0. Introduction

Let p > 2 be an odd prime number. Let S = {�1, . . . , �d} be a finite set of prime numbers
�i , with �i ≡ 1(mod p). Consider QS the maximal pro-p-extension of Q unramified outside
S and put GS = Gal(QS/Q).

In the 1960s, Koch (see [8]) gave a description of the pro-p-group GS by generators and
relations. Thanks to this description, in 2006 Labute in [9] gave the first examples of pro-p-
groups GS with cohomological dimension two. By class field theory these groups have the
FAB property: every open subgroup U of GS has a finite abelianization. And then the strict
cohomological dimension of these pro-p-groups GS is three (see for example [12, Ch. III]).
To produce such examples, Labute used a criteria for a pro-p-group to be mild (this one
is related to a criterion of Anick [1]): in some favorable situations the initial terms of the
relations satisfy some very special combinatorial properties such that the graded algebra built
on the lower p-central series of GS has a very nice description in terms of the corresponding
free graded algebra. In the examples of Labute, the relations are of degree two according to
the Zassenhaus filtration.

Very recently, the arithmetic aspect of the work of Labute has been improved by a series
of papers of Schmidt [14, 15].

In [16, 17], when p = 2, Vogel has given a way to produce mild pro-2-groups GS

where the relations are of degree three. This method uses the Rédei symbol [13]. With this,
Gärtner [7] has produced an arithmetic example of mild pro-2-group G where the relations
are of degree three and such that, assuming that the Leopoldt conjecture holds, this group
is FAB. The pro-2-group produced by Gärtner corresponds to the maximal pro-2-extension
of Q unramified outside S = {2, 17, 7489, 15 809} in which the place 5 splits completely.
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As the prime 2 is in S, it is necessary to force a place to split completely so as to rule out the
Z2-cyclotomic extension.

In [5] Forré has developed the approach of mild pro-p-group by looking
at the Zassenhaus filtration in the non-commutative ring of formal power series
Fp[[X1, . . . , Xd ]]nc with coefficients in Fp. It is this approach that we will use here.

By considering the arithmetic in some Heisenberg extension of degree 33 over Q we
produce some mild pro-p-groups GS for which some relations are of degree three. Moreover,
these pro-3-groups are FAB (unconditionally). Here we do not have the Rédei symbols, but
it will be interesting to explore the equality of Proposition 2.23 in this way.

In the next section, we recall the basic facts about mild pro-p-groups (according to
the Zassenhaus filtration). In Section 2, we develop the arithmetic strategy and present the
principle of the computation based on class field theory. In the last section we produce the
two following examples.

Example 0.1. The pro-3-group GS = G{19,9811,11 863} can be described by the generators
x1, x2 and x3 and by the relations

ρ1 ≡ [[x1, x2], x1][[x1, x3], x1][[x2, x3], x1] (mod F(4)),

ρ2 ≡ [[x1, x2], x2]−1 (mod F(4)),

ρ3 ≡ [[x1, x3], x2]−1[[x1, x3], x3][[x2, x3], x1] (mod F(4)).

This pro-3-group GS is mild and FAB. In particular:
(i) the pro-3-group GS is of cohomological dimension two;
(ii) the Zassenhaus filtration of GS has 1/(1− 3t + 3t3) as Poincaré series.

Example 0.2. Let S = {7, 13, 381, 11 971}. The pro-3-group GS is mild and FAB with two
relations of degree two and two relations of degree three with 1/(1− 4t + 2t2 + 2t3) as
Poincaré series.

All of the computations have been done with GP-Pari [2].

Notation. For x, y in a group G, we denote by [x, y] = x−1y−1xy the commutator of x

and y.

1. Relations and mild pro-p-groups

For this section, we refer to [4], [5] and [8].

1.1. The Zassenhaus filtration

Let Fncp (d) := Fp[[X1, . . . , Xd ]]nc be the non-commutative ring of formal power series in
variables X1, . . . , Xd over the finite field Fp. Denote by I the two sided-ideal generated
by the Xi : it is the augmentation ideal of Fncp (d), i.e. the kernel of the natural morphism
Fncp (d)� Fp:

I = ker(Fncp (d)−→ Fp).

The ring Fncp (d) is a topological local ring where the family (I n)n is a neighborhood
basis of 0.
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Now consider the free prop-p-group F of rank d generated by the elements x1, . . . , xd .
Denote by �(F) the complete algebra

�(F) := lim←
U⊂F

Fp[F/U],

where U runs through open normal subgroups of F. Let

I(F)= ker(�(F)→ Fp),

be the augmentation ideal of �(F). Then it is well-known that the map (the Magnus
expansion)

ϕ :�→ Fncp (d)

xi �→ 1+Xi

is an isomorphism of topological rings. Remark that ϕ(I(F))=I . Now consider the map ι

from F to Fncp (d) defined by
ι(x)= ϕ(x − 1),

and put F(n) = {x ∈ F, ι(x) ∈I n}. The sequence (F(n))n is a neighborhood basis of 1: it is
the Zassenhaus filtration of F.

We recall some basic facts (see [4, 16]).

PROPOSITION 1.1. We have the following.
(i) The elements [xi, xj ], i < j , form a Fp-basis of F(2)/F(3).
(ii) For p = 3, the elements

x3
i , i = 1, . . . , d

[[xi, xj ], xk], i < j, k ≤ j

form a Fp-basis of F(3)/F(4). For p > 3, one has to omit the p-powers xpi .

Example 1.2. Suppose that p > 2. When F is the free pro-p-group on two generators, then
F/F(3) is a non-abelian group of orderp3 and of exponentp (because Fp ⊂ F(3)): this quotient
is isomorphic to the Heisenberg group

Hp3 = �x, y, xp = 1, yp = 1, [[x, y], x] = [[x, y], y] = 1�.

1.2. Strongly free sequence

Definition 1.3. Let S = {P1, . . . , Pr } be some series in I ⊂ Fncp (d) and let S be the two-
sided ideal generated by the elements P1, . . . , Pr . Then the family S is called strongly free
if the quotient S /S I is a Fncp (d)/S -left-free module on the images of P1, . . . , Pr .

For P ∈ Fncp (d), P �= 0, denote by Pi its term of degree i. If i0 is the smallest integer
such that Pi0 �= 0, then Pi0 is called the initial form of P and is denoted by ω(P). The integer
i0 is the degree of P and is denoted by i0 := deg(P ). We put deg(0)=∞.

Definition 1.4. If x ∈ F, the degree of x is the degree of ι(x) and is denoted by deg(x). For a
subgroup H of F, the degree of H , denoted by deg(H), is the minimum of the degree of x,
for all x ∈H .
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Definition 1.5. (Anick [1]) A family M1, . . . , Mr of monomials in I ⊂ Fncp (d), Mi �= 1, is
said to be combinatorially free if:
(1) no Mi is a submonomial of any Mj , j �= i;
(2) for every i, j , the beginning of Mi is not the same as the ending of Mj .

Now let us fix a total order < on the set {X1, . . . , Xd } and then consider the
lexicographic ordering onFncp (d) deduced from<. If P is a sum of homogeneous monomials,
we denote by L (P ) the leading term of P .

Definition 1.6. A family P1, . . . , Pr of series in I ⊂ Fncp (d) is called combinatorially free
(after ordering) if the family of monomials

L (ω(P1)), . . . , L (ω(Pr ))

is combinatorially free.

THEOREM 1.7. (Forré [5]) If the family S = {P1, . . . , Pr } ⊂ Fncp (d) is combinatorially free
then S is strongly free.

1.3. Mild pro-p-groups

Let
1−→ R−→ F−→ G−→ 1

be a minimal presentation of a finitely presented pro-p-group G. The p-rank of G is finite and
equal to the p-rank of the free pro-p-group F and these two groups are topogically generated
by d generators x1, . . . , xd .

Let ρ1, . . . , ρr ∈ R⊂ F be a basis over Fp of R/Rp[F, R] �H2(G, Fp) (the elements
ρi are a basis of the relations of G).

The notion of a strongly free sequence will give us a sufficient condition for a pro-p-
group to be of cohomological dimension two. The key criterion is the following.

THEOREM 1.8. (Brumer [3]) The pro-p-group G is of cohomological dimension at most two
if and only if the Fp[[G]]-module R/Rp[R, R] is free.

Now, with the previous theorem, it is possible to give criteria in the algebra Fncp (d) for a
pro-p-group G to be of cohomological dimension at most two.

THEOREM 1.9. (Forré [5]) The pro-p-group G is of cohomological dimension at most two if
and only if R/RI is a free left Fncp (d)/R-module, where R = ι(R).

We can then define the notion of mild pro-p-group.

Definition 1.10. If a pro-p-group G has a presentation with relations ρ1, . . . , ρr , then
G is called mild (following the Zassenhaus filtration) if the family ι(ρ1), . . . , ι(ρr ) is
combinatorially free.

Thanks to the previous results, one obtains the following result.

THEOREM 1.11. If G is mild then the cohomological dimension of G is at most two.
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Remark 1.12. (The Poincaré series) See [5, 9]. For n≥ 1, denote by G(n) the quotient
F(n)R/R and put an = dimFp G(n)/G(n+1). Then the Poincaré series P(t) of G (associated
with Zassenhauss filtration) is the formal series

P(t) = 1+
�
n≥1

ant
n.

When the relations ρ1, . . . , ρr of G are combinatorially free then the Poincaré series of G
satisfies:

P(t) = 1
1− dt +�r

i=1 t
deg(ρi)

.

1.4. The relations in Fncp (d)

Definition 1.13. Let I = (i1, . . . , in) be a multi-index with ij ∈ {1, . . . , d}. One denotes by
n= deg(I) the degree of I .

For Z ∈ Fncp (d), we denote by εI (Z) to be the Xi1 · · ·Xin -coefficient of Z.
For y ∈ F, let us denote, by abuse of notation, εI (y) to be εI (ι(y)).

PROPOSITION 1.14. Let x, y ∈ F. Write ϕ(x)= 1+X and ϕ(y)= 1+ Y , with X, Y ∈
Fncp (d). Then:
(i) if deg(x) > deg(I), then εI (x)= 0;
(ii) εI (xy)=

�
JK=I

εJ (x)εK(y), where the sum is taken over all subsets J, K of I such that

the concatenation JK of J and K is equal to I ;
(iii) if min(deg(x), deg(y)) > deg(I), then εI (xy)= 0;
(iv) if max(deg(x), deg(y))≥ deg(I), then εI (xy)= εI (x)+ εI (y);
(v) ϕ(x−1)= 1−X +X2 −X3 + · · · ;
(vi) ϕ([x, y])= 1+XY − YX + degree > 2;
(vii) if deg(y)≥ 2, then ϕ([x, y])= 1+ XY − YX + degree > 3;
(viii) ϕ([[x, y], z])= 1+XYZ − YXZ +−ZXY + ZYX + degree > 3.

Proof. Easy computation. �

Now, we are interested in the image in Fncp (d) of the relations of G. If ρm ∈ F is a such
relation, then let us write (by Proposition 1.1)

ρm ≡
�
i<j

[xi, xj ]ei,j (m) (mod F(3)), (1)

and if moreover ρm ∈ F(3):

ρm ≡
�
j

x
paj (m)

j

�
i<j,k≤j

[[xi, xj ], xk]ei,j,k (m) (mod F(4)), (2)

with aj , ei,j,k(m) ∈ Fp.

PROPOSITION 1.15. For i < j < k, we have

ei,j (m)= εi,j (ρm), ei,j,i (m)=−εi,i,j (ρm), ei,j,j (m)= εi,j,j (ρm),

aj (m)= εi,i,i (ρm), ei,j,k(m)=−εj,i,k(ρm).
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Remark 1.16. For p > 3, aj (m)= 0.

Proof. By Proposition 1.14, we have

ι([[xi, xj ], xj ])=XiXjXj − XjXiXj −XjXiXj +XjXjXi + degree >3,

ι([[xi, xj ], xi])=XiXjXi −XjXiXi −XiXiXj + XiXjXi + degree >3,

and for i < k < j :

ι([[xi, xk], xj ])=XiXkXj −XkXiXj −XjXiXk +XjXkXi + degree >3,

ι([[xj , xk], xi])=XjXkXi −XkXjXi −XiXjXk +XiXkXj + degree >3.

Hence,

ei,j,j (ρm)= εi,j,j (ρm)= εj,j,i(ρm)=− 1
2εj,i,j (ρm),

ei,j,i (m)= 1
2εi,j,i (ρm)=−εi,i,j (ρm)=−εj,i,i (ρm),

ei,k,j (m)=−εk,i,j (ρm)=−εj,i,k(ρm), ej,k,i (m)=−εk,j,i(ρm)=−εi,j,k(ρm)
and

ei,k,j (m)+ ej,k,i(m)= εi,k,j (ρm)= εj,k,i(ρm). �

2. The principle of the computation

2.1. The arithmetic context

Let p ≥ 3 be a prime number and let S = {�1, . . . , �d} be a set of primes such that �i ≡
1 (mod p).

Let GS = Gal(QS/Q), where QS is the maximal pro-p-extension of Q unramified
outside S.

For i = 1, . . . , d , denote by xi a generator of the inertia group in GS of a place li |�i
along QS/Q such that its restriction to the maximal abelian subextension Qab

S /Q of QS

corresponds, via class field theory, to the idèle where all components are 1 except the �i -
component which is a primitive root of 1 modulo �i .

Then the pro-p-group GS is topologically generated by the elements xi , i = 1, . . . , d .
Let

1−→ R−→ F−→ GS −→ 1,

be a minimal presentation of GS on the elements xi . For i = 1, . . . , d , we identify xi with
one of its preimages in F. The free pro-p-group F is generated by the elements x1, . . . , xd .

We also need some particular lifts of Frobenius elements. For i = 1, . . . , d , let us fix
a prime li |�i along QS/Q. Consider yi a lift in GS of the Frobenius of the place li such
that the restriction of yi to Qab

S /Q corresponds, via class field theory, to the idèle where all
components are 1 except the �i-component which is �i .

As before, we identify yi with one of its preimages in F.

Remark 2.1. By the choice of yi , one has the following fact: if L/Q is a p-elementary
subextension of Qab

S /Q in which the inertia degree of �i is trivial, then yi |L = 1.
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Definition 2.2. Denote by Qp,el
�i

/Q the maximal elementary p-extension over Q unramified
outside �i . This extension is of degree p in which �i is totally ramified.

Remark 2.3. As the maximal pro-p-extension of Q unramified outside �i is cyclic and totally
ramified, then the p-class group of Qp,el

�i
is trivial.

Remark 2.4. Let q be a prime such that:
(i) q(�i−1)/p ∈ F�i is of order p (or, equivalently, q is inert in Qp,el

�i
/Q);

(ii) for j �= i, q(�j−1)/p = 1 in F�j (or, equivalently, q splits in Qp,el

�j
/Q).

Then, we can choose xi such that its restriction to the maximal p-elementary subextension
Qp,el

S /Q of QS/Q is equal to the restriction of the Frobenius fq of q . Indeed, the principal
idèle q has only two non-trivial component via the Artin map in Gal(Qp,el

S /Q): the �i-
component and the q-component.

2.2. A first principle

Let I = (i1, . . . , in) be a multi-index, ij ∈ {1, . . . , d}. We want to estimate εI (z) for some
z ∈ F. The strategy is the following: to look at the restriction of z to some quotients of GS ,
i.e. in some p-extensions of Q unramified outside S.

Let � be a quotient of GS . We can assume that � is generated by the images of the xi ,
i = 1, . . . , d �, with d � ≤ d .

Denote by F� the free pro-p-groups on d �-generators x1, . . . , xd � and let α : F→ F� be
the natural morphism sending x1, . . . , xd � to the generators of F� and such that α(xi)= 1 for
i > d �.

By the universal property of F�, there exists a section γ from F� to F such that
α(γ (α(x)))= α(x), for all x ∈ F. One then has the following natural commutative diagram:

1 �� R ��

��

F ��

α����

GS

����

�� 1

1 �� R� �� F�
β

��

γ

��

� �� 1

Here ker(α) is the smallest normal subgroup of F generated by the elements
xd �+1, . . . , xd and ker(β ◦ α) = �γ (ker(β)), ker(α)�.
LEMMA 2.5. If I ⊂ {d � + 1, . . . , d} and if deg(I) < deg(ker(β)), then εI (z) does not
depend on the lift of β(α(z)) in F.

Proof. The section γ induces the injection

Fp[[X1, . . . , Xd � ]]nc �→ Fncp (d)

and the degree of ι(γ (ker(β)))⊂ Fp[[X1, . . . , Xd � ]]nc is the same as the degree of ker(β).
Now, the kernel of α is the smallest normal subgroup containing xd �+1, . . . , xd . Hence,
ι(ker(α))= (Xd �+1, . . . , Xd), i.e. the two-sided ideal of Fncp (d) generated by the elements
Xd �+1, . . . , Xd .

In conclusion, for all J ⊂ I , εJ (ker(β ◦ α)) = 0. Hence for z, z� ∈ F, such that β(α(z))=
β(α(z�)), one finally has εI (z)= εI (z

�). �
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Let us give two key examples useful for what will follow.

Example 2.6. Consider Qp,el
�1

/Q the maximal p-elementary extension of Q unramified

outside �1. Put � = Gal(Qp,el
�1

/Q) and let F� be the free pro-p-group on x1. Then, ker(β)=
�xp1 �.

Now, let z ∈ F such that β(α(z))= xa1 ∈ �. Then ε1(z)= a and ε1,1(z)= a(a − 1)/2. In
particular, ε1,1(z)= 0 if β(α(z))= 1.

In this example, the computation of εI (z) is reduced to look at the restriction of z to
Qp,el
�1

/Q.

Example 2.7. Let T = {�1, �2} and let F� be the free-p-group generated by x1 and x2.
Suppose that the relations of GT are of degree three. Then, GT /(GT )(3) � F�/F�(3) �Hp3 ,
where Hp3 is the Heisenberg group. Then ker(β) is the smallest normal subgroup of F�
generated by x

p

1 , x
p

2 , [[x1, x2], x1] and [[x1, x2], x2]. Hence, ker(β)⊂ F�(3). Hence, for z ∈ F
such that β(α(z))= [x1, x2]a ∈ �, one obtains ε1,2(z)= a.

In this example, the computation of ε1,2(z) is reduced to look at the restriction of z to a
Heisenberg extension of Q.

For what will follow, we introduce the following notation.

Definition 2.8. Let I = (i1, . . . , in). Put

μ(I)= εi1,...,in−1(yin),

where we identify yin with one of its preimages in F.

The quantity μ(I) was first introduced as an arithmetic analogue of Milnor invariants of
links by Morishita in [10, 11]. See also [16].

2.3. The Koch computation

One has the following description of GS .

THEOREM 2.9. (Koch [8]) The group GS can be described by generators x1, . . . , xd and by
the relations ρ1, . . . , ρr where for m= 1, . . . , d:

ρm = x�m−1
m [x−1

m , y−1
m ].

This description comes from the fact that the relations are all local: they are coming from
the maximal pro-p-extension of the local fields Q�i . Let us be a little more precise.

PROPOSITION 2.10. In the previous arithmetic situation:

H 1(GS, Fp)�
d�

i=1
H 1(��i , Fp)

where ��i = Gal(Qp,el
�i

/Q) and the natural map

H 2(GS, Fp)→
d�

i=1
H 2(G�i , Fp)

is an isomorphism, where Gli = Gal(Q�i /Qli ) and where Q�i is the maximal pro-p-extension
of the complete field Q�i .
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For i = 1, . . . , d , let χi be a character such that H 1(��i , Fp)= �χi�.
Look at the cup product χi ∪ χj ∈H 2(GS, Fp). Then χi ∪ χi = 0 and for k different

from i and j , χi ∪ χj is zero in the �k-component H 2(G�k , Fp) because χi and χj are
unramified at �k .

LEMMA 2.11. We have χi ∪ χj = 0 in H 2(G�i , Fp) if and only if �j splits in Qp,el
�i

/Q.

Proof. This follows from a local computation. �

Hence, one obtains the following result.

COROLLARY 2.12. The cup-productH 1(GS, Fp) ∪H 1(GS, Fp) is zero if and only if for all
i, j , the prime number �j splits in Qp,el

�i
/Q.

Now, by using the principle of Section 2.2.

LEMMA 2.13. One has yi ≡ x
μ(j,i)
j in Gal(Qp,el

�j
/Q).

Proof. This is an application of Example 2.6. �

With the notation of Section 1.4, one has the following result.

PROPOSITION 2.14. Let i < j . One has ei,j (i)= μ(j, i) and ei,j (j)=−μ(i, j). In the
other case, ei,j (k)= 0.

Proof. Let I = (i, j). Then as x�m−1
m is at least of degree two:

εI (ρm)= εI (x
�m−1
m [x−1

m , y−1
m ])

= εI (x
−1
m , y−1

m ])
= εI (XmYm)− εI (YmXm),

where Ym = ϕ(ym). The conclusion is then obvious. �

Finally, one obtains the two following lemmas.

COROLLARY 2.15. (Fröhlich [6]) For m= 1, . . . , r , one has

ρm =
�
i �=m
[xm, xi]μ(i,m) (mod F(3)).

COROLLARY 2.16. The following are equivalent:
(i) the relation ρm is in F(3);
(ii) for all i, �m splits in Qp,el

�i
/Q;

(iii) for all i, χm ∪ χi = 0 in H 2(G�i , Fp);
(iv) χm ∪H 1(GS, Fp)⊂H 2(GS, Fp) is zero.

2.4. A key formula

For what will follow, we use the description of GS by Koch: ρm = x
�m−1
m [x−1

m , y−1
m ].
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PROPOSITION 2.17. (Vogel [16, Theorem 2.1.7]) Let I = (i1, i2, i3). Suppose that �m splits
in Qp,el

�i1
/Q, Qp,el

�i2
/Q, and Qp,el

�i3
/Q. Then one has

εI (ρm)= α(p, I)
(�m − 1)

p
+ δi1,mμ(i2, i3, m)− δi3,mμ(i1, i2, m),

where α(p, I)= 0 if p > 3 or if I �= (m, m, m), and is 1 otherwise.

Proof. Let Ym = ι(ym). The degree of x
�m−1
m is at least three and by Example 2.6, the

coefficients of Ym in which appear at least one of the Xi1 , Xi2 and Xi3 are at least of degree
two. Then (by using Proposition 1.14):

εI (ρm)= εI (x
�m−1
m [x−1

m , y−1
m ])

= εI (x
�m−1
m )+ εI [x−1

m , y−1
m ]

= (�m − 1)
p

εI (x
p
m)+ εI (XmYm)− εI (YmXm)

= (�m − 1)
p

εI (x
p
m)+ δi1,mμ(i2, i3, m)− δi3,mμ(i1, i2, m). �

Remark here that as an application of Example 2.6, we have the following result.

PROPOSITION 2.18. One has μ(i, i, i)= 0 and if �j splits in Qp,el
�i

/Q, then μ(i, i, j)= 0.

2.5. Computation in some Heisenberg extensions

Let i �= j be indices such that μ(i, j)= μ(j, i)= 0.
We want to compute the quantities μ(i, j, k) when k satisfies μ(i, k)= μ(j, k)= 0. To

do this we use the principle of Example 2.7.
Put T = {�i, �j } ⊂ S. By Corollary 2.16, the conditions for the places of T imply that

the relations of GT are in F�(3), where

1−→ R� −→ F� −→ GT −→ 1

is a minimal presentation of GT . Here F� is the free-pro-p-group generated by xi and xj : as
usual, as GS �GT , we identify the elements xi and xj in GT with its preimages in GS , F�
and F. By hypothesis, F�(3) ⊂ R� and then

GT /(GT )(3) � F�/F�(3) �Hp3,

where (GT )(n) � R� ∩ F�(n)/R� and where

Hp3 = �x, y, xp = 1, yp = 1, [[x, y], x] = [[x, y], y] = 1�
is the Heisenberg group of order p3.

Let Ki,j =Q(3)
(�i,�j )

be the p-extension associated by Galois theory to the group (GT )(3)

and put Mi,j =Qp,el

�i
Qp,el

�j
. Then Gal(Ki,j /Mi,j )= �[xi, xj ]�.

PROPOSITION 2.19. One has μ(i, j, k)=−μ(j, i, k). Moreover

μ(i, j, k)= 0⇐⇒ lk splits in Ki,j /Mi,j ,

where lk is a prime of Mi,j above �k .
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Proof. This is an application of Example 2.7. Thanks to the conditions above �i , �j and �k ,
and Remark 2.1, the restriction of the element yk to Gal(Ki,j /Q) is in the subgroup �[xi, xj ]�:

yk ≡ [xi, xj ]a (mod Gal(QS/Ki,j)).

Then εi,j (yk)= εi,j ([xi, xj ]a)= a and εj,i(yk)= εj,i ([xi, xj ]a)=−a. �

2.6. The use of class field theory

First, let us observe the following.

PROPOSITION 2.20. The extension Ki,j /Mi,j is unramified.

Proof. The non-trivial elements of the Galois group of Ki,j /Q are of order p. Hence, if a
prime above �i is ramified in Ki,j /Mi,j , then Gal(Ki,j /Mi,j ) is the inertia group in Ki,j /Q
of all primes above �i which contradicts the fact that Qp,el

�i
/Q is totally ramified at �i . �

Let Ci,j := ClMi,j /(ClMi,j )
p be the elementary p-quotient of the class group of Mi,j .

By class field theory, Ci,j is isomorphic to the Galois group Gi,j of the maximal abelian
unramified elementary p-extension Hi,j of Mi,j . Put �i,j = Gal(Mi,j /Q).

Hi,j
Di,j

Gi,j�Ci,j

Ki,j =Q(3)
(�i ,�j )

����������

Mi,j

���
���

���
��

�i,j

���
���

���
��

Qp,el
�i

���
���

���
���

Qp,el
�j

���
���

���
���

Q

Then the extension Hi,j /Q is Galois and �i,j acts on Gi,j (and on Ci,j ) as follows

τ · (a, Hi,j /Mi,j ) := τ (a, Hi,j /Mi,j )τ
−1 = (aτ , Hi,j /Mi,j ),

where (., Hi,j /Mi,j ) : Ci,j → Gi,j = Gal(Hi,j /Mi,j ) is the Artin symbol.
As consequence of Proposition 2.19, one has the following result.

PROPOSITION 2.21. We have

μ(i, j, k)= 0⇐⇒ lk splits in Ki,j /Mi,j ⇐⇒ (lk, Hi,j /Mi,j ) ∈ Di,j ,

where lk is a prime of Mi,j above �k .
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We finish this part with the question of how to find the subgroup Di,j .

LEMMA 2.22. There exists a unique subgroup C of Ci,j such that C� is normal in
Gal(Hi,j /Q) and such that Ci,j /C� Z/pZ. Hence, Di,j is the unique subgroup of Ci,j of
index p fixed by �i,j .

Proof. If C� is an another subgroup, then the quotient Gal(Hi,j /Q)/C� is a group of order p3.
Let K� be the fixed field by C�. The extension K�/Mi,j is unramified. First, it is obvious that
the group Gal(K�/Q) cannot be the group (Z/pZ)3. Now the groups Z/p2Z× Z/pZ and
the non-abelian group of order p3 different from Hp3 have the same particularity: all of the
subgroups of order p2 are cyclic, excepts one. Hence, if Gal(K�/Q) is different from Hp3 ,

we can assume that Gal(K�/Qp,el
�i

) is cyclic. Then, as K�/Mi,j is unramified, one deduces

that K�/Qp,el
�i

is unramified. A contradiction. Hence, Gal(K�/Q)�Hp3 . The Galois group
Gal(K�/Q) is a quotient of F�, the relations of this quotient are in F(3), and by comparing the
indices, one obtains that C� = C. �

2.7. How to compute the relations modulo F(4)

Recall that S = {�1, . . . , �d}. Following Remark 2.4, for j = 1, . . . , d , let us choose some
auxiliary primes qj such that:
(i) the prime qj is inert in Qp,el

�j
/Q;

(ii) for all i �= j , the prime qj splits in Qp,el
�i

/Q.

For j = 1, . . . , d , there exist pd−1 primes Q(∗)
j in Qp,el

S above the auxiliary prime qj .
Then, for j = 1, . . . , d , let us fix Qj |qj one of these primes and then let us choose xj ∈ GS

such that its restriction to Gal(Qp,el
S /Q) is equal to the inverse f−1

Qj
of the Frobenius fQj

of Qj .
Consider two primes �i and �j such that μ(i, j)= μ(j, i)= 0. Let �k be a third prime

(eventually �k = �i), such that μ(i, k)= μ(j, k)= 0.
We want to compute μ(i, j, k) when it is non-zero.
We use the notation of Sections 2.5 and 2.6 for the primes �i and �j .
First, the extension Ki,j /Q is a Heisenberg extension and we know that

yk ≡ [xi, xj ]a (mod Gal(QS/Ki,j))

and then μ(i, j, k)= a.
The field Qp,el

�i
contains p primes l

(1)
j , . . . , l

(p)
j above �j and p primes q

(1)
j , . . . , q

(p)
j

above qj . Now, in Gal(Ki,j /Q), fixing the subgroup generated by the Frobenius f
q
(∗)
j

of a

prime above qj is equivalent to fixing the inertia group of a place l
(∗)
i . For what follows,

we assume that f
q
(n)
j

corresponds to l
(n)
j , n= 1, . . . , p, and that moreover Qj ∩Ki,j = q

(1)
j

:= qj . Then the restriction of xj to Gal(Ki,j /Q) is equal to the inverse of the Frobenius fqj
of qj .

Consider the subfield Ni,j of Q(p)

(�i,�j )
/Qp,el

�i
fixed by the Frobenius fqj of qj . Then

[xi, xj ] ≡ (fqj )
x−1
i xj ≡ f

qj
x
−1
i
xj (mod Gal(QS/Ki,j)).
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Now the elements xj and f
qj

x−1
i

are in Gal(QS/Qp,el
�i

), and then

[xi, xj ] ≡ f
qj

fqi
∈ Gal(Ni,j /Qp,el

�i
),

where fqi is the Frobenius of the auxiliary prime qi in Gal(Qp,el
li

/Q).

Hence, as f
qj

fqi
is not trivial in Ni,j /Qp,el

�i
,

yk ≡ [xi, xj ]a (mod Gal(QS/Ki,j))

if and only if
yk ≡ fa

qj
fqi
∈Gal(Ni,j /Qp,el

�i
),

which still makes sense because yk ∈Gal(Qab
S /Qp,el

�i
). Hence, to have a ∈ Fp, it suffices to
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qj

fqi
in Gal(Ni,j /Qp,el

�i
).

The question next is how to find Ni,j ?
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above �j . Hence,

the extension Ni,j /Q
p,el

�i
is of the conductor dividing l

(2)
j · · · l(p)j .

Denote by Ci (l
(2)
j · · · l(p)j ) the p-elementary quotient of the ray class group of Qp,el

�i
of

conductor l(2)j · · · l(p)j . Let Bi,j be the p-elementary abelian extension of Qp,el
�i

of conductor

l
(2)
j · · · l(p)j : by class field theory, Ci (l

(2)
j · · · l(p)j )� Gal(Bi,j /Q
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�i
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If Gal(Bi,j /Qp,el
�i

) is cyclic, there is nothing to do: Bi,j = Ni,j .
Let A be a prime for which the Frobenius fA generates Gal(Ki,j /Mi,j ). Then the

extension Ni,j /Qp,el

�i
is such that:

(i) the restriction of fA is trivial;
(ii) the prime qj = q(1)j splits;

(iii) the primes q(n)j are inert, n= 2, . . . , d .

These properties characterize Ni,j (and then the subgroup Di,j ) but also the primes l(1)j

associated with qj := q
(1)
j . In conclusion, we have the following result.
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PROPOSITION 2.23. The quantity μ(i, j, k) ∈ Fp is such that

lk ≡
�
q
fqi
j

�μ(i,j,k) ∈ Ci (l
(2)
j · · · l(p)j )/Ei,j ,

where lk|�k is a prime ideal of Qp,el
�i

above �k not dividing l
(2)
j · · · l(p)j . In particular, when

k = j , one has to take lk = l
(1)
j .

3. Examples

3.1. Example

Take p = 3 and S = {�1 = 11 863, �2 = 19, �3 = 9811}.
First, we note that �i ≡ 1(p2) and that for all i �= j , the prime �i splits in Qp,el

�j
/Q:

μ(i, j)= 0. Now, thanks to Propositions 1.15 and 2.17, the relations of GS become:

e1,2,1 e1,2,2 e1,3,1 e1,3,2

ρ1 −μ(1, 2, 1) 0 −μ(1, 3, 1) 0
ρ2 0 −μ(1, 2, 2) 0 −μ(1, 3, 2)
ρ3 0 0 0 −μ(1, 2, 3)

e1,3,3 e2,3,1 e2,3,2 e2,3,3

ρ1 0 −μ(2, 3, 1) 0 0
ρ2 0 0 −μ(2, 3, 2) 0
ρ3 −μ(1, 3, 3) μ(1, 2, 3) 0 −μ(2, 3, 3)

Notation. If �i and �j are two fixed primes, put Mi,j =Qp,el
�i

Qp,el
�j

and let Hi,j be the
elementary unramified p-extension of Mi,j .

If A is an ideal of Mi,j , denote by σA := (A, Hi,j /Mi,j ) the Artin symbol of A in
Hi,j /Mi,j . If � is a prime of Q, then L� will be a prime of Mi,j above �.

3.1.1. The extension Q3,el
�1,�2

/Q. The number field Q3,el
�1
=Q(θ1) is the unique subfield

of Q(ζ11863) of degree three over Q. It is defined by a root θ1 of the equation: x3 +
x2 − 3954x + 39 104= 0. The field Q3,el

�2
=Q(θ2) is defined by a root θ2 of the equation:

x3 + x2 − 6x − 7= 0. The compositum M1,2 =Q3,el
�1

Q3,el
�2

is generated by a root θ of the
equation

x9 − x8 − 51 408x7 + 137 525x6 + 778 957 094x5 + 583 863 320x4

− 3 310 991 579 976x3 − 29 421 274 145 536x2 + 1 777 568 574 652 416x

+ 20 509 622 778 724 352= 0.

The 3-class group C1,2 of M1,2 is isomorphic to Z/3Z and Gal(K1,2/M1,2)= �σL19� =
�σL11 863�. We remark that σ−1

L19
= σL11 863 . Hence, by Proposition 2.21, μ(1, 2, 1) �= 0 and

μ(1, 2, 2) �= 0.
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=Q(θ1) is the unique subfield

of Q(ζ11863) of degree three over Q. It is defined by a root θ1 of the equation: x3 +
x2 − 3954x + 39 104= 0. The field Q3,el
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=Q(θ2) is defined by a root θ2 of the equation:

x3 + x2 − 6x − 7= 0. The compositum M1,2 =Q3,el
�1

Q3,el
�2

is generated by a root θ of the
equation

x9 − x8 − 51 408x7 + 137 525x6 + 778 957 094x5 + 583 863 320x4

− 3 310 991 579 976x3 − 29 421 274 145 536x2 + 1 777 568 574 652 416x

+ 20 509 622 778 724 352= 0.

The 3-class group C1,2 of M1,2 is isomorphic to Z/3Z and Gal(K1,2/M1,2)= �σL19� =
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3.1.2. The extension Q3,el
�1,�3

/Q. The number field Q3,el
�3

is defined by the equation x3 +
x2 − 3270x − 6904= 0. The compositum M1,3 =Q3,el

�1
Q3,el
�3

is generated by a root β of the
equation:

x9 − x8 − 25 866 384x7 + 495 245 276x6 + 166 553 813 929 280x5

− 2 186 400 407 814 976x4 − 56 279 799 218 070 071 808x3

+ 83 890 962 452 662 796 288x2 + 942 384 971 138 013 179 412 480x

+ 19 677 317 846 068 743 788 036 096= 0.

The class group of M1,3 is isomorphic to Z/3Z and Gal(K1,3/M1,3)= �σL11 863� =
�σL9811�. Moreover, σL19 = 1. Hence, by Proposition 2.21,μ(1, 3, 2)= 0, μ(1, 3, 1) �= 0 and
μ(1, 3, 3) �= 0.

3.1.3. The extension Q3,el
�2,�3

/Q. The compositum M2,3 =Q3,el
�2

Q3,el
�3

is generated by a root
γ of the equation:

x9 − x8 − 42 516x7 + 35 249x6 + 535 158 074x5 − 630 338 704x4

− 1 724 988 572 520x3 + 3 634 048 124 000x2 + 45 824 385 358 080x

− 112 874 663 383 552= 0.

The class group of M2,3 is isomorphic to (Z/3Z)3. The p-group �2,3 acts trivially on
σL19 and on σL9811 and then on �σL19 , σL9811� � (Z/3Z)2. Hence, �σL19 , σL9811� = D2,3 and
one verifies that Gal(K2,3/M2,3)= �σL87 |K2,3

�. The primes L19 and L9811 split in K2,3/M2,3,
and then μ(2, 3, 3)= μ(2, 3, 2)= 0. To finish, one has σL11863 /∈D2,3: μ(2, 3, 1) �= 0.

3.1.4. The ordering. Consider now the ordering X3 >X2 >X1. Then by the above
computation

�(ω(ρ1))=X3X2X1, �(ω(ρ2))=X3X2X2, �(ω(ρ3))=X3X3X1.

To conclude, the family {ρ1, ρ2, ρ3} is combinatorially free, the pro-p-group GS is mild, and
then by Theorem 1.11, the cohomological dimension of GS is two.

3.1.5. The computation of the relations modulo F(4). Recall that p = 3 and S = {�1 =
11 863, �2 = 19, �3 = 9811}.

First, we compute some auxiliary primes following Section 2.7: q1 = 31, q2 = 2, q3 =
191.

The quantity μ(2, 3, 1). The computation will be done in the Heisenberg extension
Q3,el
�2,�3

/Q. Following the notation of Section 2.7, we take i = 2 and j = 3.

Let O2 be the ring of integers of Q3,el
�2
=Q(θ2). One has the decompo-

sitions: 191O2 = l191l
�
191l

��
191, with l191 = (191, 35+ θ2), l�191 = (191, 75+ θ2), l��191 =

(191, 82+ θ2) and 9811O2 = l9811l
�
9811l

��
9811, with l9811 = (9811,−3147+ θ2), l

�
9811 =

(9811,−1158+ θ2), l
��
9811 = (9811, 4306+ θ2). The p-part of the ray class group of Q3,el

�2
of

conductor l�9811l
��
9811 is isomorphic to (Z/3Z)2: C2(l

�
9811l

��
9811)= �(3), (θ2)�. The computation
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in this ray class group and conditions (i)–(iii) of Section 2.7 allow us to verify that l9811 is
associated with fl191 : in Gal(K2,3/Q) the Frobenius fl191 generates the inertia group of l9811.
One verifies that f2 : θ2 �→ −θ2

2 + 4 and that lf2
191 = l��191. Then, following the computation of

Section 2.7:
[x2, x3] ≡ fl��191

∈Gal(N2,3/Q
p,el

�2
). (3)

To conclude, in the quotient C(l�9811l
��
9811)/E2,3, the ideals l��191 and l11863 are in the same

class and then (thanks to (3)):

y1 ≡ fl11863 ≡ [x2, x3](mod Gal(QS/K)),

and μ(2, 3, 1)= 1.
The quantities μ(1, 2, 2) and μ(1, 2, 1). The computation will be done in the

Heisenberg extension Q3,el
�2,�1

/Q and following the notation of Section 2.7, we take i =
2 and j = 1. One has in Q3,el

�2
: l�31 = (31, 4+ θ2), l��31 = (31, 12+ θ2), and 11 863O2 =

l11 863l
�
11 863l

��
11 863, where l11 863 = (11 863,−3181+ θ2), l�11 863 = (11 863,−382+ θ2),

l��11 863 = (11 863, 3564+ θ2). The ray class group of Qp,el
�2

of conductor l�11 863l
��
11 863 is cyclic

of degree three: C2(l
�
11 863l

��
11 863)= �(θ2)�. The computation allow us to see that fl31 generates

the inertia group of l11863 and that lf2
11 863 = l��11 863. Then

[x1, x2]−1 ≡ x−1
2 x−1

1 x2x1 ≡ fl��31
∈ Gal(Bi,j /Qp,el

�2
).

Now the restrictions of fl19 and of fl��31
in B�i,j /Q

3,el
�2

are the same. In conclusion:

y2 ≡ fl19 ≡ [x1, x2]−1 (mod Gal(QS/Q
p,el
�1,�2

))

i.e. μ(1, 2, 2)=−1. By a similar computation:
(i) fl11863 = f−1

l19
and then μ(1, 2, 1)= 1;

(ii) fl9811 = fl19 and then μ(1, 2, 3)=−1.
The quantities μ(1, 3, 3) and μ(1, 3, 1). By a similar computation in the number field

Q3,el
�3

, one also obtains μ(1, 3, 3)= μ(1, 3, 1)= 1.
To conclude, the computations above show the following.

PROPOSITION 3.1. The pro-3-group G{19,9811,11 863} can be defined by the generators x1, x2
and x3, and by the relations

ρ1 ≡ [[x1, x2], x1][[x1, x3], x1][[x2, x3], x1] (mod F(4)),

ρ2 ≡ [[x1, x2], x2]−1 (mod F(4)),

ρ3 ≡ [[x1, x3], x2]−1[[x1, x3], x3][[x2, x3], x1] (mod F(4)).

3.2. A second example

Take p = 3, S = {�1 = 13, �2 = 7, �3 = 11 971, �4 = 181} and consider the ordering X4 >

X3 >X2 >X1.
The relations ρ1 and ρ2 are of degree two. Indeed, as μ(4, 1) �= 0, thanks to

Propositions 1.15 and 2.14, one has �(ω(ρ1))=X4X1.
Moreover, μ(4, 2)= μ(3, 2)= 0 and μ(1, 2) �= 0, and then �(ω(ρ2))=X2X1.
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3.2. A second example

Take p = 3, S = {�1 = 13, �2 = 7, �3 = 11 971, �4 = 181} and consider the ordering X4 >

X3 >X2 >X1.
The relations ρ1 and ρ2 are of degree two. Indeed, as μ(4, 1) �= 0, thanks to
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Moreover, μ(4, 2)= μ(3, 2)= 0 and μ(1, 2) �= 0, and then �(ω(ρ2))=X2X1.
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Now for all i, μ(i, 3)= μ(i, 4)= 0, by Proposition 2.14, the relations ρ3 and ρ4 are in
F(3). Thanks to Proposition 2.17 and Example 2.6 the study of the relations ρ3 and ρ4 we will
be done in some Hp3 extension of Q.

First, let us remark that as �4 ≡ 1(mod p2). Hence, ε4,4,4(ρ4)= 0.
By a computation in the extension Q(3)

�3,�4
/Q, one obtains that μ(4, 3, 3)= 0 and that

μ(3, 4, 4) �= 0. By a computation in the extension Q(3)
�2,�4

/Q, one obtains μ(2, 4, 3) �= 0.
Recall that μ(4, 4, 3)= 0 (see Proposition 2.18).

Hence, ε4,4,3(ρ3)= μ(4, 4, 3)= 0, ε4,3,3(ρ3)= μ(4, 3, 3)= 0, and ε4,2,3(ρ3)=
μ(4, 2, 3) �= 0. Then �(ω(ρ3))=X4X2X3.

Moreover, ε4,4,3(ρ4)= μ(4, 3, 4) �= 0, and then �(ω(ρ4))=X4X4X3.
We conclude that GS is mild by noting that the family

{X4X1, X2X1, X4X2X3, X4X4X3}
is combinatorially free.
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