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by
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Abstract. — We present constructions of codes obtained from maximal orders over num-
ber fields. Particular cases include codes from algebraic number fields by Lenstra and
Guruswami, codes from units of the ring of integers of number fields, and codes from both
additive and multiplicative structures of maximal orders in central simple division algebras.
The parameters of interest are the code rate and the minimum Hamming distance. An
asymptotic study reveals several families of asymptotically good codes.
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1. Preliminaries

Given
(i) a number field K and a maximal order Λ defined on K;
(ii) a locally compact group G and K a compact of G;
(iii) an embedding Ψ : Λ ↪→ G such that the image Ψ(Λ) is a lattice of G, i.e. a discrete

subgroup with a fundamental domain of finite measure;
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(iv) a map Θ : Λ → A(Fp)N where A(Fp) is an alphabet over the finite field Fp, p a
prime, and N ≥ 1 is an integer,

we consider the code C = Θ
(
Ψ−1(zK∩Ψ(Λ))

)
, for some z in a given fundamental domain

of Ψ(Λ).

K,Ψ(Λ) ⊂ G

Λ
/�

Ψ
//

Θ
// C ⊂ A(Fp)N

Codewords of the code C are elements of A(Fp)N , and the parameters of interest are

• the rate logq |C|
N

of the code, where q = |A(Fp)|, N is the code length, and logq(x) =
lnx/lnq;
• its minimum Hamming distance dH(C) which counts the minimum number of compo-
nents in which any two distinct codewords differ.

The goal is to obtain both a high rate and a high minimum distance. The trade-off
between both is characterized by the Singleton bound, which for nonlinear codes states
that

logq |C| ≤ N − dH(C) + 1.
Asymptotically, the relative minimum distance dH(C)/N is considered, and families of
codes (Ci)i with length Ni that satisfy

lim inf
i

logq |Ci|
Ni

> 0, lim inf
i

dH(Ci)
Ni

> 0,

are called asymptotically good codes, e.g. [30, Chapter I, §1.3]. The alphabet size could
more generally be allowed to grow with i, though we consider codes for which q is constant,
which are of special interest.

A first instance of the above principle is the code construction from algebraic number fields
due to Lenstra [12] (and rediscovered independently by Guruswami [3]). An asymptotic
analysis of this code instance was provided in both works, and asymptotically good codes
were found.

Example 1.1. — [Lenstra [12], Guruswami [3]] Let K be a number field of degree n
with infinite places P∞ and let OK be its ring of integers. Set Λ = OK. Take Ψ to be the
embedding of K in its archimedean completions, so that G = ∏

σ∈P∞ Kσ ' Rn, and Θ the
reduction modulo N distinct prime ideals of OK above p. Then N ≤ n and A(Fp) is a
finite extension of Fp. In particular, A(Fp) = Fp when N = n.

Remark 1.2. — It is also possible to consider prime ideals above different primes p, as
done in [12, 3], in which case Θ should be defined using ∏pA(Fp) rather than A(Fp)N .
This paper focuses on the case where all prime ideals are above the same prime, which
is usually more standard[20, 1,§1-§2 (vi)] from a coding theory view point, even though
the results that will be proven hold in the general case.
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A natural extension of Lenstra’s construction is the Arakelov construction of Goppa
codes from function fields by Nakashima [17, 18]. Another extension of Goppa codes
to division algebras in the function field situation can be found in a work by Morandi
and Sethuraman [16]. Neither Nakashima nor Morandi and Sethuraman consider the
asymptotic behavior of the codes.
This paper presents a generalization of the work by Lenstra and Guruswami, in the
number field case. In particular, our framework gives rise to the following cases, whose
details will be given later on in the paper.

Example 1.3. — Firstly, we use the multiplicative structure of the ring of integers OK,
where K is a number field of signature (r1, r2). Take Λ to be the units of OK , Λ = O×K .
Then Ψ is the logarithmic embedding of K in G = Rr1+r2 and Θ is the reduction modulo
some prime ideals of OK above the prime p. The term logarithmic embedding is used by
abuse of language, since the kernel of Ψ is finite, given by the roots of unity of K.

Note that the logarithmic embedding of units O×K has been studied to obtain asymptoti-
cally good lattices, with respect to density, by Rosenbloom and Tsfasman [27].

Example 1.4. — Next, we give a construction using the additive structure of a central
simple division algebra A of degree d with center K, where K has degree n. Let Λ be a
maximal OK-order of A. Take Ψ to be the embedding of A in its archimedean completions
and Θ to be the reduction modulo some prime ideals of Λ. Then G = ∏

σ∈P∞ Aσ ' Rnd2 ,
where P∞ is the set of infinite primes of K. We will also focus on the case where all prime
ideals of Λ are above the same prime p of OK, itself above p. The alphabet A(Fp) is a
simple algebra of finite dimension over OK/p, which is itself an extension of Fp.

Example 1.5. — Consider the setting of Example 1.4, with Λ a maximal order of a
central simple division K-algebra A of degree d. Consider the group Λ1 of elements of
Λ of reduced norm 1. The map Ψ is the embedding of Λ1 in G =

∏
σ∈P0

R∪PC

Sld(Kσ), where

PC is the set of complex places, and P0
R is the set of real places which do not ramify. As

before, the map Θ corresponds to the reduction modulo some prime ideals of Λ above
the same prime.

As mentioned above, the code parameters to be studied are the Hamming distance dH(C)
and the relative Hamming distance dH(C)/N for the asymptotic case, and the code rate
logq |C|/N . To understand dH(C) and dH(C)/N , it is needed to study the volume of K
via different norms appearing in G and Λ respectively. For |C|, the volume of interest is
that of K ∩Ψ(Λ). As explained in [12], classical arithmetic estimations are typically not
fine enough to guarantee that C = Θ(Ψ−1(K ∩Ψ(Λ))) contains enough points. It is then
needed to translate the initial code, for which the following lemma is essential.

Lemma 1.6. — Let G be a locally compact group equipped with the Haar measure µ.
Let Γ ⊂ G be a lattice and let D be a fundamental domain respecting the action of Γ on
G. Let K be a compact of G. Then there exists z ∈ D such that

#
(
zK ∩ Γ

)
≥ µ(K)
µ(D) .

This lemma is a generalization of a critical point of the proof of Theorem 2.1 by Lenstra
[12]. We provide a proof for the sake of completeness.
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Proof. — We recall that a lattice of a locally compact group G is a discrete subgroup
with a measurable fundamental domain of finite measure, in which case all fundamental
domains are measurable with the same measure. Denote by χ the characteristic function
on K. Then K =

⋃̇
y∈Γ

(
yD ∩ K

)
, and

µ(K) =
∑
y∈Γ

µ(yD ∩ K)

=
∑
y∈Γ

∫
z∈D

χ(yz)dµ

=
∫
z∈D

∑
y∈Γ

χ(yz)dµ

=
∫
z∈D

#
(
K ∩ zΓ

)
dµ.

But µ(K) = µ(K)
∫
z∈D

1
µ(D)dµ =

∫
z∈D

µ(K)
µ(D)dµ. Then, assume that for all z ∈ D,

#
(

K ∩ zΓ
)
<
µ(K)
µ(D) . As #

(
K ∩ zΓ

)
∈ N and µ(K)

µ(D) is fixed, there exists λ > 0 such that

for all z ∈ D, µ(K)
µ(D) −#

(
K ∩ zΓ

)
≥ λ. Hence,

0 =
∫
z∈D

[
µ(K)
µ(D) −#

(
K ∩ zΓ

)]
dµ ≥ λµ(D) > 0,

a contradiction, and there exists a z ∈ D for which

#
(
K ∩ zΓ

)
≥ µ(K)
µ(D) .

The claim is then obtained by setting z = z−1, since #
(
K ∩ z−1Γ

)
= #

(
zK ∩ Γ

)
.

For the codes obtained in this paper, the above lemma gives a lower bound dH(C) ≥ f(t),
while considerations on the volume of K lead to a lower bound of the type logq |C| ≥ g(t),
where f and g depend on the arithmetic context considered, and where t ∈ R>0 is a
variable characterizing the compact K. We will focus on two cases:
Part I: The number field case, which includes Example 1.1 for Λ = I ⊂ OK an ideal of
OK, already studied in [12, 3] for Λ = OK, and Example 1.3 for Λ = O×K . For the former
situation, with K = K(t) a compact of Rn, we get

dH(C) ≥ N − n logq(2t) + logq N(I)
and assuming N > n logq(2t)− logq N(I),

logq |C|
N

≥ 1
N

logq(2r1+r2πr2) + n

N
logq(t)−

1
N

logq N(I)− 1
2N logq |discK|.

For the latter, we have instead
dH(C) ≥ N − r1 logq(1 + e2t)− 2r2 logq(1 + et).

If moreover N > n logq(2e2t), then

logq |C| ≥ logq
tr1+r2

2t+ 1 + logq(2r1+r2)− logq(RegK)− logq(r1 + r2).
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Part II: The maximal order case includes Examples 1.4 and 1.5. In the former case,
the additive one, consider a two-sided ideal I of a maximal order Λ in a central simple
division algebra A of degree d. The ideal I is chosen disjoint from the primes P1, . . . ,PN

of Λ. We have
dH(C) ≥ N − nd2 logq

( 2t
d1/2

)
+ logq N(I).

Then assuming that N + logq N(I) > nd2 logq
(

2t
d1/2

)
, we get

logq |C| ≥ logq(Vr1
d2V

r2
2d2) + nd2 logq(t)− logq N(I)− 1

2 logq ∆A,

where Vk is the volume of the ball of center 0 and radius 1 in Rk, and ∆A is the absolute
discriminant of A. In the latter multiplicative case, we get

dH(C) ≥ N − nd

2 (logq(2t||z||∞) + logq(
√
d)),

and assuming that N > nd
2 (logq(2t||z||∞) + logq(

√
d)), then

logq |C| ≥ n logq(t)− logq ζK(2)− 3
2 logq |discK| −

∑
p∈S0

(Np− 1),

where S0 is the set of finite primes of OK that ramify in A, and ζK is the Dedekind zeta
function of K. We note the presence of the element z in the lower bound for dH(C).
For the resulting codes to be interesting, the above lower bounds should be nontrivial,
in fact, we need to have ranges for the parameter t such that f(t) > 0 and g(t) > 0. It
turns out that
(i) for q large enough, suitable ranges for t always exist;
(ii) asymptotically, the requirements on the lower bounds become f(t)/N = f(t, N)/N >

0 and g(t)/N = g(t, N) > 0: in the number field and unit code cases, we let K = Kn

vary in an asymptotically good tower of extensions to obtain, as desired, families of
codes (Cn)n such that

lim inf
n

1
[Kn : Q]dH(Cn) > 0 and lim inf

n

1
[Kn : Q] logq |Cn| > 0.

Similarly for additive codes in division algebras, we can associate to an asymptot-
ically good tower of extensions a sequence of division algebras with center in this
tower, to obtain asymptotically good codes. Among the four situations discussed
above, multiplicative codes in division algebras are different in that one of the lower
bound remains a function of z. This complicates the asymptotic study of the Ham-
ming distance. Yet the other three situations give rise to families of asymptotically
good codes.

2. Questions

The following questions are left open:
1. We obtain asymptotically good additive codes over division algebras with a matrix

alphabet. The existence of such codes but over a finite field alphabet is open.
2. Asymptotically good multiplicative codes over division algebras are yet to be found.
3. It would be valuable to discuss the tightness of the proposed bounds.
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4. The asymptotic case for division algebras over function fields is also an interesting
open problem.

5. The decoding of Goppa codes has been well studied, it is natural to wonder whether
it can be translated to the scenario considered in this paper. This question seems
not easy, the reason behind is that there is no immediate analog for the encoding.

Numerical computations were performed using the softwares GP-Pari [23], KASH [10]
and Octave [19].

PART I
NUMBER FIELD CODES

Let K be a number field of degree n over Q, with signature (r1, r2), and n = r1 + 2r2.
• The set P of places of K comprises the subset P∞ of infinite places and the subset P0 of
finite places, where P∞ contains the r1 embeddings of K into R and the r2 embeddings
of K into C.
• Let OK be its ring of integers.
• For p a maximal ideal of OK, we identify p and the place v associated to p; we denote
by ιv : K ↪→ Kp the embedding of K into its completion Kp (we may also write Kv).
• Similarly, if v ∈ P∞, we denote by ιv the embedding of K into Kv, where Kv ' R or
Kv = C.
• Let discK be the discriminant of K and rdK = |discK|1/n be its root discriminant.
• Set r = r1 + r2. By Dirichlet’s Unit Theorem, O×K ' µK ×Zr−1, where µK is the group
of roots of unity of K.
• Let RegK be the regulator of K.
• If x ∈ OK, N(x) denote its absolute norm i.e. N(x) = #OK/(x). More generally, if I
is an integral ideal of OK , we have N(I) = #OK/I.

3. An Arakelov View Point of Number Field Codes

In this section, we recall Lenstra’s construction of codes over algebraic number fields [12],
while rephrasing it using the language of Arakelov divisors, which emphasizes the analogy
and differences with the construction of Goppa codes in the context of function fields.

3.1. Arakelov divisors and geometry of numbers. — An Arakelov divisor A of K
is a pair (I, (tσ)σ), where I is a fractional ideal of OK and where σ ∈ P∞ and tσ ∈ R>0.
We also write the formal sum

A =
∑
p∈P0

vp(I) · p +
∑
σ∈P∞

tσ · σ

where vp(I) ∈ Z is the valuation of I in p.
For x ∈ OK, x 6= 0, its Arakelov divisor (x) is given by

(x) =
∑
p∈P0

vp(x) · p +
∑
σ∈P∞

−|σ(x)| · σ,

where (x) = xOK is the fractional principal ideal generated by x.
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Definition 3.1. — Let A be an Arakelov divisor. Set
L(A) := {x ∈ OK, (x) + A ≥ 0} ∪ {0}.

The inequality (x) ≥ −A is an inequality between divisors. Thus x ∈ L(A) if and only if:
(i) for every prime p, vp(x) ≥ −vp(I); in particular, x is p-integral for all p - I;
(ii) for every embedding σ ∈ P∞, |σ(x)| ≤ tσ.

Remark 3.2. — The set L(A) is never empty since it contains 0. When considering
function fields, for constructing Goppa codes, adding 0 endows L(A) with a vector space
structure, which is not necessarily the case here in the context of number fields. Unlike
for curves over finite fields, the set L(A) loses the property of linearity, failing the formula
of Riemann-Roch. It is possible to remedy this by modifying the definition of L(A) (see
[29]).

From now on, we assume that I−1 = ∏t
i=1 p

−ai
i , with ai < 0, that tσ = t for every

σ ∈ P∞, and we consider the Arakelov divisor A = (I−1, (t)σ). Then L(A) is a subset of
the integral ideal I.
Take

Ψ : OK →
∏
v∈P∞

Kσ ' Rr1 × Cr2 ' Rn,

the natural embedding. The following is well known.

Proposition 3.3. — The subgroup Ψ(I) of Rn is a discrete subgroup of covolume
2−r2N(I)

√
|discK|, where N(I) = #OK/I. As a consequence, the set L(A) is finite.

Proof. — See e.g. [11, Chapter V]. The embedding Ψ(I) of I into the completions of K
is discrete and thus the intersection of Ψ(I) with any compact of Rn is finite.

For t ∈ R>0, consider the compact K(t) of Rn given by

K(t) = {x ∈
∏
σ∈P∞

Kσ, |σ(x)| ≤ t, ∀σ}.

Definition 3.4. — Let A = (I−1, (t)σ) be an Arakelov divisor. Set
N∞(A) = 2r1πr2tn.

This is the volume of the compact K(t) of Rn, with respect to the Lebesgue measure.

A classical approach to the geometry of numbers gives a situation where L(A) contains
at least one nonzero element.

Proposition 3.5. — If N∞(A) ≥ 2rN(I)
√
|discK|, the set L(A) contains at least one

nonzero element, with r = r1 + r2.

Proof. — This is a consequence of the well known Minkowski Theorem, see e.g. [11,
Chapter V].

This is where we use the extension of Lenstra’s result, Lemma 1.6, which shows that if
we translate the compact bounded by N∞(A), then L(A) contains at least 2r2N∞(A)

N(I)
√
|discK|

elements.
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Proposition 3.6 (Lenstra). — Let D be a fundamental domain of Ψ(I). There exists
a z ∈ D such that z + K(t) contains at least 2r2N∞(A)

N(I)
√
|discK|

elements of Ψ(I). Such a z is
said A-admissible.

Proof. — This is Lemma 1.6 applied to our situation.

Definition 3.7. — For z ∈ Rn, set Lz(A) = Ψ−1(z + K(t)) ∩ I.

Remark 3.8. — As Ψ is an embedding,

Ψ−1((z + K(t)) ∩Ψ(I)) = Ψ−1(z + K(t)) ∩Ψ−1(Ψ(I)) = Ψ−1(z + K(t)) ∩ I.

3.2. The code construction. — Let I be an ideal of OK and let T = {p1, . . . , pN}
be a set of prime ideals of OK, disjoint from I. Consider

Θ : OK →
N∏
i=1
OK/pi, x 7→ (x mod p1, . . . , x mod pN).

As motivated in Remark 1.2, we assume that for i = 1, . . . , N , #OK/pi = q, q a power of
some p.

Number field codes follow the principle given in the introduction:

G =
∏
σ∈P∞

Kσ ' Rn

OK

Ψ

55

Θ
**

A(Fp)N =
∏
p∈T
OK/p

Definition 3.9. — Suppose z is A-admissible for the Arakelov divisor A. Set Kz(t) =
z + K(t). The number field code Cz(A) is obtained by

Cz(A) = Θ
(
Ψ−1(Kz(t)) ∩ I

)
= Θ(Lz(A)).

When I = OK, the code is said to be integral, which corresponds to the context of Lenstra
and Guruswami.

3.3. The parameters. — We consider the Hamming distance dH(C) of the code C =
Cz(A) first.

Proposition 3.10. — For the number field code C = Θ
(
Ψ−1(Kz(t)) ∩ I

)
of length N

constructed above as a subset of FNq , its minimum distance dH(C) satisfies

dH(C) ≥ N − n logq(2t) + logq N(I).

Proof. — Take two distinct codewords which agree on the largest number |I| of com-
ponents, then by the surjectivity of Θ, their difference has a preimage y ∈ I such
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that y ∈
⋂
i∈I

pi =
∏
i∈I

pi; y 6= 0. Hence y ∈ J := I
∏
i∈I

pi. But OK/(y) � OK/J and

#OK/(y) ≥ #OK/J . Then
#OK/J = N(I)

∏
i∈I

N(pi) = N(I)q|I|

and #OK/(y) = N(y). Since |I| = N − dH(C), it follows that
N − dH(C) ≤ logq N(y)− logq N(I).

But for every σ ∈ P∞, and for x, x′ the respective preimages of the two codewords at
minimum distance,
|σ(y)| = |σ(x)− σ(x′)| = |σ(x)− zσ − σ(x′) + zσ| ≤ |σ(x)− zσ|+ |σ(x′)− zσ| ≤ 2t,

where z = (zσ)σ ∈ G, and consequently N(y) ≤ (2t)n.

Corollary 3.11. — Let Cz(A) be a number field code as constructed above.
If N > n logq(2t)− logq N(I), then Θ|Lz(A) is injective.

Proof. — If x 6= x′, with x, x′ ∈ Lz(A), then dH(Θ(x),Θ(x′)) ≥ dH(C) > 0.
Under the injectivity hypothesis, one has:

Proposition 3.12. — Let C = Cz(A) be an Arakelov code.
Assume that N > n logq(2t)− logq N(I). Then

logq |C|
N

≥ 1
N

logq(2rπr2) + n

N
logq(t)−

1
N

logq N(I)− n

2N logq rdK,

where r = r1 + r2.

Proof. — Indeed, in this case the map Θ|Lz(A) is injective. Then, the lower bound for
logq(C) results from Proposition 3.6.
Number field code constructions have been proposed to obtain asymptotically good codes,
which we will discuss in Section 5.

4. Unit Codes

4.1. The code construction. — Let us start with a number field K of degree n =
r1 + 2r2. Let OK be its ring of integers and let O×K be the group of units of OK. We write
PC for the infinite complex places. By Dirichlet’s Unit Theorem, O×K ' µK × Zr1+r2−1,
where µK it the roots of unity in K showing that O×K is a lattice. Let us be more precise.
Set r = r1 + r2. Let

Ψ : O×K −→ Rr

ε 7→ (δσ log |σ(ε)|)σ
where σ ∈ P∞ and where δσ = 2 if σ ∈ PC and 1 otherwise. The homomorphism Ψ is
called the logarithmic embedding by abuse of language, since its kernel µK is finite. This
does not prevent this situation to fit our general framework.
Set H0 = Ψ(O×K) and take a Z-basis (εi)i=1,··· ,r−1 of O×K (mod µK).
Consider the lattice H of Rr

H := Zx0 ⊕
(⊕

i

ZΨ(εi)
)

= Zx0 ⊕H0 ⊂ Rr,

9



where x0 = (1, . . . , 1, . . . , 1). Then x0 is orthogonal to H0.

Proposition 4.1. — H is a lattice of Rr of covolume µ(Rr/H) = r RegK, where RegK
is the regulator of the number field K.

Proof. — It is an easy computation.

Let us restrict the map Ψ to Λ := 〈ε1, · · · , εr−1〉 and consider the map ΨΛ : Λ → H0,
ε 7→ Ψ(ε), which is then an isomorphism of groups.
Consider the projection map: PrH0 : H→ H0.

Now for t ∈ R>0, take the compact K(t) of Rr defined by

K(t) = {x ∈
∏
σ∈P∞

Kσ, |σ(x)| ≤ t, ∀σ},

of volume µ(K(t)) = (2t)r (when taking the Lebesgue measure).

Similarly to the additive situation, the question is to estimate #(H ∩ Kz(t)). Let D be a
fundamental domain of H. By Lemma 1.6, there exists a z ∈ D such that

#(Kz(t) ∩H) ≥ µ(K(t))
µ(Rr/H) = 2rtr

rRegK

where Kz(t) = (z + K(t)).

Definition 4.2. — Set H0,z(t) = PrH0

(
Kz(t) ∩H

)
.

Lemma 4.3. — One has #Ψ−1
Λ

(
H0,z(t)

)
≥ 2rtr

(2t+ 1)rRegK
.

Proof. — Take x1, x2 ∈ Kz(t) ∩ H such that PrH0(x1) = PrH0(x2). Write xi = λix0 + y
with y ∈ H0, λi ∈ Z, i = 1, 2. Then |λ1 − λ2| ≤ 2t. Now as λi are integers, then given
x ∈ Kz(t), there are at most (2t + 1) elements x′ in Kz(t) such that PrH0(x) = PrH0(x′).
Thus

#Ψ−1
Λ

(
H0,z(t)

)
≥

#
(
Kz(t) ∩H

)
2t+ 1 ≥ 2rtr

(2t+ 1)rRegK
.

Let T = {p1, . . . , pN} be a set of prime ideals of OK. Consider Θ the reduction map

Θ : O×K →
N∏
i=1
OK/pi, x 7→ (x mod p1, . . . , x mod pN).

Definition 4.4. — The unit code Cz,t(O×K) of the number field K is the code

Θ
(
Ψ−1

Λ

(
H0,z(t)

))
.

10



G = Rr

Λ ⊂ O×K

Ψ
22

Θ
**

A(Fp)N =
∏
p∈T
OK/p

4.2. The parameters. — We bound the minimum distance dH(Cz,t(O×K)) and the rate
logq Cz,t(O×K)/N . We start with an observation.

Lemma 4.5. — For ε and ε′ in Ψ−1
Λ

(
PrH0(Kz(t))

)
one has:

e−2t/δσ ≤
∣∣∣∣ σ(ε)
σ(ε′)

∣∣∣∣ ≤ e2t/δσ

and ∣∣∣NK/Q(ε− ε′)
∣∣∣ ≤ (1 + e2t)r1(1 + et)2r2 .

Proof. — Let us write ΨΛ(ε) = (a1, · · · , ar) and ΨΛ(ε′) = (a′1, · · · , a′r). Then a1 + · · · +
ar = 0 = a′1 + · · ·+ a′r. Now there exist λ, λ′ ∈ Z such that x = λx0 + ΨΛ(ε) ∈ Kz(t) and
x′ = λ′x0 + ΨΛ(ε′) ∈ Kz(t). Hence, −t ≤ λ− λ′ + (ai − a′i) ≤ t for all i = 1, · · · , r. After
summing for i = 1 to r, one obtains −rt ≤ r(λ− λ′) ≤ rt and then |λ− λ′| ≤ t. Then

|ai − a′i| ≤ |λ− λ′ − (ai − a′i)|+ |λ− λ′| ≤ 2t.
One concludes thanks to the fact that ai = δσ log(σ(ε)) for σ ∈ P∞. Hence∣∣∣NK/Q(ε− ε′)

∣∣∣ =
∏
σ∈P∞

∣∣∣σ(ε)− σ(ε′)
∣∣∣δσ

=
∏
σ∈P∞

|σ(ε)|δσ
∣∣∣∣1− σ(ε′)/σ(ε)

∣∣∣∣δσ ≤ (1 + e2t)r1(1 + et)2r2 .

Following the computations of Section 3.3, one obtains:

Proposition 4.6. — First
dH(Cz,t(O×K)) ≥ N − r1 logq(1 + e2t)− 2r2 logq(1 + et) ≥ N − n logq(2e2t).

If moreover N > n logq(2e2t), then

logq |Cz,t(O×K)| ≥ logq
tr

2t+ 1 + logq(2r)− logq(RegK)− logq r.

Note that
N > n logq(2e2t) ⇐⇒ 1

2

(
(ln q)N

n
− ln 2

)
> t

for which a range of t > 0 always exists, by letting q grow as needed. Furthermore, for
the second lower bound to be nontrivial, we need

logq tr

2t+1 + logq(2r) > logq RegK − logq r,

11



or equivalently
ln tr

2t+1 + ln(2r) > ln RegK − ln r
and for n > 1, it is always possible to find a range of suitable t.

Example 4.7. — For number fields of degree n = 8, Proposition 4.6 gives the condition
1
2

(
(ln q)N8 − ln 2

)
> t.

For a code of lengthN = 8, we need a prime that splits, in which case q = p. Alternatively,
a code of length N = 4 can be obtained by considering a prime that splits into only four
factors, with q = p2. In both cases, the above condition becomes

1
2 (ln p− ln 2) > t.

For p = 541, we get t < 2.8001 while for p = 569, we get t < 2.8253.
• Consider the totally complex number field K1 given by the polynomial x8 − x7 + x5 −
x4 + x3 − x + 1, with discriminant discK1 = 34 · 56 and regulator RegK1 = 4.661820.
This is a cyclotomic field, with a primitive 15th root of unity. Since 541 ≡ 1 (mod 15),
541 splits in K1, and we have

541OK1 =
8∏
i=1

pi, 569OK1 =
4∏
i=1

qi.

• Consider the totally real number field K2 given by the polynomial x8 − 7x6 + 14x4 −
8x2 + 1, with discriminant discK2 = 28 · 34 · 56 and regulator RegK2 = 24.388406. We
have

541OK2 =
8∏
i=1

pi, 569OK2 =
4∏
i=1

qi.

The lower bounds are shown in Figure 1, for n = N = 8 and values of t varying between
1.4 and 2.8.

5. Asymptotic Code Behavior

We will address the design of asymptotically good unit codes, defined in Section 4. For
asymptotically good number field codes (see Section 3), we refer to the works by Lenstra
[12] and by Guruswami [3]. We will also consider the Singleton bound asymptotically.
The asymptotic study considered relies on the study of infinite extensions of number
fields, in which root discriminants are bounded. When the extension is not ramified, the
root discriminant is constant.
As noted in [5], the question of the nature of ramification in such extensions is linked to
a deep conjecture of arithmetic geometry (the 5a conjecture) by Fontaine-Mazur.

5.1. Background on Number Field Towers. — There is an abundant literature on
infinite number field towers, e.g. [26], [15], [28], [31], [6], [7], [14].
We introduce now some basic notations concerning towers of number fields (see [31]).

Definition 5.1. — A sequence (Kn)n, n ∈ N ∪ {0}, of number fields, where K0 = K, is
called a tower of K if for all n, Kn ( Kn+1 so in particular [Kn : K]→∞ with n.

12



Figure 1. The trade-off between the lower bound on dH(C) and logq(|C|) are
shown. The Singleton bound characterizes the optimal trade-off between dH(C)
and logq(|C|), which corresponds to the maximum distance separable (MDS)
case, shown as a reference.

Assuming GRH in a tower L = ⋃
nKn of K means that every field in the tower satisfies

its corresponding Generalized Riemann Hypothesis.
Then given a tower (Kn)n, set:
• gn = gKn = ln(

√
|disc(Kn)|);

• hn = |Cl(Kn)| the class number of Kn;
• Regn = RegKn the regulator of Kn.

Definition 5.2. — Let K be a number field and let L/K be an infinite algebraic exten-
sion (the real places remain real). Let (Kn)n be a tower of number fields of K such that⋃
n

Kn = L. Set rdL := lim sup
n
{rdKn}. The quantity rdL does not depend on the choice of

(Kn)n. The extension L/K is said to be asymptotically good if the quantity rdL is finite.

Let p be a prime number. The p-towers of class fields provide natural examples of
asymptotically good extensions. More precisely, let Σ and T be two finite sets of finite
places of K, with T ∩ Σ = ∅. Let KT

Σ/K be the maximal pro-p-extension of K which is
not ramified outside Σ and totally split in the places of T (the real places remain real).
The extensions KT

Σ/K have been studied by numerous authors, see [2] for a tentatively
exhaustive survey.
The following proposition is well known.

Proposition 5.3. — If (Σ, p) = 1 and if KT
Σ/K is infinite, then KT

Σ/K is asymptotically
good:

rdK ≤ rdKTΣ
≤ rdK

( ∏
p∈Σ

N(p)
)1/[K:Q]

.

Furthermore, if Σ = ∅, then rdKT∅
= rdK.

13



Proof. — This is a local computation, well known when Σ = ∅. For the general case, see
e.g. [7] or [14].

When Σ = ∅, we say that the tower KT
∅ is not ramified. This is the seminal case, see the

article by Martinet [15].
Set GT

Σ = Gal(KT
Σ/K). Class field theory gives information on the maximal abelian

quotient GT,ab
Σ of the pro-p group GT

Σ:

GT,ab
Σ ' ClTΣ,p(K),

where ClTΣ,p(K) is the p-Sylow of the T -class group of K, for a given ray built over Σ (the
isomorphism is given by Artin’s symbol [2]). When Σ = ∅, ClT∅,p = ClTp (K) is the p-Sylow
of the T -class group of K which is by definition the p-Sylow of the quotient of the class
group Cl(K) of K by the classes generated by T .
5.1.1. Criteria. — To simplify, we only consider unramified towers. For towers with
ramification, see e.g. [7], [6], [14]. The Golod- Shafarevich Theorem [26] guarantees the
existence of asymptotically good p-towers.
If p is a prime number and A an abelian p-group, we denote by dpA the p-rank of A i.e.,
dpA = dimFpA/A

p.

Theorem 5.4. — Let p be a prime number. Set δK,p = 1 if K contains pth roots of
unity, 0 else. Let K/K0 be a cyclic extension of degree p. If

dpClTp ≥ 2 + 2
√
r1 + r2 + |T |+ δK,p,

then the extension KT
∅ /K is infinite.

Proof. — See e.g. [14].

This results, together with a result of genus theory, lead to:

Corollary 5.5. — Let K/K0 be a cyclic extension of degree p. Let ρ be the number of
places finite or not) of K0 which ramify in K/K0. If

ρ ≥ 2 + r1(K0) + r2(K0) + |T |+ δK0,p + 2
√
r1 + r2 + |T |+ δK,p,

then the extension KT
∅ /K is infinite.

Proof. — Indeed, by genus theory (see e.g. [2, Corollary 4.5.1, Chapter IV, §4]), one has
dpCl(K) ≥ ρ− (r1(K0) + r2(K0) + δK0,p) and obviously, dpClp ≤ dpClTp + |T |.

5.1.2. The Brauer-Siegel Inequality. — The Brauer-Siegel Inequality is a well known
inequality from algebraic number theory (see e.g. [11] Chapter XIII §4) : ln RegK ≤
C ln |discK|, where C is a universal constant. It tells that along an asymptotically good
extension, the quantity 1

[K:Q] logq RegK remains bounded. In [31], Tsfasman and Vladut
show how it is possible to give a good asymptotic estimation of the Brauer-Siegel inequal-
ity, by making explicit the quantity C. In fact, they even give a recipe to improve the
universal constant C, depending on the context, see Section 5.1.3.
Assuming GRH in an asymptotically good extension L/K, Tsfasman and Vladut in [31]
prove that lim

n

log(Regnhn)
gn

exists in the tower L = ⋃
nKn. We denote by B(L/K) this limit.
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Theorem 5.6 (Tsfasman-Vladut, Theorem G). — Given an asymptotic good tower
L = ⋃

nKn of K.
1. Assuming GRH, the limit B(L/K) := lim

n

ln(Regnhn)
gn

exists and depends only on L/K,
not on the choice of tower (Kn)n with limit L. Without assuming GRH, one has the
same conclusion if the tower of number fields (Kn)n is Galois relatively to K.

2. Assuming GRH, B(L/K) ≤ 1.0939 for all L/K. If K is totally imaginary, then
B(L/K) ≤ 1.0765.

3. Without assuming GRH, one has lim sup
n

ln(Regnhn)
gn

≤ 1.1589.

As a consequence, one obtains

Corollary 5.7. — Given an asymptotic good tower L = ⋃
nKn of K, then

lim supn 1
[Kn:Q] logq Regn ≤

B(L/K)
2 logq rdL − lim infn 1

[Kn:Q] logq hn
≤ B(L/K)

2 logq rdL.

5.1.3. Examples. —

Example 5.8. — A first illustration is the infinite Hilbert 2-tower of quadratic number
fields K as soon as K/Q is sufficiently ramified. Apply Corollary 5.5 to a quadratic
extension K/Q with p = 2. If ρ ≥ 4+ |T |+2

√
r1 + r2 + |T |+ 1, the maximal 2-extension

KT
∅ of K, totally split in T , is infinite. For r2 = 1 and |T | = 1, the imaginary quadratic

field K/Q has an infinite 2-tower KT
∅ which is T -split as soon as ρ ≥ 9. For example, the

fieldK = Q(
√
−3 · 5 · 7 · 11 · 13 · 17 · 19) has a 2-towerKT

∅ = ⋃
nKn which is T = {p}-split

and infinite for every prime p of OK. Furthermore,

lim sup
n

1
[Kn : Q] ln RegKn ≤

1.0765
2 ln(193993801/2) ' 4.5161 . . .

Example 5.9. — These criteria have been refined (see e.g. [28], [9]). An immedi-
ate refinement relies on Chebotarev density Theorem. Suppose that d2Cl(K) ≥ 2 +
2
√
r1 + r2 + |T |+ δK and that the places of T are totally split in the 2-field of Hilbert

of K. Then d2ClT2 (K) = d2Cl2(K) ≥ 2 + 2
√
r1 + r2 + |T |+ δK and the number field

K has an infinite 2-tower KT
∅ , which is T -split (according to Theorem 5.4). By the

Chebotarev density Theorem, the places of T are of positive density. For example,
K = Q(

√
−3 · 5 · 7 · 11 · 13 · 19) has a 2-tower which is T = {`}-split for every inert

prime ` in K/Q: since ` is principal, it is totally split in the Hilbert field of K. A com-
putation shows that Cl2(K) ' (Z/2Z)6. The condition on ` indicates that their density
is 1/2. For example, ` = 23, 29, 37, 41, . . . are suitable. Furthermore, under GRH,

lim sup
n

1
[Kn : Q] ln Regn ≤

1.0765
2 ln(11411401/2) ' 3.7536 . . .

Example 5.10. — Following Martinet [15, Example 5.3], we considerK0 = Q(
√

5,
√

17)
and K = K0(

√
−3 · 19). The criterion of Corollary 5.5 is applied to the quadratic exten-

sion K/K0, the number field K has an infinite non-ramified 2-tower. Since K/K0 is not
ramified, we deduce that the quadratic field K0 has an infinite 2-tower. A computation
shows that Cl2(K) ' (Z/8Z)2× (Z/2Z)5. We then choose a prime p of OK such that p is
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totally split in the 2-field of Hilbert of K, then d2ClT2 (K) = 7 ≥ 2 + 2
√

6 and the T -split
2-tower KT

∅ of K is infinite, where here T = {p}. For this tower, one obtains, under GRH,

lim sup
n

1
[Kn : Q] ln Regn ≤

1.0765
2 ln(rdK) ' 2.6561 . . .

We may take for example T = {p} where p|`, with ` ∈ {59, 101, 149, . . .} and N(p) = `2;
alternatively T = {p} where p|`, with ` ∈ {170701, 906601, . . .} and N(p) = `.

Example 5.11. — Consider next Martinet’s example [15]: K = Q(cos(2π/11),
√

2,
√
−23).

It is a totally imaginary number field of degree 20 over Q. The 2-class group of K is
isomorphic to (Z/2Z)9. Hence take a prime p ∈ OK such that p splits totally in the
2-Hilbert class field of K; set T = {p}. Then d2Cl2(K) = d2ClT2 (K) = 9 ≥ 2 + 2

√
12 and

the 2-tower KT
∅ /K is infinite. For this tower, one obtains, under GRH,

lim sup
n

1
[Kn : Q] ln Regn ≤

1.0765
2 ln(rdK) ' 2.4360 . . .

We may take for example T = {p} where p|`, with ` ∈ {3, 7, 13, 17, 29, 47, 59, 71, . . .}
and N(p) = `10; alternatively T = {p} where p|`, with ` ∈ {47, 71 . . .} and
N(p) = `5; a third possibility is T = {89, 199, 241, . . .}, with N(p) = `2, or finally
T = {294799, 583351, 689063, 693727 · · · } with N(p) = `.

Example 5.12. — We conclude by looking at Example 3.4 in [8].
Set K = Q(

√
130356633908760178920,

√
−80285321329764931).

Then K has one infinite extension L/K, contained in the 2-tower K∅∅, in which the places
dividing {71, 79, 83, 97, 101, 59, 61, 67, 73} are totally split. Also B(L/K) ≤ 0.951 . . ..
Furthermore, there exists a tower (Kn)n of K, with limit L such that h(Kn) ≥ 213[Kn:K]−1.
Thus

lim sup
n

1
[Kn : Q] ln RegKn ≤

0.951
2 ln rdK −

13
2 ln(2)

≤ 15.7606 . . .

For other examples, see e.g. [31], [15], [28], [7], [6], [4].

5.2. Number Field Codes. — Consider again the strategy of Lenstra [12] and Gu-
ruswami [3]. Start with an infinite tower (Kn)n which is asymptotically good, L = ⋃

nKn.
To simplify, we assume that L/K is unramified. Fix a set T of places of K, which are
totally split in L/K ; N = #T . Suppose that for every place p ∈ T , #OK/p = q. Set
t ∈ R>0. As explained in Section 3, consider the sequence of number fields Cn := Czn(OKn),
where to simplify, the codes Cn are integers. Codewords of Cn belong to (Fq)N [Kn:K].
As noticed by Lenstra and Guruswami, the code family (Cn)n is asymptotically good for
a large enough q and for an appropriate t.

Recall that the Singleton bound for nonlinear codes states that

logq |C| ≤ N − dH(C) + 1.
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In our context, we get
1

K : Q] logq(2rπr2) + logq(t)−
1
2 logq rdKn

≤ 1
[Kn : Q] logq |Cn|

≤ N

[Kn : Q] −
1

[Kn : Q]dH(Cn) + 1
[Kn : Q]

≤ logq(2t) + 1
[Kn : Q]

and we are looking at how close to equality the following inequality is:
1

[K : Q] logq(2rπr2)− 1
2 logq rdK − logq 2 ≤ 1

[Kn : Q]
where we recall that rdKn = rdK. Its limit when n grows is

1
[K : Q] logq(2rπr2)− 1

2 logq rdK − logq 2 ≤ 0

For q large enough, the inequality is close to be tight.
For the sake of completeness, we recall Odlyzko’s asymptotic estimations [21]: for [K :
Q] = n� 0 (under GRH)

rdK ≥ (8πeγ+π/2)r1/n(8πeγ)2r2/n.

5.3. Unit Codes. — Our goal next is to study asymptotically the inequalities of Propo-
sition 4.6 for unit codes C := Cz,t(O×K) built over units of the ring of integers of the number
field K in Section 4.
As in Section 5.2, start with an infinite asymptotically good tower (Kn)n, L = ⋃

nKn

(we still assume L/K unramified). Let T be a set of places of K, which are totally split
in L/K; N = #T . Suppose that for every place p ∈ T , #OK/p = q. Set t ∈ R>0 and
consider the sequences of codes Cn := Czn,t(O×Kn). Codewords in Cn are in (Fp)N [Kn:K].
Since L/K is asymptotically good,

lim sup
n

1
[Kn : Q]Regn ≤

B(L/K)
2 logq rdL,

where we may upper bound B(L/K), the universal constant given by Tsfasman and Vladut
(see Theorem 5.6).
The code family (Cn)n will be asymptotically good as soon as

N

[K : Q] > logq(2e2t)

and for n large enough:

logq t >
[K : Q]B(L/K)

2r logq rdL − logq 2.

Thus it is always possible to find a real t for which these conditions are satisfied as soon
as q is large enough.
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Example 5.13 (Continuation of Example 5.9). — As an illustration, consider K =
Q(
√
−3 · 5 · 7 · 11 · 13 · 19) and its 2-tower KT

∅ = L which is not ramified, with N = 1
and B(L/K) = 1.0765. Then rdL = rdK = 11411401/2.
It is enough to take t and q satisfying

ln q > 2 ln(1 + et) and ln t > 7.5072 . . .− ln 2 ≈ 6.8141 . . .

For ln t = 6.8141 . . ., we obtain ln q ≥ 1821.2211 . . .. It is enough to then choose ` inert
in K/Q such that q = `2 ≥ e1821.2211···.
In summary, consider the Hilbert 2-tower

⋃
n

Kn of K which is {`}-split: this is an asymp-

totically good tower. Take ` as aforementioned. For all n, we choose an element O×Kn-
admissible zn; we take t = e6.8141...; the family of codes

(
Czn,t(O×Kn)

)
has codewords in(

F`2
)[Kn:K]

and is asymptotically good.

Example 5.14 (Continuation of Example 5.10). — As a second illustration, take
K = Q(

√
5,
√

17,
√
−3 · 19) and its 2-tower KT

∅ = L, with T = {p} and where p splits
totally in the 2-Hilbert class field of K. It is enough to take t and q satisfying

ln q > 8 ln(1 + et) and ln t ≥ 4.6204 . . .

For ln t = 4.6204 . . ., we obtain ln q ≥ 8 ln(1 + ee
4.6204...) ≥ 812.3218 . . .. In summary, take

T = {p} with p totally split in the 2-Hilbert field of K and N(p) ≥ e812.3218···.

Example 5.15 (Continuation of Example 5.11). — As a third illustration, take
again Martinet’s example K = Q(cos(2π/11),

√
2,
√
−23) and its 2-tower KT

∅ = L, with
T = {p} and where p splits totally in the 2-Hilbert class field of K. It is enough to take
t and q satisfying

ln q > 20 ln(1 + et) and ln t > 4.1788 . . .

For ln t = 4.1788 . . ., we obtain ln q ≥ 1305.8267 . . ..

PART II
MAXIMAL ORDERS CODES

6. Background on Central Simple Algebras

The book by Reiner [25] is a major reference. We also refer to the book by Gille and
Szamuely [1].

Let A be a central simple algebra over K, which is division: this hypothesis is necessary
for our code constructions. We may speak of a division algebra A for short, to mean a
central simple division K-algebra.
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6.1. Central simple algebras. — Our reference is [25, §32].
• Let d2 be the dimension of A over K, then d is the degree of A over K.
• For A a central simple algebra of degree d, we have A = Mr(D) for D a skewfield and
d = re where e2 = [D : K]. In particular if d is prime, either r = 1 or e = 1.
• Let v ∈ P be a place of K and consider the algebra Av = A⊗KKv. Then Av ' Mfv(Dv),
where Dv is a skewfield of center Kv. We then have fvev = d, with e2

v = [Dv : Kv].
• The integer ev (or ep if v = p) is the ramification index of v (or of Dv) and fv (or fp if
v = p) is the residual degree of v (or of Dv).
• The algebra is said to be ramified in v if [Dv : Kv] > 1, and totally ramified if [Dv :
Kv] = d2 (⇐⇒ ev = d). If v is not ramified, we say that A is split in v.
• For almost every place v in K, A is split in v, i.e. ev = 1.
Let S0 be the set of primes p of OK which ramify in A and let S∞ be the set of ramified
archimedean places. Set S = S0 ∪ S∞. The set S is thus finite.

6.2. Local symbols. — Our references are [25, §12, §13, §14], [1, chapter 4]. We
recall the notation P∞ for infinite primes and P0 for the finite ones.
• For every division algebra A and every place v ∈ P, we associate the invariant αv ∈ Q/Z
obtained as follows. If v is not ramified, then αv = 0. Suppose now that v is ramified
i.e. ev > 1. If v ∈ P∞ then αv = 1/2. Suppose v ∈ P0 (and ramifies). As recalled above,
Av ' Mfv(Dv), where Dv is a division algebra of center Kv, with e2

v = [Dv : Kv]. Let q0
be the cardinality of the residual field of Kv. Let Kv(ω)/Kv be the unique non-ramified
extension of degree ev of Kv where ω is a primitive qev0 − 1 root of unity. It is a cyclic
extension of Galois group generated by a lifting σ of the Frobenius automorphism on
the residual field. There exists an integer rv, 1 ≤ rv ≤ ev, (rv, ev) = 1, such that Dv is
isomorphic to the cyclic algebra (Kv(ω)/Kv, σ, π

rv), where π is a uniformizer of Kv. The
invariant is defined by αv = rv

ev
∈ Q/Z.

• Globally, we get ∑v αv = 0 ∈ Q/Z: this is Hasse’s product formula. Thus, if A is a
quaternion algebra i.e. of dimension 4, then |S| is even.
• Conversely, given a family (αv) such that
(i) αv ∈ Q/Z;
(ii) αv = 0 for almost every v
(iii) for v ∈ PC, αv = 0, and for v ∈ PR, αv ∈ {0, 1/2};
(iv) ∑v αv = 0;
then there exists a division algebra over K whose local symbols are (αv)v∈P. In that case,
the division algebra A is of degree the lcm of the denominators of the αv.

6.3. Discriminant. — The reference is [25, §25].
• By a full OK-lattice Λ of A, we mean a finitely generated OK-submodule in A such that
KΛ = {∑finite xiλi, xi ∈ K, λi ∈ Λ} = A.
• Let Λ be an OK-order of A, that is, Λ is a subring of A, having the same identity
element as A, which is also a full OK-lattice in A.
• The discriminant discΛ of Λ is the ideal of OK generated by the determinant of the
reduced trace form Trd.
• If Λ has a basis {b1, · · · , bd2} over OK, then discΛ is the principal ideal generated by
det(Trd(bibj)).
• Let Λ and Λ′ be two maximal orders, meaning that they are not properly contained in
any other OK-order in A. Then discΛ = discΛ′ .
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• By definition, the discriminant discA of A is equal to discΛ for a maximal order Λ of A.
•We have discA = ∏

p∈S0 p
fpd(ep−1) = ∏

p∈S0 p
d2(1−1/ep) for p finite primes of OK that ramify

in A.
• An order Λ is maximal if and only if discΛ = discA (cf [25, Theorem 32.1]).
• We define the absolute discriminant ∆A of A as the determinant of the form T =
TrK/Q ◦ Trd. We have

∆A = |discK|d
2 NK/QdiscA.

Recall that dimQ A = nd2.

Definition 6.1. — The quantity rdA :=
(
∆A

)1/nd2

= rdK
(∏

p∈S0 N(p)(1−1/ep)
)1/[K:Q]

is
the root discriminant of the division algebra A.
Recall that rdK = |discK|1/[K:Q] is the root discriminant of K.

Remark 6.2. — Given K, to determine division algebras A which are not ramified in
infinite places with a small root discriminant reduces to look for prime ideals of K of
smallest norms (this is a consequence of the product formula for symbols).

Remark 6.3. — Let
(⋃
n

Kn

)
/K be an infinite non-ramified extension in which the

prime ideal p splits totally. For every number field Kn, take pn and p′n two ideals of
OKn above p. Consider the quaternion algebra An of center Kn ramified only at pn and
p′n. Then

rdAn = rdK

(
NK/Q(p)

)1/[Kn:Q]
−−−→
n→∞

rdK.

6.4. Ideals. — The reference is [25, §22-24].
• Let Λ be an OK-order of A.

Lemma 6.4. — Let A be a division algebra. Then for x ∈ Λ, x 6= 0, the OK-module Λx
(resp. xΛ) is a full lattice.

Proof. — Since x 6= 0 and A is division, we denote by x−1 the inverse of x. Since KΛ = A,
there exists a ∈ K, λ ∈ Λ such that aλ = x−1. Set now z = a0λ0 ∈ A, a0 ∈ K, λ0 ∈ Λ.
Then a0aλ0λx = z.

We further assume that Λ is maximal.
• A two-sided ideal I of Λ is a full OK-lattice such that Λl(I) = Λr(I) = Λ, where
Λl(I) = {x ∈ A, xI ⊂ I} (resp. Λr(I) = {x ∈ A, Ix ⊂ I}).
• A prime ideal P of Λ is a proper two-sided ideal in Λ such that KP = A, and such
that for any two-sided ideal S, T ⊂ Λ, ST ∈ P implies S ⊂ P or T ⊂ P.
The prime ideals of Λ coincide with the maximal two-sided ideal of Λ (Theorem 22.3 of
[25]).
• There is a bijective correspondence between the nonzero prime ideals p of OK and the
prime ideals P of Λ: p = P ∩ OK.
•We have pΛ = PeP , where eP = ev is the ramification index of v in A (see [25, Theorem
32.1]).
• Prime ideals of Λ satisfy the following two properties:

- For P1,P2 distinct prime ideals of Λ, P1 + P2 = Λ.
- For P1,P2 distinct prime ideals of Λ, P1P2 = P1 ∩P2.
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• If I is a two-sided ideal of Λ, we recall the unique decomposition I = ∏t
i=1 P

ai
i , where

vP(I) = ai ∈ N (cf [25, Theorem 22.10]).

6.5. Reduction. —
• Let I be a right ideal of Λ. We denote by N(I) = #Λ/I the absolute norm of I. If I
is two-sided, the quantity #Λ/I does not depend on whether the ideal is a right or left
ideal [25, Theorem 24.3].
• Set N(x) = N(xΛ). Then #Λ/xΛ = #Λ/Λx (see [25, exercice 10.7 §10]). In particular
N(x) = #Λ/xΛ = |NK/QNrd(x)|d.
• Let P be a maximal ideal of the maximal order Λ and let v be the place of K corre-
sponding to p = P ∩ OK. The quotient Λ/P is a simple algebra of finite dimension over
Fq0 = OK/p and the determination of its structure is a local computation.
Indeed, one has Av ' Mfv(Dv), with e2

v = [Dv : Kv].
The skewfield Dv has a unique maximal order Rv with a prime ideal πvRv. Then Λv =
Mfv(Rv) is a maximal order of Av with unique two-sided maximal ideal πvΛv (see [25,
Theorem 17.3]). Hence, as Rv/(πv) ' Fqev0 (see [25, Theorem 14.3]), one has

Λ/P ' Λv/πvΛv ' Mfv(Fqev0 )

and then |Λ/P| = q
f2
v ev

0 = qdfv0 .
• When A is a quaternion algebra, Λ/P ' M2(Fq0) if P is unramified, and Λ/P ' Fq2

0
if

P is ramified.
• Let I be a two-sided ideal of Λ. We write I = ∏t

i=1 P
ai
i and for i = 1, · · · , t, let

pi ⊂ OK, with pi|Pi. Let fPi = fv be the residual degree of Pi. Then

N(I) =
t∏
i=1

N(pi)dfPi ,

where N(pi) = #OK/pi.

6.6. Euclidean Embeddings. — Here the reference is the thesis by Page [22, Chapter
2, §3].
Let A be a division algebra of center K and dimension d2.

Set P1
R = PR ∩ S∞ and P0

R = PR − P1
R.

We recall that
(i) if σ ∈ PC, then Aσ ' Md(C),

(ii) if σ ∈ P0
R, then Aσ ' Md(R),

(iii) if σ ∈ P1
R, then Aσ ' Md/2(H), where H is Hamilton’s quaternion algebra.

Take σ ∈ P∞. For Kσ = R or C, we endow M•(Kσ) with the norm

‖M‖2 =
√

Tr(MM
t).

Remark 6.5. — If Aσ ' H, for x ∈ Aσ, ‖x‖2 = Nrd(x).

Consider the embedding
Ψ : A −→

∏
σ∈P∞

Aσ ' Rnd2
.
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We endow the product
∏
σ∈P∞

Aσ with the Lebesgue measure and with the norm inherited

from the positive definite form

T2 =
∑
σ∈P∞

[Kσ : R](‖σ(·)‖2)2.

The following volume computation is well known ([22, Chapter 2 §3]):

Proposition 6.6. — The embedding Ψ(Λ) is a lattice of Rnd2 of covolume
√

∆A.

Noticing that σ ∈ P∞ and x ∈ A, we have Nrd(ιv(x)) = ιv(Nrd(x)), it then follows that
NK/Q(Nrd(x)) =

∏
v∈P∞

Nrd(ιv(x)). The next proposition is a consequence of the inequality

of arithmetic and geometric means.

Proposition 6.7. — For every x ∈ A×, we have

N(x) =
∣∣∣NK/QNrd(x)

∣∣∣∣d ≤ (T2(x)
nd

)nd2

2 .

Proof. — See [22, Chapter 2 §3].

Remark 6.8. — It is possible, and in some cases, simpler to endow M•(Kσ) with the
infinite norm by setting ‖(ai,j)i,j‖∞ = maxi,j |ai,j|, and similarly for x ∈ A, ‖x‖∞ =
maxσ∈P∞ ‖σ(x)‖∞. Typically, if P1

R = ∅ it follows that N(x) ≤
(
d!‖x‖d2

∞

)d(r1+r2)
.

For Example 1.5, the norm T2 is natural. For the sake of coherence, we will thus privilege
the norm T2.

7. Additive Codes

7.1. The context. — The goal is to build codes, exploiting the additive structure
of division algebras. The principle is similar to that of Section 3. In the context of
function fields, more precisely Goppa codes built from division algebras over function
fields, a similar idea has been developed by Morandi and Sethuraman [16], without an
asymptotic study.

Let K be a number field of degree n over Q and let A be a division algebra of center K.
Let Λ be a maximal order of A.
In this context, an Arakelov divisor A is a pair (I, t), where I is a two-sided ideal of Λ
and where t ∈ R>0. It is then possible to develop a language similar to that of Section 3,
but we will be more concise.
Here the locally compact group is the group G =

∏
σ∈P

Aσ ' Rnd2 and Ψ is the natural

embedding
Ψ : A −→

∏
σ∈P

Aσ ' Rnd2
.

As mentioned in the previous section, we endow Rnd2 with the Lebesgue measure and
with the norm T2.
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Proposition 7.1. — The subset Ψ(I) of Rnd2 is discrete of covolume

N(I)
√

∆A,

where N(I) = #Λ/I.

Proof. — See [22, Chapter 2 §3].

Set t ∈ R>0. Consider the compact K(t) of
∏
σ∈P∞

Aσ ' Rnd2 :

K(t) = {x ∈
∏
σ∈P∞

Aσ, ‖σ(x)‖2 ≤ t, ∀σ}.

Definition 7.2. — Set
N∞(t) = Vr1

d2Vr2
2d2t

d2n,

where Vk is the volume of the ball of center 0 and of radius 1 of Rk for the norm ‖ · ‖2.
This is the volume of the compact K(t) of Rnd2 . We set Vr1,r2,d = Vr1

d2Vr2
2d2 .

Remark 7.3. — For x ∈ K(t), we have T2(x) ≤ [K : Q]t2 = nt2.

As for the commutative case, we need Lenstra’s result.

Proposition 7.4. — Let D be a fundamental domain of Ψ(I). There exists a z ∈ D
such that z + K(t) contains at least N∞(t)/N(I)

√
∆A elements of I. Such an element z

is called I-admissible.

Proof. — This is Lemma 1.6 applied to our setting.

Remark 7.5. — Here, the quotient Rnd2
/Ψ(I) is compact.

Definition 7.6. — If z ∈ Rnd2 is I-admissible, we set Kz(t) = z + K(t).

7.2. The construction. — Let K be a number field of degree [K : Q] = n, with ring
of integers OK. Let A be a central simple division K-algebra, and let Λ be a maximal
OK-order of A. The algebra A is ramified at S.
Let I be a two-sided ideal of Λ and let T = {P1, . . . ,PN} be a set of prime ideals of Λ,
disjoint from I. Consider

Θ : Λ→
N∏
i=1

Λ/Pi, x 7→ (x modP1, . . . , x modPN).

The proposed code is built using the embeddings Ψ and Θ :
∏
σ∈P∞

Aσ ' Rnd2

I ⊆ Λ

Ψ

44

Θ
++∏
P∈T

Λ/P
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Definition 7.7. — Let z be an I-admissible element. The code Cz(I) is obtained as

Cz,t(I) = Θ
(
Ψ−1(Kz(t)) ∩ I

)
.

When I = Λ, the code Cz,t(I) is called a maximal order code.

7.3. The parameters. — To simplify, we assume that for i = 1, · · · , N , #Λ/Pi = q.

Proposition 7.8. — For the code C := Cz,t(I) constructed above as a subset of
N∏
i=1

Λ/Pi,

its minimum distance dH(C) satisfies

dH(C) ≥ N − nd2 logq
( 2t
d1/2

)
+ logq N(I).

Proof. — This proof is similar to that of Proposition 3.10. Take two distinct code-
words which agree on the largest number |I| of components, then by the surjectivity
of Θ, their difference has a preimage y ∈ I such that y ∈ ⋂

i∈I Pi = ∏
i∈I Pi. Thus

y ∈ J := I
∏
i∈I

Pi ⊂ Λ. Hence

Λ/yΛ � Λ/J .
As yΛ and J are full OK-lattices (because y 6= 0), the quotients Λ/yΛ and Λ/J are finite
(as left Λ-modules). Hence #Λ/yΛ ≥ #Λ/J . Then

#Λ/J = q|I|N(I)

and #Λ/yΛ = N(y). Since |I| = N − dH(C), we get

N − dH(C) ≤ logq N(y)− logq N(I).

But for every σ ∈ P∞, and for x, x′ the respective preimages of the two codewords
at minimum distance, ‖σ(y)‖2 ≤ ‖σ(x)‖2 + ‖σ(x′)‖2 ≤ 2t. Consequently, and using
Proposition 6.7 and Remark 7.3, we obtain N(y) ≤

(
2t
d1/2

)nd2

.

Corollary 7.9. — Let C := Cz,t(I) be an additive code over a two-sided ideal I of the
maximal order Λ. If N + logq N(I) > nd2 logq(

2t
d1/2 ), the map Θ|Ψ−1(Kz(t))∩I is injective.

Proof. — If x 6= x′, with x, x′ ∈ Ψ−1(Kz(t)) ∩ I, then dH(Θ(x),Θ(x′)) ≥ dH(C) > 0.

Under the injectivity hypothesis, one has:

Proposition 7.10. — Let C = Cz,t(I) be an additive code over a two-sided ideal I of
the maximal order Λ.
Assume that N + logq N(I) > nd2 logq(

2t
d1/2 ). Then

logq(|C|) ≥ logq Vr1,r2,d + d2n logq(t)− logq N(I)− nd2

2 logq rdA.

Proof. — Indeed, in this case the map Θ|Ψ−1(Kz(t))∩I is injective. Then, the lower bound
for logq(|C|) results from Proposition 7.1 and Proposition 7.4.
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7.4. Example. — If P is not ramified, then the code alphabet is A(Fp) = Md(Fq0).
A natural way to produce codes over an alphabet A(Fp) = Fq is to take Θ the reduction
modulo some primes P that are totally ramified: in particular, T ⊂ S. In this case, for
every p ∈ T , fp = 1, ep = d and, N(p) = q0, A(Fp) = Fqd0 and q = qd0 .
(1) Let p > 2 be a prime number and consider the Q-algebra A =

(
−1,−p

Q

)
which is a

division algebra. Indeed, as recalled in Subsection 6.1, since d = 2 is prime, either A is a
skewfield and e = 2, or A = M2(Q) and e = 1. But since AQ is ramified in PR, that is,(
−1,−p

R

)
' H, it cannot be that AQ = M2(Q).

Furthermore discA = p2. Indeed, the reduced norm x2
1 + px2

2 + px2
3 is isotropic over Qν

for ν 6= p. Then, by the product formula, A is necessarily ramified in p.
Consider the order Λ = Z⊕ Z1+j

2 ⊕ Zi⊕ Zi1+j
2 , with i2 = −1, j2 = −p, ij = −ji. It has

discriminant discΛ = p2Z since

det


2 1 0 0
1 1+b

2 0 0
0 0 2a a
0 0 a a−ab

2

 = −p2.

Hence Λ is maximal since discΛ = discA.
(2) Let n ∈ N, (n, 3) = 1. Consider the cyclotomic field Q(ζn), and let K = Q(ζn + ζ−1

n )
be its maximal real subfield of degree ϕ(n)/2.
Assume moreover that p ≡ 1 (mod n). Hence the two places of Q in which A is ramified,
split totally in K/Q. Then consider AK = A ⊗ K, by Proposition 7.12, it is a division
algebra and ΛK := Λ⊗OK is a maximal order.
For Θ the reduction modulo the N = ϕ(n)/2 primes above p, we get a code over FNp .
Take p′ a prime different from p such that p′ ≡ 1 (mod n) so that p′ splits in K. For
Θ the reduction modulo the N = ϕ(n)/2 primes above p′, we thus get a code of length
N = ϕ(n)/2 over M2(Fp′).

7.5. Asymptotic Behavior. —
7.5.1. The construction. — Let A be a division algebra of degree d > 1 over K. Let S
be the set of places of K in which A is ramified. Let T be a finite set of primes of K.
Suppose that K has an infinite tower L = ⋃

nKn of number fields such that:
(A) archimedean places and places of T are totally split in L/K ;
(B) for every integer n and number field Kn, we associate a division algebra An of center

Kn and of fixed degree d over Kn such that the sequence (rdAn)n is bounded by
B ∈ R.

In particular (rdKn)n is bounded and L/K is asymptotically good.
For every n ≥ 0, fix a maximal OKn-order Λn of An.
Set N = #T . Then T (Kn) contains Nn := N [Kn : K] places p, all of which have residual
field of cardinality q0. Thus N ≤ [K : Q].

Let {P(n)
1 , . . . ,P

(n)
Nn} be the nonzero prime ideals of Λn above the primes of T (Kn) and

consider the map Θn :

Θn : Λn →
Nn∏
i=1

Λ/P(n)
i , x 7→ (x modP(n)

1 , . . . , x modP(n)
Nn).
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To simplify, we suppose that for i = 1, · · ·Nn, #Λn/P
(n)
i = q, where q0|q. For example,

this will always be the case if for the primes of T (K), we have #Λ/Pi = q and if the
algebras An are not ramified in T (Kn), or if the algebras An are totally ramified in T (Kn).
We thus start with codes built in Section 7 as follows. For every integer n and number
field Kn from the tower L = ⋃

nKn, we fix the compact Kn(t) of ∏v∈P∞(Kn) An,v ' R[Kn:K]d2

given by
Kn(t) = {x ∈

∏
v∈P∞(Kn)

An,σ, ‖x‖2 ≤ t, ∀σ}.

Consider then the embedding Ψn : An →
∏

v∈P∞(Kn)
An,σ.

We then have the family of codes Cn from maximal orders defined by
Cn := Czn,t(Λn) = Θn(Ψ−1(Kzn(t)) ∩ Λn),

where Kzn(t) = zn + Kn(t), and the element zn is Λn-admissible.

For a fixed n, if the algebra An is not ramified at P(n)
i ∈ T (Kn), i = 1, · · · , Nn, codewords

from Cn are found in
(
Md(Fq0)

)Nn , they are of lengthNn = N [Kn : K]−→∞ when n→∞.
In this case q = qd

2
0 .

On the contrary, if An is totally ramified in P
(n)
i ∈ T (Kn), then codewords are in

(
Fqd0

)Nn .
7.5.2. Parameters. — We give bounds on the relative minimum distance and the rate
of additive codes, which have consequences on the code alphabet we are able to obtain
asymptotically.

Proposition 7.11. — Suppose that

N > d2[K : Q] logq
( 2t
d1/2

)
.

Then the obtained codes have parameters :

(i) 1
N [Kn : K]dH(Cn) ≥ 1− [K : Q]d2

N
logq

( 2t
d1/2

)
.

(ii) 1
[Kn : K] logq(|Cn|) ≥ logq Vr1,r2,d + d2[K : Q] logq t−

[K : Q]d2

2 logq B.

Proof. — This is a consequence of Propositions 7.8 and 7.10, noting that Vr1(Kn),r2(Kn),d =
[Kn : K]Vr1,r2,d, since infinite places are totally split in L/K.

7.5.3. Discussion. — Given the arithmetic context of Section 7.5.1, we see that for q
large enough, we can find a parameter t for which logq(|Cn|) > 0 and dH(Cn) > 0. Indeed
the proposed construction gives rise to asymptotically good codes, as long as we can find
a parameter t ∈ R>0 satisfying the double inequality:

1
2 logq B− 1

d2[K : Q] logq Vr1,r2,d ≤ logq(t) ≤
N

d2[K : Q] + logq
(d1/2

2
)
.

The parameter t exists as long as
N

d2[K : Q] ≥
1
2 logq B− logq

(d1/2

2
)
− 1
d2[K : Q] logq Vr1,r2,d.(1)
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Since the left hand side term does not depend on q, we conclude that this will be true
for q large enough.
A natural way to produce codes over an alphabet A(Fp) = Fq would be to take Θn the
reduction modulo some primes P

(n)
i that are totally ramified: in particular, T (Kn) ⊂

S(Kn). In this case, for every p ∈ T(Kn), fp = 1, ep = d and q = N(p)d.
Hence

logq rdAn ≥ logq rdKn + N(d− 1)
d2[K : Q] .

The condition (1) becomes (for d ≥ 2):
1
2 logq rdKn ≤

N

d2[K : Q]
(3− d

2
)

+ 1
d2[K : Q] logq Vr1,r2,d + 1

2 logq
d

4 .(2)

In particular, this implies
1
2 logq rdKn ≤

3
2d2 + 1

d2[K : Q] logq Vr1,r2,d + 1
2 logq

d

4
≤ 1

d2

(3
2 + logq V4

)
+ 1

2 logq
d

4
≤ 3

8 + 1
4 logq V4 + 1

2 logq
d

4 ,

which implies d ≥ 48 by asymptotic estimates of the lower bounds of the root discriminant
of number fields (under GRH, rdKn ≥ 44.7) and by the behavior of Vk when k varies.
However for d large,

1
d2[K : Q] logq Vr1,r2,d ∼d→∞ −2 logd d

and the condition (2) shows that this construction does not given a favorable situation.
We leave the question of building asymptotic codes from maximal order codes over Fq
open, and focus on matrix alphabet.
7.5.4. By tensor product. — When studying the asymptotic behavior of codes, we will
need the stability of the property of being division after scalar extension.

Proposition 7.12. — Let A be a division algebra of dimension d2 over the number field
K. Denote by S the set of ramification of A. Let Λ be a maximal order of A. Let L/K
be a finite extension. Suppose that for all v ∈ S, and w|v, w ∈ PL, (ev, [Lw : Kv]) = 1.
Then AL := A ⊗ L is a division algebra. Moreover, if for all v ∈ S0, v is unramified in
L/K, then ΛL := Λ⊗OL is a maximal order of AL and

rdAL = rdL

( ∏
p∈S0

(NK/Qp)1−1/ep
) 1

[K:Q] ≤ rdL

( ∏
p∈S0

NK/Qp
) d−1
d[K:Q] .

Proof. — Let S ′ be the set of ramification of AL. First, thanks to [1], Corollary 4.5.11,
one has S ′ = S(L) and for all w|v ∈ S, ew = ev. Moreover for w|v, αw = [Lw : Kv]αv (the
local symbol is “multiplied" by the local degree). Consequently AL ' Mm(D), where D is
a division algebra of degree the lcm of αw which is equal to the lcm of αv, i.e. of degree
d. Comparing the dimensions, we have m = 1.
Now take an OK-basis {b1, · · · , bd2} of Λ. Then discΛ is the principal ideal generated by
det(Trd(bibj)). Now remark that {b1, · · · , bd2} is an OL-basis of ΛL. Hence, disc(ΛL) =
discΛOL. But if we assume moreover that every prime p ∈ S0 is unramified in L/K, then
as ev = ew, one has discΛOL = discAL and then the order ΛL is maximal.
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The computation of the discriminant is then obvious.

Let L = ⋃
nKn be a tower of K. If A is a division algebra over A, and Λ a maximal order

of A, for every integer n, denote by An := A⊗Kn and Λn = Λ⊗OKn .

Corollary 7.13. — Let A be a division algebra over K ramified at S. Let L = ⋃
nKn

be an asymptotically good tower of K. Suppose that L/K is unramified at S0 and that for
all v ∈ S, and for all integer n, (ev, [Kn : K]) = 1 (which is the case if (d, [Kn : K]) = 1).
Then for every integer n, the central simple algebra An is a division algebra over Kn with
root discriminant rdAn bounded by rdL

( ∏
p∈S0

NK/Qp
) d−1
d[K:Q] . Moreover Λn is a maximal order

of An.

7.5.5. By symbol reciprocity. — We consider Remark 6.3 in the current context. We
start from an asymptotically good extension L/K such that

(i) the primes in T are totally split in L/K;
(ii) there exists a place v ∈ PK, v /∈ T , with v totally split in L/K.
Let L = ⋃

nKn be a tower of L. For every n > 1, choose v(1)
n and v(2)

n two places of
Kn above v and consider the division algebra An with center Kn, ramified only in v(n)

i ,
i = 1, 2, with local symbols 1/d and 1− 1/d.
As noted in Remark 6.3, we have rdAn −→ rdK when n→∞.
A particularly favorable context is that of quaternion algebras over number fields which
are not totally imaginary. In that case, the p-tower KT

∅ /K is a natural candidate (in
particular for p = 2): indeed, it suffices to then take for v an infinite real place of K.

7.5.6. Examples. — • Apply infinity criteria to 2-towers of real quadratic fields.
The fieldK = Q(

√
3 · 5 · 7 · 11 · 13 · 17 · 19 · 23) has a 2-class group isomorphic to (Z/2Z)7.

We take T = {p} with an arbitrary p. Then the 2-tower KT
∅ of K, i.e. the 2-extension

which is not ramified anywhere and totally split in p, is infinite. We note that real places
remain real. Set KT

∅ = ⋃
nKn. Let A be a quaternion algebra ramified in infinite places

over K and set An = A⊗Kn. According to Corollary 7.13, the algebra An is division, of
center Kn, and of root discriminant rdAn = rdKn = rdK.
We set q0 = OK/p; then here A(Cn) = M2(Fq0) and q = q4

0. Also V2,0,2 = V2
4 = (π2

2 )2.
By (1), the proposed codes will be asymptotically good as soon as

q4
0 = q ≥

(
21/2rd1/2

K

( 2
π2

)1/4)8
,

or q0 ≥ 401708303. For example, p one of the two primes above p = 401708303 suits.
Alternatively p = 20047OK suits (it is inert here), in which case q0 = 200472 = 401882209.
In all cases, codewords belong to

(
M2(Fq0)

)[Kn:K]
.

• We can use a refined criterion with the field K = Q(
√

3 · 5 · 7 · 11 · 13 · 19 · 23). Here
Cl2(K) ' Z/4Z × (Z/2Z)5. If we take T = {p} with p inert in K/Q, then d2ClT2 (K) =
d2Cl2(K) ≥ 6 and thus the 2-tower KT

∅ /K is infinite. We get q0 ≥ 23629901 and may take
p = 4871OK.
• Take the field K = Q(cos(2π/11),

√
2,
√
−23). We have seen that K has a 2-tower S

which is split for S = {p} as soon as p is totally split in the 2-Hilbert field of K. See
§5.1.3. Consider a quadratic extension K′/K in the tower. The field K′ is of degree 40
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over Q. There are two primes pi in OK′ above p. The prime p1 governs the ramification
of algebras to come. The prime p2 governs the code alphabet. More precisely, for n ≥ 1,
we set T (Kn) = {p ⊂ OKn , p|p2}. We have #T (Kn) = [Kn : K′]. For every integer n ≥ 1,
let then An be the quaternion algebra ramified in p′1,n and p′′1,n, where p′1,n and p′′1,n are
primes of OKn dividing p1.
As noted in Remark 6.3, we have rdAn −→ rdK = 114/523/2231/2 = 92.368 . . . when
n→∞. Here Vr1,r2,d = (π4

24 )20. We find

q4
0 = q ≥

(
21/2rd1/2

K

(24
π4

)1/8)160
.

For example, we may take q0 = 1694310 and A(Cn) = M2(Fq0).

8. Multiplicative codes

8.1. Units of a maximal order of a skewfield. — We remain in the context of
division algebras. To simplify, we propose a construction when d = 2, i.e. in the context
of quaternion algebras. The principal references here are [32], [13, Chapters 8 and 11],
[24, Chapters 3 and 4].

Let K be a number field. Let A = AK be a division quaternion algebra ramified in S. We
suppose that A is not ramified in at least one infinite place v ∈ P∞: the algebra A satisfies
Eichler’s condition. In other terms, following the notations of Section 6, S∞ 6= P∞.
Let us fix Λ a maximal order of A. Let

Λ1 = {x ∈ Λ,Nrdx = 1},

be the group of of elements of Λ of reduced norm equal to 1. It is also the subgroup of
units Λ× of Λ of reduced norm 1.
Let v ∈ P0

R ∪PC and consider Ψv the embeddings of Λ1 in the completions Av = M2(Kv),
where Kv = R or Kσ = C. Take x ∈ Λ1. As Nrd(x) = 1, det(σ(x)) = 1 hence
σ(x) ∈ Sl2(Kσ).
Set G =

∏
v∈P0

R∪PC

Sl2(Kσ): it is a locally compact group. Endow G with the Tamagawa

measure µ. Hence, let
Ψ : Λ1 → G

be the natural embedding of Λ1 in G, corresponding to the the completions at unramified
archimedean places (we still denote by abuse Ψ the restriction of Ψ to Λ1). The map Ψ
is a homomorphism. In fact, one has more:

Theorem 8.1. — Assume that S∞ 6= P∞. Then the group Ψ(Λ1) is a lattice of G,
isomorphic to Λ1, with covolume

µ(G/Ψ(Λ1)) = ζK(2)(4π2)−s|discK|3/2
∏
p∈S0

(Np− 1),

where s = |P1
R| = |S∞|.

Proof. — See for example Vigneras [32, Chapitre IV, Corollary 1.8].

Remark 8.2. — Here the quotient G/Ψ(Λ1) is compact.
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8.2. Volume Estimation. — We recall how to obtain the Tamagawa measure of the
locally compact group Sl2(R). It is a normalized Haar measure, which allows to obtain
naturally the computation of Theorem 8.1. We rely on Iwasawa’s decomposition Sl2(R) =
KAN where

K = SO2(R) = {
(

cosϕ − sinϕ
sinϕ cosϕ

)
, ϕ ∈ [0, 2π]},

A = {
(
y 0
0 1/y

)
, y ∈ R×}, and N = {

(
1 x
0 1

)
, x ∈ R}.

The Tamagawa measure µ over Sl2(R) is equal to ydϕdxdy (see [24, Example §4.6,
Chapter 4]). We recall how it is obtained. By compatibility, the Tamagawa measure
µ over Sl2(R) verifies µ = µ′µAN , where µ′ is the Tamagawa measure over SO2(R).
Then, still by compatibility, µAN = y2µAµN . It then suffices to recall that the Tamagawa
measure µN overN is the Lebesgue measure dx, hereN ' (R,+), and then the Tamagawa
measure µA over A is the measure 1

y
dy, here A ' (R×, ·); finally µAN = ydxdy. Recall

that µK(SO2(R)) = π (see [32, Corollary 2.6, chapter IV]).
Let B(0, t) be the sphere of M2(R) of center 0 and radius t for the norm ‖ · ‖2.

Lemma 8.3. — For every t ∈ R>2.35, µ
(
B(0, t) ∩ Sl2(R)

)
≥ t.

Proof. — Every element X ∈ Sl2(R) is uniquely written as X = kan, with k ∈ K,

a =
(
y 0
0 1/y

)
and n =

(
1 x
0 1

)
.

Set B(t) = {(x, y) ∈ R2, y2 + 1/y2 + y2x2 ≤ t} and

B∞(t) = {(x, y) ∈ R2,
√

3/
√
t ≤ |y| ≤

√
t√
3
, |x| ≤ 1}.

Then B∞(t) ⊂ B(t) and hence

µ
(
B(0, t) ∩ Sl2(R)

)
= µK(SO2(R))µAN(B(t))

≥ µ(SO2(R))µAN(B∞(t)) = π
∫
B∞(t)

ydxdy.

It then suffices to note that ∫
B∞(t)

ydxdy = 2
3t−

6
t
.

Thus µ
(
B(0, t) ∩ Sl2(R)

)
≥ t as soon as t ≥

√
18

2π−3 ' 2.3414 . . ..

Remark 8.4. — The computation of this lemma privileges the choice of the norm ‖ · ‖2
with respect to the norm ‖ · ‖∞.

8.3. The code and its parameters (the totally real case). — There are various
contexts, we will develop the totally real case. Start with a totally real number field K of
degree n over Q and with a division algebra A for which S∞ = ∅, i.e. A is not ramified
in infinite places. Then for a place v ∈ P∞, we have Sl2(Kσ) = Sl2(R).
The locally compact group here is the group G =

∏
σ∈P∞

Aσ ' Sl2(R)r1 , with r1 = n = [K :

Q].
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Set K(t) = {x ∈
∏
σ∈P∞

Aσ, ‖σ(x)‖2 ≤ t,∀σ}.

Fix then Λ a maximal order of A. We take as lattice of G the group Ψ(Λ1).
As for the additive case, we need to translate the original code to have enough points.

Lemma 8.5. — Suppose t ≥ 2.35.
There exists z ∈ G such that #Ψ(Λ1) ∩ zK(t) ≥ tn

µ(Ψ(Λ1)\G) . Such an element z is called

Λ1-admissible.

Proof. — This is a consequence of Lemma 1.6 and 8.3.

As for the additive case, let T = {P1, . . . ,PN} be a set of prime ideals of Λ. Consider

Θ : Λ→
N∏
i=1

Λ/Pi, x 7→ (x (mod P1), . . . , x (mod PN)).

The code Cz,t(Λ1) is defined by

Θ
(
Ψ−1(Kz(t) ∩ Λ1)

)
,

where Kz(t) = zK(t) for an element Λ1-admissible z.

Proposition 8.6. — (i) dH(Cz,t(Λ1) ≥ N − nd

2
(

logq(2t‖z‖∞) + logq(
√
d)
)
.

(ii) If furthermore, N > nd
2

(
logq(2t‖z‖∞) + logq(

√
d)
)
then

logq(|Cz,t(Λ1)|) ≥ n logq(t)− logq ζK(2)− 3
2 logq |discK| −

∑
p∈S0

logq(Np− 1).

Proof. — (i) We follow the proof of Proposition 7.8. Consequently, for every σ ∈ P∞,

‖σ(y)‖2 = ‖σ(z)(σ(x)− σ(x′))‖2 ≤ 2‖z‖∞t.

Then N(y) ≤
(2t‖z‖∞√

d

)nd2

and the inequality is immediate.

Remark 8.7. — We notice a mix of multiplicative and additive contexts, which causes
a problem to an asymptotic study which comes from the element z. This problem did
not happen for unit codes, because of the logarithm. We note that the formula for the
dimension is well understood asymptotically.
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