PRIME DECOMPOSITION AND THE IWASAWA MU-INVARIANT

by

Farshid Hajir & Christian Maire

Abstract. — For $\Gamma = \mathbb{Z}_p$, Iwasawa was the first to construct Γ -extensions over number fields with arbitrarily large μ -invariants. In this work, we investigate other uniform pro-p groups which are realizable as Galois groups of towers of number fields with arbitrarily large μ -invariant. For instance, we prove that this is the case if p is a regular prime and Γ is a uniform pro-p group admitting a fixed-point-free automorphism of odd order dividing p-1. Both in Iwasawa's work, and in the present one, the size of the μ -invariant appears to be intimately related to the existence of primes that split completely in the tower.

Contents

Introduction	1
Notations	3
1. Arithmetic background	3
2. Background on automorphisms of pro-p groups	7
3. Proof of the main result	11
4. Complements	15
References	19

Introduction

Let p be a prime number. Let K be a number field and let L/K be a uniform p-extension: L/K is a normal extension whose Galois group $\Gamma := Gal(L/K)$ is a uniform pro-p group (see section 1.1.1). We suppose moreover that the set of places of K that are ramified in L/K is finite.

Acknowledgements. The second author would like to thank the Department of Mathematics & Statistics at UMass Amherst for its hospitality during several visits. He also thanks UMI CNRS 3457 at Montréal for providing a stimulating research atmosphere on a "Délégation" there. The authors are grateful to Georges Gras for helpful correspondence regarding p-rational fields.

²⁰⁰⁰ Mathematics Subject Classification. — 11R23, 11R29, 11R37.

Key words and phrases. — Ideal class groups, uniform pro-p groups, Iwasawa theory, μ -invariant, prime decomposition.

If F/K is a finite subextension of L/K, let us denote by A(F) the p-Sylow subgroup of the class group of F and put

$$\mathscr{X}:=\lim_{\stackrel{\leftarrow}{F}}A(F),$$

where the limit is taken over all number fields F in L/K with respect the norm map. Then \mathscr{X} is a $\mathbb{Z}_p[[\Gamma]]$ -module and, thanks to a structure theorem (see section 1.1.2), one attaches a μ -invariant to \mathscr{X} , generalizing the well-known μ -invariant introduced by Iwasawa in the classical case $\Gamma \simeq \mathbb{Z}_p$. Iwasawa showed that the size of the μ -invariant is related to the rate of growth of p-ranks of p-class groups in the tower. For the simplest \mathbb{Z}_p -extensions, i.e. the cyclotomic ones, he conjectured that $\mu = 0$; this was verified for base fields which are abelian over \mathbb{Q} by Ferrero and Washington [9] but remains an outstanding problem for more general base fields. Iwasawa initially suspected that his μ -invariant vanishes for all \mathbb{Z}_p -extensions, but later was the first to construct \mathbb{Z}_p -extensions with non-zero (indeed arbitrarily large) μ -invariants. It is natural to ask what other p-adic groups enjoy this property. Our present work leads us to the following conjecture:

Conjecture 0.1. — Let Γ be a uniform pro-p group having a non-trivial fixed-point-free automorphism σ of order m co-prime to p (in particular if $m = \ell$ is prime, Γ is nilpotent). Then Γ has arithmetic realizations with arbitrarily large μ -invariant, i.e. for all $n \geq 0$, there exists a number field K and an extension L/K with Galois group isomorphic to Γ such that $\mu_{L/K} \geq n$.

Our approach for realizing Γ as a Galois group is to make use of the existence of socalled p-rational fields. See below for the definition, but for now let us just say that the critical property of p-rational fields is that in terms of certain maximal p-extensions with restricted ramification, they behave especially well, almost as well as the base field of rational numbers. As we will show, Conjecture 0.1 can be reduced to finding a p-rational field with a fixed-point-free automorphism of order m co-prime to p. These considerations lead us to formulate the following conjecture about p-rational fields.

Conjecture 0.2. — Given a prime p and an integer $m \ge 1$ co-prime to p, there exist a totally imaginary field K_0 and a degree m cyclic extension K/K_0 such that K is p-rational.

Although we will not need it, we believe K_0 in the conjecture may be taken to be imaginary quadratic; see Conjecture 4.16 below. Our key result is:

Theorem 0.3. — Conjecture 0.2 for the pair (p, m) implies Conjecture 0.1 for any uniform pro-p group Γ having a fixed-point-free automorphism of order m.

One knows that if m is an odd divisor of p-1, where p is a regular prime, then for any $n \geq 1$, the cyclotomic field $\mathbb{Q}(\zeta_{p^n})$ provides a positive answer to the previous question. We therefore have

Corollary 0.4. — Assume p is a regular prime and that the uniform group Γ has a fixed-point-free automorphism σ of odd order m dividing p-1. Then Conjecture 0.1 is true for Γ .

This circle of ideas is closely related to the recent work of Greenberg [15] in which he constructs analytic extensions of number fields having a Galois group isomorphic to an

open subgroup of $Gl_k(\mathbb{Z}_p)$. The idea of studying pro-p towers equipped with a fixed-point-free action of a finite group of order prime to p occurs also in Boston's papers [2] and [3].

Our work raises the following purely group-theoretical question.

Question 0.5. — Let Γ be a nilpotent uniform pro-p group. Does there exist a uniform nilpotent pro-p group Γ' having a fixed-point-free automorphism of prime order $\ell \neq p$ such that $\Gamma' \twoheadrightarrow \Gamma$?

A positive answer to this question would imply that for all nilpotent uniform pro-p groups Γ , there exist arithmetic realizations with arbitrarily large μ -invariant.

In his recent work [12], Gras gave some conjectures about the p-adic regulator in a fixed number field K when p varies. In our context, one obtains:

Theorem 0.6. — Let \mathbb{P} be an infinite set of prime numbers and let m be an integer co-prime to all $p \in \mathbb{P}$. Let $(\Gamma_p)_{p \in \mathbb{P}}$ be a family of uniform pro-p groups of fixed dimension d, all having a fixed-point-free automorphism σ of order m. Assuming the Conjecture of Gras (see Conjecture 4.13), there exists a constant p_0 , such that for all $p \geq p_0$, there exist Γ_p -extensions of number fields with arbitrarily large μ -invariants.

In another direction, a conjecture in the spirit of the heuristics of Cohen-Lenstra concerning the p-rationality of the families \mathscr{F}_{G} of number fields K Galois over \mathbb{Q} , all having Galois group isomorphic to a single finite group G, seems to be reasonable (see [31]). When the prime $p \nmid |G|$, the philosophy here is that the density of p-rational number fields in \mathscr{F}_{G} is positive. This type of heuristic lends further evidence for conjecture 0.1.

Notations

Let \mathscr{G} be a finitely generated pro-p group. For two elements x,y of \mathscr{G} , we denote by $x^y := y^{-1}xy$ the conjugate of x by y and by $[x,y] := x^{-1}y^{-1}xy = x^{-1}x^y$ the commutator of x and y. For closed subgroups $\mathscr{H}_1, \mathscr{H}_2$ of \mathscr{G} , let $[\mathscr{H}_1, \mathscr{H}_2]$ be the closed subgroup generated by all commutators $[x_1, x_2]$ with $x_i \in \mathscr{H}_i$. Let $\mathscr{G}^{ab} := \mathscr{G}/[\mathscr{G}, \mathscr{G}]$ be the maximal abelian quotient of \mathscr{G} , and let $d(\mathscr{G}) := \dim_{\mathbb{F}_p} \mathscr{G}^{ab}$ be its p-rank.

Denote by (\mathscr{G}_n) the p-central descending series of \mathscr{G} :

$$\mathcal{G}_1 = \mathcal{G}, \ \mathcal{G}_2 = \mathcal{G}^p[\mathcal{G}, \mathcal{G}], \cdots, \ \mathcal{G}_{n+1} = \mathcal{G}_n^p[\mathcal{G}, \mathcal{G}_n]$$

The sequence $(\mathscr{G}_n)_n$ forms a base of open neighborhoods of the unit element e of \mathscr{G} .

If K is a number field, let A(K) be the p-Sylow subgroup of the class group of K. Let $S_p := \{ \mathfrak{p} \subset \mathscr{O}_{\mathrm{K}} : \mathfrak{p} | p \}$ be the set of primes of K of residue characteristic p. If S is any finite set of places of K, denote by K_S the maximal pro-p extension of K unramified outside S and put $\mathscr{G}_S := \mathrm{Gal}(K_S/K)$ as well as $A_S := \mathscr{G}_S^{\mathrm{ab}}$.

1. Arithmetic background

1.1. Formulas in non-commutative Iwasawa Theory. —

1.1.1. Algebraic tools. — Two standard references concerning p-adic analytic and in particular, uniform, pro-p groups are the long article of Lazard [25] and the book of Dixon, Du Sautoy, Mann and Segal [8].

Let Γ be an analytic pro-p group: we can think of Γ as a closed subgroup of $\mathrm{Gl}_m(\mathbb{Z}_p)$ for a certain integer m. The group Γ is said powerful if $[\Gamma, \Gamma] \subset \Gamma^p$ ($[\Gamma, \Gamma] \subset \Gamma^4$ when p = 2); a powerful pro-p group Γ is said uniform if it has no torsion. Let us recall two important facts.

Theorem 1.1. — Every p-adic analytic pro-p group contains an open uniform subgroup.

Theorem 1.2. — A powerful pro-p group Γ is uniform if and only if for $i \geq 1$, the map $x \mapsto x^p$ induces an isomorphism between Γ_i/Γ_{i+1} and $\Gamma_{i+1}/\Gamma_{i+2}$.

Let us make some remarks.

Remark 1.3. — Let $\dim(\Gamma)$ be the dimension of Γ as analytic variety.

- 1) If Γ is uniform then $d_p\Gamma = \dim(\Gamma) = \mathrm{cd}_p(\Gamma)$, where $\mathrm{cd}_p(\Gamma)$ is the *p*-cohomological dimension of Γ .
- 2) [24, Corollary 1.8] Suppose Γ is a torsion-free p-adic analytic group, $p \geq \dim(\Gamma)$ and $d(\Gamma) = \dim(\Gamma)$. Then the group Γ is uniform.
- 3) For $p \geq 2$, the pro-p-group $\mathbb{1}_n + \mathscr{M}_n(\mathbb{Z}_p)$ is uniform, where $\mathscr{M}_n(\mathbb{Z}_p)$ is the set of $n \times n$ matrices with coefficients in \mathbb{Z}_p .

Now let us fix a uniform pro-p group Γ of dimension d. Recall that (Γ_n) is the p-descending central series of Γ . By Theorem 1.2, one has $[\Gamma : \Gamma_n] = p^{dn}$, for all n.

Let $\mathbb{Z}_p[[\Gamma]] := \lim_{\stackrel{\longleftarrow}{\mathscr{U}} \lhd_O \Gamma} \mathbb{Z}_p[\Gamma/\mathscr{U}]$ be the complete Iwasawa algebra, where \mathscr{U} runs along the

open normal subgroups of Γ . Put $\Omega := \mathbb{F}_p[[\Gamma]] = \mathbb{Z}_p[[\Gamma]]/p$. The rings Ω and $\mathbb{Z}_p[[\Gamma]]$ are local, noetherien and without zero divisor [8, §7.4]: each of them has a fractional skew field. Denote by $Q(\Omega)$ the fractional skew field of Ω . If \mathscr{X} is a finitely generated Ω -module, the $\operatorname{rank} \operatorname{rk}_{\Omega}(\mathscr{X})$ of \mathscr{X} is the $Q(\Omega)$ -dimension of $\mathscr{X} \otimes_{\Omega} Q(\Omega)$. For more details, we refer the reader to Howson [19] and Venjakob [34].

Definition 1.4. — Let \mathscr{X} be a finitely generated $\mathbb{Z}_p[[\Gamma]]$ -module. Put

$$r(\mathscr{X}) = \mathrm{rk}_{\Omega}\mathscr{X}[p] \text{ and } \mu(\mathscr{X}) = \sum_{i \geq 0} \mathrm{rk}_{\Omega}\mathscr{X}[p^{i+1}]/\mathscr{X}[p^{i}].$$

Remark 1.5. — One has $\mu(\mathcal{X}) \geq r(\mathcal{X})$ and, $r(\mathcal{X}) = 0$ if and only if $\mu(\mathcal{X}) = 0$.

There is a large and growing literature on the study of $\mathbb{Z}_p[[\Gamma]]$ -modules in the context of Iwasawa theory. We recall a result of Perbet [30], where, by making use of the work of Harris [17], Venjakob [34] and Coates-Schneider-Sujatha [5], among others, he manages to estimate the size of the coinvariants $(\mathscr{X}_{\Gamma_n})_n$ of \mathscr{X} . Recall that \mathscr{X}_{Γ_n} is the largest quotient of \mathscr{X} on which Γ_n , the *n*th element of the *p*-central series, acts trivially.

Theorem 1.6 (Perbet, [30]). — Suppose that \mathscr{X} is a torsion $\mathbb{Z}_p[[\Gamma]]$ -module where Γ is a uniform pro-p group of dimension d. Then for $n \gg 0$:

$$\dim_{\mathbb{F}_p} \mathscr{X}_{\Gamma_n} = r(\mathscr{X})p^{dn} + O(p^{n(d-1)}),$$

and

$$\#(\mathscr{X}_{\Gamma_n}/p^n) = p^{\mu(\mathscr{X})p^{dn} + O(np^{n(d-1)})}.$$

We now turn to applying these formulas in the arithmetic context.

1.1.2. Arithmetic. — Let L/K be a Galois extension of number fields with Galois group Γ , where Γ is a uniform pro-p group. We assume that the set of primes of K ramified in L/K is finite. Let $(\Gamma_n)_n$ be the p-central descending series of Γ and put $K_n := L^{\Gamma_n}$ for the corresponding tower of fixed fields.

Now let \mathscr{X} be the projective limit along L/K of the p-class group $A(K_n)$ of the fields K_n . Then, \mathscr{X} is a finitely generated torsion $\mathbb{Z}_p[[\Gamma]]$ -module. For the remainder of this work, \mathscr{X} will denote this module built up from the p-class groups of the intermediate number fields in L/K. In particular, we put $\mu_{L/K} = \mu(\mathscr{X})$ and $r_{L/K} = r(\mathscr{X})$. For this module, by classical descent, Perbet proved:

Theorem 1.7 (Perbet [30]). — For $n \gg 0$, one has:

$$\log |A(K_n)/p^n| = \mu_{L/K} p^{dn} \log p + O(np^{d(n-1)})$$

and

$$d_p A(K_n) = r_{L/K} p^{dn} + O(p^{n(d-1)}).$$

One then obtains immediately the following corollary:

Corollary 1.8. — (i) Along the extension L/K, the p-rank of $A(K_n)$ grows linearly with respect to the degree $[K_n : K]$ if and only if $\mu_{L/K} \neq 0$.

(ii) If there exists a constant α such that for all $n \gg 0$, $d_pA(K_n) \geq \alpha p^{dn}$, i.e. $d_pA(K_n) \geq \alpha [K_n : K]$, then $\mu_{L/K} \geq \alpha$.

At this point, we should recall some standard facts from commutative Iawasawa theory. First, for the cyclotomic \mathbb{Z}_p -extension, Iwasawa conjectured that the μ -invariant is 0 for all base fields, and this has been shown to be the case when the based field is abelian over \mathbb{Q} . When the base field K contains a primitive pth root of unity, the reflection principle allows one to give some estimates on the μ -invariant [30].

1.2. On the *p*-rational number fields. — A number field K is called *p*-rational if the Galois group \mathcal{G}_{S_p} of the maximal pro-*p*-extension of K unramified outside *p* is pro-*p* free. From the extensive literature on *p*-rational fields, we refer in particular to Jaulent-Nguyen Quang Do [22], Movahhedi-Nguyen Quang Do [27], Movahhedi [28], and Gras-Jaulent[14]. A good general reference is the book of Gras [11].

Definition 1.9. — If \mathscr{G} is a pro-p group, let us denote by $\mathscr{T}(\mathscr{G})$ the torsion of \mathscr{G}^{ab} . When $\mathscr{G} = \mathscr{G}_S$, put $\mathscr{T}_S := \mathscr{T}(\mathscr{G}_S)$; when $S = S_p$, put $\mathscr{T}_p := \mathscr{T}_{S_p}$.

A standard argument in pro-p group theory shows the following:

Proposition 1.10. — A pro-p group \mathcal{G} is free if and only if $\mathcal{T}(\mathcal{G})$ and $H^2(\mathcal{G}, \mathbb{Q}_p/\mathbb{Z}_p)$ are trivial.

Proof. — Indeed, the exact sequence $0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$ gives the sequence

$$0 \longrightarrow H_2(\mathscr{G}, \mathbb{Z})/p \longrightarrow H_2(\mathscr{G}, \mathbb{F}_p) \longrightarrow H_1(\mathscr{G}, \mathbb{Z})[p] \longrightarrow 0,$$

and to conclude, recall that $H_1(\mathcal{G}, \mathbb{Z}) \simeq \mathcal{G}^{ab}$ and $H_2(\mathcal{G}, \mathbb{Z}) \simeq H^2(\mathcal{G}, \mathbb{Q}/\mathbb{Z})^*$.

Remark that if \mathscr{G} is pro-p free then $\mathscr{G}^{ab} \simeq \mathbb{Z}_p^d$, where d is the p-rank of \mathscr{G} . This observation shows in particular that if the group \mathscr{G} corresponds to the Galois group of a pro-p extension of number fields, then necessarily this extension is wildly ramified.

We now explain how the Schur multiplier of \mathscr{G}_S is related to the Leopoldt Conjecture.

Proposition 1.11. — Let S be a set of places of K, and for $v \in S$, let \mathscr{U}_v be the pro-p completion of the local units at v. If the \mathbb{Z}_p -rank of the diagonal image of \mathscr{O}_K^{\times} in $\prod_{v \in S} \mathscr{U}_v$ is maximal, namely $r_1 + r_2 - 1$, then $H^2(\mathscr{G}_S, \mathbb{Q}_p/\mathbb{Z}_p) = 0$. Moreover if $S_p \subseteq S$, these conditions are equivalent. In particular, assuming the Leopoldt Conjecture for K at p, \mathscr{G}_{S_p} is free if and only if \mathscr{T}_p is trivial.

Proof. — For the case of restricted ramification, see [26]. For the general case, see [29, Corollaire 1.5]. \Box

Remark 1.12. — Some examples of free quotients of \mathscr{G}_S with splitting conditions are given in §4.3 below.

Proposition 1.13 (A 'numerical' p-rationality criterion)

Let $A_{\mathfrak{m}}$ be the p-Sylow subgroup of the ray class group of modulus $\mathfrak{m}=\prod_{\mathfrak{p}\mid_{\mathcal{D}}}\mathfrak{p}^{a_{\mathfrak{p}}}$ of K, where

 $a_{\mathfrak{p}} = 2e_{\mathfrak{p}} + 1$, and $e_{\mathfrak{p}}$ is the absolute index of ramification of \mathfrak{p} (in K/\mathbb{Q}). Assume that K verifies the Leopoldt Conjecture at p. Then K is p-rational if and only if $d_p A_{\mathfrak{m}} = r_2 + 1$.

Proof. — First, as one assumes Leopoldt Conjecture for K at p, then the \mathbb{Z}_p -rank of $A_{S_p} = \mathscr{G}_{S_p}^{ab}$ is exactly $r_2 + 1$. Hence \mathscr{G}_{S_p} is free if and only if $\mathscr{T}_p = \{1\}$, which is equivalent to $d_p A_{S_p} = r_2 + 1$. Now, by Hensel's lemma, every unit $\varepsilon \equiv 1 \pmod{\pi_p^{a_p}}$ is a p-power in K_p^{\times} and so $d_p A_m = d_p A_{S_p}$.

Example 1.14. — Take $K = \mathbb{Q}(\zeta_7)$ and p = 37. Then, p is not ramified in K/\mathbb{Q} and $a_{\mathfrak{p}} = 3$. A simple computation gives $d_p A_{S_p} = 4 = r_2 + 1$, so K is 37-rational.

Example 1.15. — One can check easily that $\mathbb{Q}(\zeta_7)$ is not 2-rational but $\mathbb{Q}(\zeta_{13})$ is 2-rational.

Here is a very well-known case of the situation.

Proposition 1.16 (A 'theoretical' p-rationality criterion)

Suppose that the number field K contains a primitive pth root of unity. Then K is prational if and only if there exists exactly one prime of K above p and the p-class group of K (in the narrow sense if p = 2) is generated by the unique prime dividing p.

Proof. — See for example Theorem 3.5 of [11].

Remark 1.17. — In particular, when p is regular, $\mathbb{Q}(\zeta_{p^n})$ is p-rational for all $n \geq 1$.

Now we will give some more precise statements by considering some Galois action. Let K/K_0 be a Galois extension of degree m, with $p \nmid m$. Put $\Delta = \operatorname{Gal}(K/K_0)$. Let $r = r_1(K_0) + r_2(K_0)$ be the number of archimedean places of K_0 . Let S be a finite set of places of K_0 . The arithmetic objects that will use have a structure of $\mathbb{F}_p[\Delta]$ -modules. Then for a such module M, one notes by $\chi(M)$ its character. Let ω be the Teichmüller character, let $\mathbf{1}$ be the trivial character and let χ_{reg} be the regular character of Δ .

Proposition 1.18. — Suppose the field K is p-rational and that the real infinite places of K_0 stay real in K (this is always the case when m is odd). Then

$$\chi(\mathbf{A}_{S_p}) = r_2(\mathbf{K}_0)\chi_{\text{reg}} + \mathbf{1}.$$

Proof. — It is well-known. The character of the Δ -module $\prod_{v \in S_p} \left(\mathscr{U}_v / \mu_{p^{\infty}}(K_v) \right)$ is equal to $[K_0 : \mathbb{Q}]\chi_{\text{reg}}$ and by Dirichlet's Unit Theorem, the character of $\mathscr{O}_K^{\times} / \mu(K)$ is equal to $\left(r_1(K_0) + r_2(K_0) \right) \chi_{\text{reg}} - \mathbf{1}$. Then, as K is p-rational,

$$\chi(\mathbf{A}_{S_p}) = [\mathbf{K}_0 : \mathbb{Q}] \chi_{\text{reg}} - \Big(\Big(r_1(\mathbf{K}_0) + r_2(\mathbf{K}_0) \Big) \chi_{\text{reg}} - \mathbf{1} \Big) = r_2(\mathbf{K}_0) \chi_{\text{reg}} + \mathbf{1} \cdot$$

1.3. Genus Theory. — The literature on Genus Theory is rich. The book of Gras [11, Chapter IV, §4] is a good source for its modern aspects. All we will need in this work is the following simplified version of the main result.

Theorem 1.19 (Genus Theory). — Let F/K be a Galois degree p extension of number fields L/K. Let S be the set of places of K ramified in F/K (including the infinite places). Then

$$d_p A(L) \ge |S| - 1 + d_p \mathscr{O}_K^{\times}.$$

We will also need the following elementary fact.

Proposition 1.20. — Let K be a number field containing a primitive pth root of unity, and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ be distinct prime ideals of \mathscr{O}_K . Then there exists a cyclic extension F/K of degree p in which the primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ all ramify.

Proof. — Choose a prime ideal \mathfrak{p}_0 of \mathscr{O}_K in the inverse of the ideal class of the product $\mathfrak{p}_1 \cdots \mathfrak{p}_t$, so that $\mathfrak{p}_0 \mathfrak{p}_1 \dots \mathfrak{p}_t$ is a principal ideal in \mathscr{O}_K , generated by some algebraic integer α , say. Then $F = K(\alpha^{1/p})$ is a cyclic degree p extension of K totally ramified at all the primes $\mathfrak{p}_1, \dots, \mathfrak{p}_t$.

2. Background on automorphisms of pro-p groups

For this section, our main reference is the book of Ribes and Zalesskii [32, Chapter 2 and Chapter 4]. If Γ is a finitely generated pro-p group, denote by $\operatorname{Aut}(\Gamma)$ the group of continuous automorphisms of Γ . Recall that the kernel of $g_{\Gamma}: \operatorname{Aut}(\Gamma) \to \operatorname{Aut}(\Gamma/\Gamma_2)$ is a pro-p group and that $\operatorname{Aut}(\Gamma/\Gamma_2) \simeq \operatorname{Gl}_d(\mathbb{F}_p)$, where d is the p-rank of Γ .

2.1. Fixed points. —

Definition 2.1. — Let Γ be a finitely generated pro-p group and let $\sigma \in \operatorname{Aut}(\Gamma)$. Put $\operatorname{Fix}(\Gamma, \sigma) := \{x \in \Gamma : \sigma(x) = x\}.$

Remark 2.2. — (i) Obviously, $Fix(\Gamma, \sigma)$ is a closed subgroup of Γ .

(ii) For integers n, $\operatorname{Fix}(\Gamma, \sigma) \subset \operatorname{Fix}(\Gamma, \sigma^n)$ with equality when n is co-prime to the order of σ .

Definition 2.3. — For $\sigma \in \operatorname{Aut}(\Gamma)$, $\sigma \neq e$, one says that Γ° is fixed-point-free if $\operatorname{Fix}(\Gamma, \sigma) = \{e\}$. More generally, if Δ is a subgroup of $\operatorname{Aut}(\Gamma)$, one says that the action Γ° of Δ on Γ is fixed-point-free if and only if

$$\bigcup_{\substack{\sigma \neq e \\ \sigma \in \Delta}} \operatorname{Fix}(\Gamma, \sigma) = \{e\}.$$

In others words, Δ is fixed-point-free if and only if, for all non-trivial $\sigma \in \Delta$, $\Gamma^{\circlearrowleft}$ is fixed-point-free.

Remark 2.4. — Clearly if $\Gamma^{\circlearrowleft^{\langle\sigma\rangle}}$ is fixed-point-free then $\Gamma^{\circlearrowleft^{\sigma}}$ is fixed-point-free; it is an equivalence when σ is of prime order ℓ .

We are interested in instances of groups with fixed-point-free action that arise in arithmetic contexts. Let us recall the Schur-Zassenhaus Theorem for a profinite group \mathcal{G} :

Theorem 2.5 (Schur-Zassenhaus). — Let Γ be a closed normal pro-p subgroup of a profinite group \mathcal{G} . Assume that the quotient $\Delta := \mathcal{G}/\Gamma$ is of order co-prime to p. Then the profinite group \mathcal{G} contains a subgroup Δ_0 isomorphic to Δ . Two such groups are conjugated by an element of Γ and $\mathcal{G} = \Gamma \rtimes \Delta_0$.

Proof. — See Theorem 2.3.15 of [32] or proposition 1.1 of [10].
$$\Box$$

As first consequence, one has the following:

Proposition 2.6. — Let Γ be a finitely generated pro-p group and let $\Delta \subset \operatorname{Aut}(\Gamma)$ of order $m, p \nmid m$. If $\Gamma^{\circ \Delta}$ is fixed-point-free then $(\Gamma/\Gamma_2)^{\circ \Delta}$ is fixed-point-free, where we recall that Γ_2 , the 2nd step in the p-central series of Γ , is the Frattini subgroup.

Proof. — Let $\sigma \in \Delta$. The group $\langle \sigma \rangle$ acts on Γ , on Γ_2 and on Γ/Γ_2 . By the Schur-Zassenhaus Theorem (applied to $\Gamma_2 \rtimes \langle \sigma \rangle$), the non-abelian cohomology group $H^1(\langle \sigma \rangle, \Gamma_2)$ is trivial and then the nonabelian cohomology of the exact sequence $1 \longrightarrow \Gamma \longrightarrow \Gamma \rtimes \langle \sigma \rangle \longrightarrow \langle \sigma \rangle \longrightarrow 1$ allows us to obtain:

$$H^0(\langle \sigma \rangle, \Gamma) \twoheadrightarrow H^0(\langle \sigma \rangle, \Gamma/\Gamma_2),$$

which is exactly the assertion of the Proposition. See also [4], [15], [35].

A main observation for our paper is the converse of the previous proposition when Γ is uniform:

Proposition 2.7. — Let Γ be a uniform pro-p group. Let $\sigma \in \operatorname{Aut}(\Gamma)$ of order m coprime to p. Then $(\Gamma/\Gamma_2)^{\circlearrowleft^{\sigma}}$ is fixed-point-free if and only if $\Gamma^{\circlearrowleft^{\sigma}}$ is fixed-point-free.

Proof. — One direction is taken care of by Proposition 2.6. For the other direction, we first note that

$$\varphi: \Gamma_{n-1}/\Gamma_n \to \Gamma_n/\Gamma_{n+1}$$
$$x \mapsto x^p$$

is a $\langle \sigma \rangle$ -isomorphism for $n \geq 2$. We thus obtain a $\langle \sigma \rangle$ -isomorphism from Γ/Γ_2 to Γ_n/Γ_{n+1} . If $(\Gamma/\Gamma_2)^{\circlearrowleft}$ is fixed-point-free, then $(\Gamma_n/\Gamma_{n+1})^{\circlearrowleft}$ is fixed-point-free for all $n \geq 1$. Suppose $y \in \Gamma$ satisfies $\sigma(y) = y$. As the action of Γ/Γ_2 is fixed-point-free, we have $y(\bmod \Gamma_2) \in \Gamma/\Gamma_2$ is trivial, so $y \in \Gamma_2$. Continuing in this way, we in fact conclude that $y \in \bigcap \Gamma_n = \{e\}$.

Corollary 2.8. — Let Γ be a uniform pro-p group and let $\sigma \in \operatorname{Aut}(\Gamma)$ of order m coprime to p. Denote by χ the character of the semi-simple action of $\langle \sigma \rangle$ on Γ/Γ_2 . Then $\Gamma^{\circ \sigma}$ is fixed-point-free if and only, $\langle \chi, \mathbf{1} \rangle = 0$.

Proof. — Indeed, one has seen (Proposition 2.7) that $\Gamma^{\circlearrowleft}$ is fixed-point-free if and only $\left(\Gamma/\Gamma_2\right)^{\circlearrowleft}$ is fixed-point-free, which is equivalent to $\langle \chi, \mathbf{1} \rangle = 0$.

Remark 2.9. — Suppose that Γ is uniform of dimension d. The restriction of $\sigma \in \operatorname{Aut}(\Gamma)$ to $\Gamma/\Gamma_2 \simeq \mathbb{F}_p^d$ is an element of $\operatorname{Gl}_d(\mathbb{F}_p)$. Denote by $P_{\sigma} \in \mathbb{F}_p[X]$ its characteristic polynomial. Then the action $\Gamma^{\circlearrowleft^{\sigma}}$ is fixed-point-free if and only if $P_{\sigma}(1) \neq 0$.

Remark 2.10. — When Γ is uniform and $\Delta \subset \operatorname{Aut}(\Gamma)$ is of order m co-prime to p, testing that the action of Δ is fixed-point-free on Γ is equivalent to testing this condition on the quotient $M := \Gamma/\Gamma_2$. Let χ be the character resulting from the action of Δ on M. Then $\Gamma^{\circlearrowleft^{\Delta}}$ is fixed point-free on M if and only if, for all $e \neq \sigma \in \Delta$, $\operatorname{Res}_{|\langle \sigma \rangle}(\chi)$ does not contain the trivial character, where here $\operatorname{Res}_{|\langle \sigma \rangle}$ is the restriction to $\langle \sigma \rangle$. By Frobenius Reciprocity, this condition is equivalent to $\langle \chi, \operatorname{Ind}_{\langle \sigma \rangle}^{\Delta} \mathbf{1} \rangle = 0$, where $\operatorname{Ind}_{\langle \sigma \rangle}^{\Delta}$ is the induction from $\langle \sigma \rangle$ to Δ .

We need also of the following proposition which will be crucial for our main result.

Proposition 2.11. — Let Γ be a finitely generated pro-p group. Let σ and τ be two elements in $\operatorname{Aut}(\Gamma)$ of order m co-prime to p. If $\sigma = \tau$ on Γ/Γ_2 , then $\Gamma^{\circlearrowleft}$ is fixed-point-free if and only if, $\Gamma^{\circlearrowleft}$ is fixed-point-free. More precisely, $\operatorname{Fix}(\Gamma,\sigma) = g \cdot \operatorname{Fix}(\Gamma,\tau)$ for a certain element $g \in \ker(\operatorname{Aut}(\Gamma) \to \operatorname{Aut}(\Gamma/\Gamma_2))$.

One needs the following lemma:

Lemma 2.12. — Let Γ be a finitely generated pro-p group. Let σ and τ be two elements of $\operatorname{Aut}(\Gamma)$ of order m, $p \nmid m$, satisfying $\sigma = \tau$ on Γ/Γ_2 . Then there exists $g \in \operatorname{Aut}(\Gamma)$ such that $\tau = \sigma^g$.

Proof. — This is to be found in Lemma 3.1 of [18]. Since σ and τ coincide as elements of $\operatorname{Aut}(\Gamma/\Gamma_2)$, there exists γ in the pro-p group $\operatorname{ker}(\operatorname{Aut}(\Gamma) \to \operatorname{Aut}(\Gamma/\Gamma_2))$ such that $\sigma = \gamma \tau$. Consider the group $\langle \tau, \gamma \rangle : \langle \gamma, \gamma^{\tau}, \cdots, \gamma^{\tau^{m-1}} \rangle \rtimes \langle \tau \rangle$. Since $\langle \gamma, \gamma^{\tau}, \cdots, \gamma^{\tau^{m-1}} \rangle \subset \operatorname{ker}(\operatorname{Aut}(\Gamma) \to \operatorname{Aut}(\Gamma/\Gamma_2))$, $\langle \tau, \gamma \rangle$ is a semi-direct product of a pro-p-group and a group of order m. As τ and σ are both in $\langle \tau, \gamma \rangle$, the subgroups $\langle \tau \rangle$ and $\langle \sigma \rangle$ are conjugate to each other (by the Schur-Zassenahus Theorem 2.5): there exists $g \in \langle \gamma, \gamma^{\tau}, \cdots, \gamma^{\tau^{m-1}} \rangle$

such that $\tau^k = \sigma^g$ for a certain integer k, (k, m) = 1, since σ and τ have the same order. Moreover, in Γ/Γ_2 , $\overline{\tau}^k = \overline{\sigma^g} = \overline{\sigma} = \overline{\tau}$, and so we can take k = 1.

Proof of Proposition 2.11. — By the previous lemma, $\tau = \sigma^g$, for some g in $\ker(\operatorname{Aut}(\Gamma) \to \operatorname{Aut}(\Gamma/\Gamma_2))$. We have that g is a fixed point of σ .

2.2. Lifts. — Given a uniform pro-p group Γ equipped with an automorphism σ of order m prime to p, the central question of this subsection is to realize $\Gamma \rtimes \langle \sigma \rangle$ as a Galois extension over a number field.

Proposition 2.13. — Let F be a free pro-p-group on d generators, and let g_F be the natural map $\operatorname{Aut}(F) \to \operatorname{Aut}(F/F_2)$. Consider a subgroup $\Delta \subset \operatorname{Aut}(F/F^p[F,F])$ of order m co-prime to p. Then there exists a subgroup $\Delta_0 \subset \operatorname{Aut}(F)$ isomorphic to Δ such that $g_F(\Delta_0) = \Delta$. Moreover, any two such subgroups are conjugated by an element $g \in \ker(\operatorname{Aut}(F) \to \operatorname{Aut}(F/F_2))$.

Proof. — First of all the natural map $g_F : \operatorname{Aut}(F) \to \operatorname{Aut}(F/F_2)$ is onto (Proposition 4.5.4 of [32]). Put $\widetilde{\Delta} = g_F^{-1}(\Delta)$ and recall that $\ker(g_F)$ is a pro-p group. Then, $\Delta \simeq \widetilde{\Delta}/\ker(g_F)$ which has order co-prime to p. By the Schur-Zassenhaus Theorem 2.5, there exists a subgroup $\Delta_0 \subset \operatorname{Aut}(F)$, such that $(\Delta_0 \ker g_F)/\ker(g_F) \simeq \Delta$. Moreover, two such subgroups are conjugate to each other.

In fact, one needs a little bit more. The following proposition can be found in a recent paper of Greenberg [15] and partially in an unpublished paper of Wingberg [35].

Proposition 2.14 (Greenberg, [15], Proposition 2.3.1). — Let $\mathscr{G} = F \rtimes \Delta$ be a profinite group where F is free pro-p on d' generators and where Δ is a finite group of order m co-prime to p. Let Γ be a finitely generated pro-p group on d generators, with $d' \geq d$. Suppose that there exists $\Delta' \subset \operatorname{Aut}(\Gamma)$, with $\Delta' \simeq \Delta$, such that the module $\Delta'_{|\Gamma/\Gamma_2}$ is isomorphic to a submodule of $\Delta_{|\Gamma/\Gamma_2}$. Then there exists a normal subgroup N of F, stable under Δ , such that Γ/Γ is Δ -isomorphic to Γ and so we have a surjection

$$\mathscr{G} \to \Gamma \rtimes \Delta \simeq \Gamma \rtimes \Delta'$$

Since this result is essential for our construction, we include a proof.

Lemma 2.15 (Wingberg, [35], lemma 1.3). — Let F be a free pro-p-group on d generators and let Γ be a pro-p groups generated by d generators. Let φ be a morphism on pro-p groups $\varphi : F \twoheadrightarrow \Gamma$. Assume that there exists a finite group $\Delta \subset \operatorname{Aut}(\Gamma)$ of order m co-prime to p. Then the action of Δ lift to F such that φ becomes a Δ -morphism.

Proof following [35]. — For a finitely generated pro-p group N, denote by g_N the natural map $g_N : \operatorname{Aut}(N) \to \operatorname{Aut}(N/N_2)$. Recall that $\ker(g_N)$ is a pro-p group. Let $1 \to R \to F \to \Gamma \to 1$ be a minimal presentation of Γ . Denote by $\operatorname{Aut}_R(F) := \{\sigma \in \operatorname{Aut}(F) : \sigma(R) \subset (R)\}$. The natural morphism $f : \operatorname{Aut}_R(F) \to \operatorname{Aut}(\Gamma)$ is onto (see [32, Proposition 4.5.4]). Put $\widetilde{\Delta} := f^{-1}(\Delta) \subset \operatorname{Aut}_R(F)$. Then $f(\widetilde{\Delta}) = \Delta$. Now the isomorphism between F/F_2 and Γ/Γ_2 induces an isomorphism f' between $\operatorname{Aut}(F/F_2)$ and $\operatorname{Aut}(\Gamma/\Gamma_2)$. Hence on $\operatorname{Aut}_R(F) \subset \operatorname{Aut}(F)$, one has: $g_{\Gamma} \circ f = f' \circ g_{F}$. In particular $\ker(\operatorname{Aut}_R(F) \to \operatorname{Aut}(\Gamma/\Gamma_2))$ is a pro-p group. Now let $\widetilde{f} : \widetilde{\Delta} \to \Delta$. Then: $(i) \ker(\widetilde{f})$ is a pro-p group and (ii) $\tilde{\Delta}/\ker(\tilde{f}) \simeq \Delta$ which has order co-prime to p. By the Schur-Zassenhaus Theorem 2.5, there exists $\Delta_0 \subset \operatorname{Aut}_R(F)$ such that $\Delta_0 \cap \ker(\tilde{f})$, i.e. $f(\Delta_0) = \Delta$ and we are done.

Proof of Proposition 2.14. — As $d' \geq d$, let φ be a surjective morphism $F \twoheadrightarrow \Gamma$. Put $R = \ker(\varphi)$. As $p \nmid m$, the action of Δ on F/F_2 is semi-simple. Let us complete the $\mathbb{F}_p[\Delta]$ -module Γ/Γ_2 with a submodule M such that $\Gamma/\Gamma_2 \oplus M \simeq F/F_2$ as Δ -module. Let Γ' be the pro-p group $\Gamma' = \Gamma \times \Gamma_0$, where $\Gamma_0 \simeq (\mathbb{Z}_p/p\mathbb{Z}_p)^{d'-d}$ is generated by an \mathbb{F}_p -basis of M. By Lemma 2.15, there exists $\Delta_0 \subset \operatorname{Aut}_R(F)$ isomorphic to Δ , such that the morphism $\varphi : F \twoheadrightarrow \Gamma'$ is a Δ_0 -morphism. By Proposition 2.13, there exists $g \in \operatorname{Aut}(\Gamma)$ such that $\Delta_0 = \Delta^g$. We note that $\Delta_0 \subset \operatorname{Aut}_R(F)$ is equivalent to $\Delta \subset \operatorname{Aut}_{g(R)}(F)$. Then we take $N = \langle g(R), g(M) \rangle$ and observe that F/N is Δ -isomorphic to Γ .

2.3. Frobenius groups. — We now review a group-theoretic notion that we need for our study of the μ -invariant.

Definition 2.16. — Let \mathscr{G} be a profinite group. One says that \mathscr{G} is a Frobenius group if $\mathscr{G} = \Gamma \rtimes \Delta$, where Γ is a finitely generated pro-p group, Δ is of order m co-prime to p, and such that the conjugation action of Δ on Γ is fixed-point-free.

The notion of a Frobenius group is a very restrictive one, as illustrated in the following Theorem:

Theorem 2.17 (Ribes-Zalesskii, [32], corollary 4.6.10). — Let $\mathscr{G} = \Gamma \rtimes \Delta$ be a Frobenius profinite group. Then the subgroup Γ of \mathscr{G} is nilpotent. Moreover if $2 \mid |\Delta|$, Γ is abelian, if $3 \mid |\Delta|$, Γ is nilpotent of class at most 2, and more generally of class at most $\frac{(\ell-1)^{2^{\ell-1}-1}-1}{\ell-2}$ if the prime number ℓ divides $|\Delta|$.

Proposition 2.18. — Let $\mathscr{G} = \Gamma \rtimes \Delta$, where Γ is a uniform pro-p group and such that $p \nmid |\Delta|$. Then \mathscr{G} is a Frobenius group if and only if the action of Δ is fixed-point-free on Γ/Γ_2 .

Proof. — It is a consequence of Proposition 2.7.

3. Proof of the main result

Let us recall the motivating question of this paper. Given a uniform group Γ of dimension d, equipped with a fixed-point-free automorphism of finite order co-prime to p, can one realize an arithmetic context for Γ as Galois group with arbitrarily large associated μ -invariant?

- **3.1. The principle.** Here we develop our strategy, which is simply to emulate Iwasawa's original construction for $\Gamma = \mathbb{Z}_p$. Given a uniform pro-p group Γ , our claim is that it suffices to produce a Galois extension L of a number field K such that
 - (i) Gal(L/K) is isomorphic to Γ ;
- (ii) there are only finitely many primes that are ramified in L/K;
- (iii) there exist infinitely many primes of K which split completely in L/K.

We now explain why such a construction suffices to answer our key question for Γ .

Proposition 3.1. — Suppose Γ is a uniform pro-p group and L is a Galois extension of a number field K such that:

- (i) Gal(L/K) is isomorphic to Γ ;
- (ii) there are only finitely many primes that are ramified in L/K;
- (iii) there exist infinitely many primes of K that split completely in L/K.

Then there exist Γ -extensions of number fields with arbitrarily large associated μ -invariant.

Proof. — We may assume, without loss of generality, that K contains ζ_p , a primitive pth root of unity, for if we replace K by $K(\zeta_p)$ and L by $L(\zeta_p)$, then conditions (i), (ii), (iii) still hold – we merely observe that $K(\zeta_p)/K$ has degree co-prime to p whereas L/K is a pro-p extension. Choose an integer $t \geq 1$, as well as distinct prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ of \mathscr{O}_K which split completely in L. Let K'/K a cyclic degree p extension in which each of the primes \mathfrak{p}_i ramifies for $i = 1, \ldots, t$ (see Proposition 1.20). Letting L' = K'K, we see immediately that L'/K' is a Galois extension with Galois group isomorphic to Γ . Put $K_n = L^{\Gamma_n}$ where Γ_n is the nth term in the p-central series of $\Gamma = \text{Gal}(L/K)$. Let $K'_n : K'K_n$. Then using the genus theory estimate Theorem 1.19 to the cyclic degree p extension K'_n/K_n , we get the following lower bound for the p-rank of the p-class group of K'_n :

$$d_p A(K'_n) \ge [K'_n : K] (t - r_2(K') - 1).$$

We conclude from Corollary 1.8 that $\mu_{L'/K'} \geq t - r_2(K') - 1$. Since we can take t to be as large as desired, and noting of course that $r_2(K')$ is fixed as $t \to \infty$, we have shown that Γ -extensions with arbitrarily large μ -invariant can be constructed over base fields which are cyclic of degree p over K (if K contains ζ_p), and over $K(\zeta_p)$ otherwise.

To produce a tower L/K satisfying the hypotheses of the Proposition, we realize Γ , along with its fixed-point-free automorphism, inside the maximal pro-p extension K_{S_p}/K of a p-rational field K; in particular the condition (ii) will be automatically satisfied in our situation as the ramification in the tower will be restricted to the primes dividing p.

3.2. The case $\Gamma = \mathbb{Z}_p$. — We now review Iwasawa's strategy in [21] (see also Serre [33, §4.5]) for finding arithmetic situations with large μ -invariant.

Let K/\mathbb{Q} be an imaginary quadratic field. Let us denote by σ the generator of $Gal(K/\mathbb{Q})$. Suppose p is a rational prime which splits in \mathcal{O}_K into two distinct primes \mathfrak{p}_1 and \mathfrak{p}_2 . Let us suppose further that p does not divide the class number of K. Then for i=1,2, the maximal pro-p extension $K_{\{\mathfrak{p}_i\}}$ of K unramified outside \mathfrak{p}_i has Galois group Γ_i isomorphic to \mathbb{Z}_p . The automorphism σ permutes the fields $K_{\{\mathfrak{p}_i\}}$. Thus inside the compositum of these two \mathbb{Z}_p -extensions, if we denote by $\langle e_i \rangle$ the subgroup fixing the field $K_{\{\mathfrak{p}_i\}}$, then the subfield $K_{\{\mathfrak{p}_i\}}$ is Galois over \mathbb{Q} with Galois group isomorphic to \mathbb{Z}_p , and the action $\sigma(e_1) = e_2 \equiv -e_1 \pmod{\langle e_1 + e_2 \rangle}$ is dihedral.

Corollary 3.2. — Under the preceding conditions, $Gal(L/\mathbb{Q}) = Gal(L/K) \rtimes \langle \sigma \rangle \simeq \mathbb{Z}_p \rtimes \mathbb{Z}/2\mathbb{Z}$, where the action of σ satisfies $x^{\sigma} = x^{-1}$, x denoting a generator of Gal(L/K). Thus, all primes ℓ of \mathbb{Q} which remain inert in K/\mathbb{Q} subsequently split completely in L/K.

Proof. — The first part of the corollary follows from the observations preceding it. For the second part, remark that the non-trivial cyclic subgroups of $Gal(L/\mathbb{Q})$ are of the form $\langle x^{p^k} \rangle \simeq \mathbb{Z}_p$, $k \in \mathbb{N}$, or of the form $\langle \sigma x^{p^k} \rangle \simeq \mathbb{Z}/2\mathbb{Z}$. Hence let ℓ be a prime which is

unramified in L/Q. If ℓ is inert in K/Q, then the Frobenius automorphism σ_{ℓ} of ℓ in L/Q is of the form σx^{p^k} . As σ_{ℓ} is of order 2 (or equivalently, $\langle \sigma_{\ell} \rangle \cap \operatorname{Gal}(L/K) = \{e\}$), the prime ℓ splits totally in L/K.

By applying Proposition 3.1 to the extension L/K, this construction allows us to produce \mathbb{Z}_p -extensions with μ -invariant as large as desired.

Remark 3.3. — We can say a bit more in the example 3.2. Let us show that a place of K above a prime ℓ splits totally in L/K if and only if ℓ is inert in K/Q. For a prime $\mathfrak{q} \nmid p$, denote by $\sigma_{\mathfrak{q}}$ the Frobenius of \mathfrak{q} in the compositum of the \mathbb{Z}_p -extensions of K. Let ℓ a prime that splits in K/Q; let us write $\ell \mathcal{O}_K = \mathcal{L}\mathcal{L}'$. If we write $\sigma_{\mathcal{L}} = ae_1 + be_2$, then by conjugation, $\sigma_{\mathcal{L}'} = be_1 + ae_2$. The key point is that the maximal pro-p extension of K unramified outside p and totally split at \mathcal{L} and \mathcal{L}' is finite, see [11]. Then $a^2 \neq b^2$. Note that when ℓ is inert in K/Q then $\sigma_{\ell} = a(e_1 + be_2)$. By reducing the Frobenius modulo $\langle e_1 + e_2 \rangle$, we note that in the case when ℓ is inert, $\sigma_{\ell} \equiv 0 \pmod{\langle e_1 + e_2 \rangle}$ but when ℓ splits in K/Q, $\sigma_{\mathcal{L}} \equiv (a - b)e_1 \pmod{\langle e_1 + e_2 \rangle} \neq 0 \pmod{\langle e_1 + e_2 \rangle}$.

Remark 3.4. — One can generalize the above discussion for $\Gamma = \mathbb{Z}_p^r$, by considering a large CM-extension abelian over \mathbb{Q} . See Cuoco [7, Theorem 5.2])

Remark 3.5. — We observe that the basic principle in the constructions above is that there is a positive density of primes of a field K_0 which are inert in K, and that all of these subsequently split (thanks to the fact that the action $\Gamma^{\circlearrowleft}$ is fixed-point-free) in the Γ -extension. This is the starting point for the general case.

3.3. The general case. — We will consider a uniform pro-p group Γ of dimension d having a fixed-point-free automorphism σ of order m co-prime to p. We assume that $m \geq 3$; indeed for m = 2, $\Gamma \simeq \mathbb{Z}_p^d$ (by Theorem 2.17 of Ribes and Zaleskii).

Proposition 3.6. — Let Γ be a uniform pro-p group of dimension d having an automorphism τ of order m with fixed-point-free action, where $m \geq 3$ is co-prime to p. Suppose F_0 is a totally imaginary number field admitting a cyclic extension F/F_0 of degree m such that F is p-rational. Let n be an integer such that $p^n[F_0:\mathbb{Q}] \geq 2d$, and let K_0 , respectively K be the nth layer of the cyclotomic \mathbb{Z}_p -extension of F_0 , respectively F. Then there exists an intermediate field $K \subset L \subset K_{S_p}$ such that L is Galois over K_0 with Galois group isomorphic to $\Gamma \rtimes \langle \tau \rangle$. In particular, if τ acts fixed-point-freely on Γ/Γ_2 and if $m = \ell$ is prime, then $Gal(L/K_0)$ is a Frobenius group.

Proof. — The extension K/K₀ is cyclic of degree m and the number field K is p-rational, hence $\mathscr{G} := \operatorname{Gal}(K_{S_p}/K)$ is a free pro-p group on $r_2(K) + 1 \geq d$ generators. Put $\operatorname{Gal}(K/K_0) = \langle \sigma \rangle$ The extension K_{S_p}/K_0 is a Galois extension with Galois group $\mathscr{G}_0 = \operatorname{Gal}(K_{S_p}/K_0)$ isomorphic to $\mathscr{G} \rtimes \langle \sigma \rangle$. By Proposition 1.18, the character of the action of σ on $\mathscr{G}/\mathscr{G}_2$ is $p^n([F_0:\mathbb{Q}]/2) \cdot \chi_{\text{reg}} + 1$. Now let $\chi(\Gamma/\Gamma_2) = \sum_{\chi \in \operatorname{Irr}(\langle \sigma \rangle)} \lambda_{\chi} \chi$ be the character

of the action of τ on Γ/Γ_2 . Then $\sum_{\chi} \chi(1)\lambda_{\chi} = d$ and, for all χ , $\lambda_{\chi} \leq d/\chi(1) \leq d$. In particular since $[F_0:\mathbb{Q}]\cdot p^n \geq 2d$, then necessarily, the $\langle \tau \rangle$ -module Γ/Γ_2 is isomorphic to a submodule of $\mathscr{G}/\mathscr{G}_2$. By Proposition 2.14, there exists a normal subgroup N of \mathscr{G} , stable under σ , such that \mathscr{G}/N is $\langle \sigma \rangle$ -isomorphic to Γ , and we have a surjection $\mathscr{G}_0 \twoheadrightarrow \Gamma \rtimes \langle \sigma \rangle \simeq \Gamma \rtimes \langle \tau \rangle$.

We now state the key arithmetic proposition we need.

Proposition 3.7. — Let L/K_0 be a Galois extension of Galois group $\Gamma \rtimes \langle \sigma \rangle$, where Γ is a uniform group of dimension d and where σ is of order m co-prime to p. Suppose that $\Gamma^{\circlearrowleft \sigma}$ is fixed-point-free. Then every place \mathfrak{p} which is (totally) inert in K/K_0 and is not ramified in L/K splits completely in L/K.

Proof. — Let \mathfrak{p} a prime of K inert in K/K₀ which is not ramified in L/K. Let us fix a prime $\mathfrak{P}|\mathfrak{p}$ of L (see \mathfrak{P} as a system of coherent primes in L/K). Denote by $\widetilde{\sigma_{\mathfrak{p}}}$ be the Frobenius of \mathfrak{p} in K/K₀ and let $\sigma_{\mathfrak{P}} \in \operatorname{Gal}(L/K_0)$ be an element of order m of the decomposition group of \mathfrak{P} in L/K₀ lifting $\widetilde{\sigma_{\mathfrak{p}}}$. Then $\sigma_{\mathfrak{P}} = \sigma^i$ in $\operatorname{Aut}(\Gamma/\Gamma_2)$, for an integer i, (i, m) = 1. By Proposition 2.11, there exists $g \in \ker(\operatorname{Aut}(\Gamma) \to \operatorname{Aut}(\Gamma/\Gamma_2))$ such that $\operatorname{Fix}(\Gamma, \sigma_{\mathfrak{P}}) = g \cdot \operatorname{Fix}(\Gamma, \sigma^i) = \{e\}$, the last equality coming from Remark 2.2. Let $\widehat{\sigma_{\mathfrak{P}}} := \operatorname{Frob}_{\mathfrak{P}}(L/K)$. As $\mathfrak{p} \in \Sigma$, the prime \mathfrak{P} is unramified in K/K₀ and then the decomposition group of \mathfrak{P} in L/K₀ is cyclic: the elements $\sigma_{\mathfrak{P}}$ and $\widehat{\sigma_{\mathfrak{P}}}$ commute or, equivalently, $\widehat{\sigma_{\mathfrak{P}}}^{\sigma_{\mathfrak{P}}} = \widehat{\sigma_{\mathfrak{P}}}$. Hence if $\widehat{\sigma_{\mathfrak{P}}} \neq e$, the element $\sigma_{\mathfrak{P}} \in \operatorname{Aut}(\Gamma)$ has a fixed-point. Contradiction, and then $\widehat{\sigma_{\mathfrak{P}}} = e$. \square

Assembling our forces, we can now formulate our main theorem.

Theorem 3.8. — Let Γ be a uniform pro-p group having an automorphism τ of order m with fixed-point-free action, where $m \geq 3$ is co-prime to p. Suppose Γ_0 is a totally imaginary number field admitting a cyclic extension Γ/Γ_0 of degree m such that Γ is p-rational. Then there exists a finite p-extension K/Γ unramified outside p and a Γ -extension L/K with the following property: for any given integer μ_0 , there exists a cyclic degree p extension K' over $K(\zeta_p)$ such that L' = LK' is a Γ -extension of K' whose μ -invariant satisfies $\mu_{L'/K'} \geq \mu_0$.

Proof. — We simply follow the rubric of Proposition 3.6. Choose an integer n large enough so that $p^n[F_0:\mathbb{Q}] \geq 2\dim(\Gamma)$, then let K_0 and K by the nth layer of the cyclotomic \mathbb{Z}_p -extensions of F_0 and F respectively. Since F is p-rational, so is K. By Proposition 3.6, we are guaranteed of the existence of a Galois extension L/K_0 with Galois group $\Gamma \rtimes \langle \tau \rangle$ and $K = L^{\Gamma}$. By Proposition 3.7, every inert place in K/K_0 splits completely in L/K. Now we simply apply the construction described in the proof of Proposition 3.1.

Remark 3.9. — Let us remark that in the construction of Theorem 3.8 (in fact of Proposition 3.6), we start with a p-rational field F and pass to another p-rational field K whose maximal p-ramified p-extension is of large enough rank to have Γ as a quotient. However, the cyclic degree p extension K' of K(ζ_p) over which we construct a tower with large μ -invariant is not itself p-rational (see [11, Chapter IV, §3]).

Remark 3.10. — In his original treatment [21], Iwasawa was able to treat the case p=2 alongside odd primes p. The elements of finite order of $\operatorname{Aut}(\mathbb{Z}_2)$ are of order 2. Then the Question 0.5 is essential for applying our previous "co-prime to p" strategy for \mathbb{Z}_2 . Indeed, let us consider the uniform pro-2 group $\Gamma := \mathbb{Z}_2^2$ instead of \mathbb{Z}_2 by noting that $\operatorname{Aut}(\mathbb{Z}_2^2)$ has a fixed-point-free automorphism τ of order 3. By example 1.15, one knows that the field $K = \mathbb{Q}(\zeta_{13})$ is 2-rational; the Galois group G_{S_2} is free on 7 generators. Moreover, G_{S_2} has an automorphism of order 3 coming from the unique cyclic sub-extension K/K_0 of degree 3. The character of this action contains the character of the action of τ on Γ/Γ_2 . Hence by Proposition 3.6, there exists a Galois extension L/K with $\operatorname{Gal}(L/K) \simeq \Gamma = \mathbb{Z}_2^2$ in which every odd inert place \mathfrak{p} in K/K_0 splits completely in L/K. In particular every such place splits in every \mathbb{Z}_2 -quotient of Γ and then the Proposition 3.1 apply for \mathbb{Z}_2 .

4. Complements

4.1. A non-commutative example. — Assume p > 3. The nilpotent uniform groups of dimension ≤ 2 are all commutative. In dimension 3 they are parametrized, up to isomorphism, by $s \in \mathbb{N}$ and represented (see [23, §7 Theorem 7.4]) by:

$$\Gamma(s) = \langle x, y, z \mid [x, z] = [y, z] = 1, [x, y] = z^{p^s} \rangle.$$

Here the center of $\Gamma(s)$ is the procyclic group $\langle z \rangle$ and one has the sequence:

$$1 \longrightarrow \mathbb{Z}_p \longrightarrow \Gamma(s) \longrightarrow \mathbb{Z}_p^2 \longrightarrow 1.$$

Proposition 4.1. — Let $s \in \mathbb{N}$ and let $p \equiv 1 \pmod{3}$. The group of automorphisms of $\Gamma(s)$ contains an element σ of order 3 for which the action is fixed-point-free.

Proof. — To simplify the notation, put $\Gamma = \Gamma(s)$. First, let us remark that for $a, b \in \mathbb{N}$, one has $x^a y^b = z^{abp^s} y^b x^a$. Indeed,

$$x^{a}y = x^{a-1}z^{p^{s}}yx = z^{p^{s}}x^{a-1}yx = z^{ap^{s}}yx^{a},$$

and the same holds for xy^b .

Let ζ be a primitive third root of the unity and let $\zeta^{(n)} \in \mathbb{N}$ be the truncation at level n of the p-adic expansion of ζ : $\zeta^{(n)} \equiv \zeta \pmod{p^n}$. Let us consider σ defined by:

$$\sigma: \Gamma \to \Gamma
x \mapsto x^{\zeta}
y \mapsto y^{\zeta}
z \mapsto z^{\zeta^2}$$

Then $\sigma \in \operatorname{Aut}(\Gamma)$. Indeed one has to show that the relations defining Γ are stable under the action of σ , which is obvious for the relations [x, z] = 1 and [y, z] = 1. Let us look at the last relation. First, as Γ is uniform, let us recall that $\Gamma_{n+1} = \Gamma^{p^n}$. We have:

$$\sigma([x,y]) = \sigma(xyx^{-1}y^{-1}) \equiv x^{\zeta^{(n)}}y^{\zeta^{(n)}}x^{-\zeta^{(n)}}y^{-\zeta^{(n)}} \pmod{\Gamma_n} \equiv z^{\left(\zeta^{(n)}\right)^2p^s} \pmod{\Gamma_n} \longrightarrow_n z^{\zeta^2p^s}.$$

To finish, let us show that the automorphism σ is fixed-point-free. Indeed the eigenvalues of the action of σ on the \mathbb{F}_p -vector space $\Gamma/\Gamma_2 \simeq \mathbb{F}_p^3$ are ζ (with multiplicity 2) and ζ^2 , so $\Gamma/\Gamma_2^{\circlearrowleft}$ is fixed-point-free and we conclude with Proposition 2.7.

Remark 4.2. — If $p \not\equiv 1 \pmod{3}$, there is no element $\sigma \in \operatorname{Aut}(\Gamma(s))$ of order 3 with fixed-point-free action. Indeed, let $\sigma \in \operatorname{Aut}(\Gamma(s)/\Gamma(s)_2) \simeq \operatorname{Gl}_3(\mathbb{F}_p)$, and suppose that σ is fixed-point-free. The eigenvalues of σ in $\overline{\mathbb{F}_p}$ are ζ and/or ζ^2 with multiplicity. But, as the trace of σ is in \mathbb{F}_p , then necessarily $\zeta \in \mathbb{F}_p$ and $3 \mid p-1$.

Corollary 4.3. — Assume $p \equiv 1 \pmod{3}$ and p regular. For each $s \in \mathbb{N}$, there exist $\Gamma(s)$ -extensions of numbers fields with arbitrarily large μ -invariant.

Remark 4.4. — For p=37, which is the smallest irregular prime, we may not resort to the construction above with $F=\mathbb{Q}(\zeta_{37})$, but we can still realize $\Gamma(s)$ -extensions with arbitrarily large μ -invariant by applying Theorem 3.8 for $F/F_0=\mathbb{Q}(\zeta_7)/\mathbb{Q}(\sqrt{-7})$.

15

4.2. Counting the split primes in uniform extensions. — Let L/K be a Galois extension with p-adic analytic Galois group Γ of dimension d. Denote by Σ the set of primes of \mathscr{O}_K unramified in L/K. Assume Σ finite. For $\mathfrak{p} \in \Sigma$, let $\mathscr{C}_{\mathfrak{p}}$ be the conjugacy class of the Frobenius of \mathfrak{p} in L/K and put

$$\pi^{\mathrm{split}}_{\mathrm{L/K}}(x) = \Big| \{ \mathfrak{p} \in \Sigma, \ \mathscr{C}_{\mathfrak{p}} = \{1\}, \mathrm{N}(\mathfrak{p}) \leq x \} \Big|,$$

where $N(\mathfrak{p}) := |\mathscr{O}_K/\mathfrak{p}|$.

In [33, Corollary 1 of Theorem 10], under GRH, Serre shows that for all $\varepsilon > 0$, $\pi_{L/K}^{\text{split}}(x) = O\left(x^{\frac{1}{2}+\varepsilon}\right)$. Without assuming GRH, $\pi_{L/K}^{\text{split}}(x) = O\left(x/\log^{2-\varepsilon}(x)\right)$.

Proposition 4.5. — Let p be a regular prime and let Γ be a uniform pro-p group having a non-trivial fixed-point-free automorphism σ of prime order $\ell \mid p-1$. Then there exists a constant C > 0 and a Γ -extension Γ over a number field Γ such that

$$\pi_{\mathrm{L/K}}^{\mathrm{split}}(x) \ge C \frac{x^{1/\ell}}{\log x}, \qquad x \gg 0.$$

Proof. — One use the construction of section 3.3. Put $K = \mathbb{Q}(\zeta_{p^n})$ where n is the smallest integer such that $p^n(p-1) \geq 2\ell d$. Let K/K_0 be the unique cyclic extension of degree ℓ ; $Gal(K/K_0) = \langle \sigma \rangle$. Let L/K be a uniform Galois extension with group Γ constructed by the method of Proposition 3.6. Let $\mathscr{E}(L/K)$ be the set of conjugacy classes of $Gal(K/\mathbb{Q})$ of the elements σ^i with $(i,\ell) = 1$. By Proposition 3.7, a prime \mathfrak{q} of K for which the Frobenius conjugacy class $\sigma_{\mathfrak{q}} \in K/\mathbb{Q}$ is in $\mathscr{E}(L/K)$, splits totally in L/K. Hence

$$\begin{array}{ll} \pi^{\mathrm{split}}_{\mathrm{L/K}}(x) & \geq & \left| \{ \mathfrak{q} \in \Sigma, \ \sigma_{\mathfrak{q}} \in \mathscr{E}(\mathrm{L/K}), \ \mathrm{N}(\mathfrak{q}) \leq x \} \right| \\ & = & \left| \{ \mathfrak{q} \in \Sigma, \exists (i,\ell) = 1, \ \mathscr{C}_q(\mathrm{K/Q}) = \sigma^i, \ q^\ell \leq x \} \right| \\ & = & \left| \{ \mathfrak{q} \in \Sigma, \exists (i,\ell) = 1, \ \mathscr{C}_q(\mathrm{K/Q}) = \sigma^i, \ q \leq x^{1/\ell} \} \right| \end{array}$$

where $\mathscr{C}_q(K/\mathbb{Q})$ is the conjugacy class of the Frobenius of q in $Gal(K/\mathbb{Q})$. By using Chebotarev Density Theorem, one concludes that

$$\pi_{\mathrm{L/K}}^{\mathrm{split}}(x) \gg \frac{x^{1/\ell}}{\log x}$$
.

Example 4.6. — For the uniform group $\Gamma(s)$ of dimension 3 discussed in §4.1, one obtains $\Gamma(s)$ -extensions L/K with $\pi_{\text{L/K}}^{\text{split}}(x) \gg \frac{x^{1/3}}{\log x}$.

4.3. On p-rational fields with splitting. — For all this section, assume that p > 2. By making use of fixed-point-free automorphisms, we have produced some uniform extensions with infinitely many totally split primes. Using Class Field Theory it is also possible to produce some free-pro-p extensions with some splitting phenomena, but we do not know if it is possible to construct free pro-p extensions in which infinitely many primes of the base field split completely. In fact this question is related to the work of Ihara [20] and the recent work of the authors [16].

Let us show how to produce some free pro-p extensions with some splitting. Let S and T be two finite sets of places of number field K such that $S \cap T = \emptyset$. Recall that $S_p = \{ \mathfrak{p} \in K : \mathfrak{p} | p \}$. Let (r_1, r_2) be the signature of K. Let K_S^T be the maximal pro-p

extension of K unramified outside S and totally decomposed at T. Put $\mathscr{G}_S^T = \operatorname{Gal}(K_S^T/K)$; $A_S^T := \mathscr{G}_S^{T^{ab}}$ and $A_S^T/p := \mathscr{G}_S^{T^{ab}}/\mathscr{G}_S^{T^{ab,p}}$. Of course, one has $d_p A_S^T = d_p \mathscr{G}_S^T$ and for $S = T = \emptyset$, $A_\emptyset^0(K) = A(K)$.

We are interested in constructing an example where the group \mathscr{G}_S^T is a free pro-p group and T is not empty.

The following is a fundamental and classical result about the Euler characteristics of \mathscr{G}_{S}^{T} .

Proposition 4.7 (Shafarevich and Koch). — Suppose that K contains the p-roots of the unity. Then,

$$d_p H^2(\mathscr{G}_S^T, \mathbb{F}_p) \le d_p A_T^S + |S| - 1$$

and

$$d_p \mathcal{G}_S^T = d_p A_T^S + |S| - |T| - (r_1 + r_2) + \sum_{v \in S \cap S_p} [K_v : \mathbb{Q}_p]$$

Proof. — See for example [11, Corollary 3.7.2, Appendix] for the bound for the H^2 and [11, Theorem 4.6, Chapter I, §4] for the H^1 .

The first inequality of the previous proposition would allow us to produce a free pro-p extension with complete splitting at the primes in T if $d_p A_T^S + |S| - 1 = 0$. On the other hand, if we apply the second line, let us read the second of Proposition 4.7 with the role of S and T reversed, we find that

$$d_p \mathbf{A}_T^S \ge |T| - (r_1 + r_2 + |S|).$$

We conclude that, under this strategy, $|T| \le r_1 + r_2 + 1$, so this method is rather limited in scope.

Let us take $K = \mathbb{Q}(\zeta_p)$ when p is regular and $S = S_p$. Then the group \mathscr{G}_S^T will be pro-p free when A_T^S is trivial. As the p-class group of K is trivial, one has:

$$A_T^S \simeq (\prod_{v \in T} \mathscr{U}_v)/\mathscr{O}_K^S,$$

where \mathscr{U}_v is the pro-p completion of the local units at v and where \mathscr{O}_K^S is the group of S-units of K. Now, there are several types of scenarios where the quotient $(\prod_{v \in T} \mathscr{U}_v)/\mathscr{O}_K^S$ is trivial. Let us give one. Suppose that $T = \{\ell\}$ where ℓ is inert in K/\mathbb{Q} . Then \mathscr{U}_ℓ is isomorphic to the p-part of \mathbb{F}_ℓ^{\times} . Hence, the global pth roots of unity will kill this part when $|\mathscr{U}_\ell| = p$ i.e. when $\ell^{p-1} - 1$ is exactly divisible by p. When this is the case, the group \mathscr{G}_S^T is free on (p-3)/2 generators.

4.4. Incorporating the Galois action. — We can take these ideas a bit further by studying the Galois action. Throughout this subsection, we fix the following notation and assumptions (we still assume p > 2). Let K_0 be a number field, K/K_0 a cyclic extension of integer m co-prime to p. Put $\Delta = \text{Gal}(K/K_0)$. Let $r = r_1(K_0) + r_2(K_0)$ be the number of archimedean places of K_0 . Let S and T be two finite sets of places of K_0 such that $S \cap T = \emptyset$ and S contains S_p . By abuse of notation, the set of places of K above S and T are again called S and T respectively. Denote by S_{split} (resp. T_{split}) the set of places of S (resp. of S) splitting in K/K_0 an by S_{inert} (resp. T_{inert}) the set of places of S (resp. of S) not splitting in S0. As in §1.2, the arithmetic objects of interest have a structure

as $\mathbb{F}_p[\Delta]$ -modules. We recall the following mirror identity from the book of Gras [13, Chapter II, §5.4.2]:

Theorem 4.8. — Assume that $S_p \subset S$ and that K contains a primitive pth root of unity. Then:

$$\omega \chi^{-1}(\mathbf{A}_S^T) - \chi(\mathbf{A}_T^S) = r \chi_{\text{reg}} + \omega - \mathbf{1} + |S_{\text{inert}}| \mathbf{1} + |S_{\text{split}}| \chi_{\text{reg}} - |T_{\text{split}}| \chi_{\text{reg}} - |T_{\text{inert}}| \omega.$$

Proposition 4.9. — Suppose that K, which is a cyclic degree p extension of K_0 , contains a primitive pth root of unity and is p-rational. Then K_0 , as well as every number field K_n in the cyclotomic extension K_{∞} of K is also p-rational.

Proof. — It is an obvious extension of Proposition 1.16.

Now we assume that K_0 is totally imaginary and we take $S = S_p$. By hypothesis, there is no abelian unramified p-extension of K in which p splits completely. Then for $T = \emptyset$, by Theorem 4.8, one has:

$$\omega \chi^{-1}(\mathbf{A}_S) = r \chi_{\text{reg}} + \omega.$$

The group $A_S(K_0)$ corresponds by Class Field Theory to the Galois group of the maximal abelian pro-p extension of K_0 unramified outside S. The Galois group $\mathscr{G}_S(K_0)$ is free on r+1 generators. The action of Δ on A_S/p being semi-simple, the $\mathbb{F}_p[\Delta]$ -module $A_S(K_0)/p$ is isomorphic to A_S^T/p on which the Δ action is trivial.

By the Chebotarev Density Theorem, we can choose a set $T := \{\mathfrak{p}_0, \dots, \mathfrak{p}_r\}$ of places of K_0 all inert in K/K_0 , with $|T| = d_p A_S(K_0) = r + 1$, such that the Frobenius symbols $\sigma_{\mathfrak{p}_i}$, $i = 0, \dots, r$, generate the p-group $A_S(K_0) \otimes \mathbb{F}_p$. By the choice of T, one has $\chi(A_S^T) = \chi(A_S) - |T| \mathbf{1}$. Thanks to Theorem 4.8 one then obtains:

$$\chi(\mathbf{A}_T^S) = \omega \chi^{-1}(\mathbf{A}_S^T) - \omega \chi^{-1}(\mathbf{A}_S) - |T|\omega = 0.$$

Then the maximal pro-p-extension of K unramified outside T and splitting at S, is trivial. One then uses Proposition 4.7 to obtain:

Proposition 4.10. — Under the conditions of Proposition 4.9, and with $S = S_p$ and T as above, the pro-p-group \mathscr{G}_S^T is free on $r(\ell-1)$ generators and

$$\chi(\mathbf{A}_S^T) = r(\chi_{\text{reg}} - \mathbf{1}).$$

Remark 4.11. — (i) The main point of Proposition 4.10 is that the action of σ on A_S^T is fixed-point-free, where $\Delta = \langle \sigma \rangle$.

(ii) By Proposition 4.9, the degree r can be taken arbitrarily large.

As corollary, one obtains:

Corollary 4.12. — Assume the conditions of Proposition 4.10. Let L/K_0 be a sub-extension of K_S^T/K_0 such that $\Gamma = Gal(L/K)$ is a uniform pro-p group. Then every (totally) inert (odd) prime $\mathfrak{p} \subset \mathcal{O}_K$ in K/K_0 splits completely in L/K.

4.5. Some heuristics on *p***-rationality.** — Here we exploit some conjectures on *p*-rationality to get further heuristic evidence in direction of Conjecture 0.1. These are of two types. The first is in the spirit of the Leopoldt Conjecture — in a certain sense this is a transcendantal topic; the main reference is the recent work of Gras [12]. The second one is inspired by the heuristics of Cohen-Lenstra [6].

Conjecture 4.13 (Gras, Conjecture 8.11 of [12]). — Let K be a number field. Then for $p \gg 0$, the field K is p-rational.

Proposition 4.14. — Let \mathbb{P} be an infinite set of prime numbers and m an integer coprime to all $p \in \mathbb{P}$. Let $(\Gamma_p)_{p \in \mathbb{P}}$ be a family of uniform pro-p groups all of dimension p and all having a fixed-point-free automorphism of order p. If Conjecture 4.13 is true for some number field p of degree p, then for all but finitely many primes $p \in \mathbb{P}$, the groups Γ_p have arithmetic realizations as Galois groups with arbitrarily large p-invariant.

Proof. — Let us take K_0 be a totally imaginary abelian number field of degree n over \mathbb{Q} and let K_1/\mathbb{Q} be a degree m cyclic extension with $K_0 \cap K_1 = \emptyset$. Let $K = K_0K_1$ be the compositum. Put $\langle \sigma \rangle = \operatorname{Gal}(K/K_0)$. Under Conjecture 4.13, one knows that for large p depending only on K, the field K is p-rational. One then applies Theorem 3.8.

Example 4.15. — Let us fix $s \in \mathbb{N}$ and let \mathbb{P} be the set of primes $p \equiv 1 \mod 3$. Let $\Gamma(s,p)$ be the pro-p group $\Gamma(s)$ of dimension 3 introduced in §4.1. One can apply Proposition 4.14 to the family of groups $(\Gamma(s,p))_{n\in\mathbb{P}}$.

Let us consider another idea for studying p-rationality, in the spirit of the Cohen-Lenstra Heuristics [6]. For a prime number $p \geq 5$ and an integer m > 1 not divisible by p, let us consider the family $\mathscr{F}_m(K_0)$ of cyclic extensions of degree m over a fixed p-rational number field K_0 . Following the idea of Pitoun and Varescon [31], it seems reasonable to make the following conjecture:

Conjecture 4.16. — Let us fix p and m as above. If K_0 is a p-rational quadratic imaginary field, the proportion of number fields K in $\mathscr{F}_m(K_0)$ which are p-rational (counted according to increasing absolute value of the discriminant) is positive.

Obviously, Conjecture 4.16 implies Conjecture 0.1.

References

- [1] E.D. Bolker, Inverse limits of solvable groups, Proc. Amer. Math. Soc. 14 (1963), 147–152.
- [2] N. Boston, Some cases of the Fontaine-Mazur conjecture. J. Number Theory $\bf 42$ (1992), no. 3, 285–291.
- [3] N. Boston, Some cases of the Fontaine-Mazur conjecture. II. J. Number Theory **75** (1999), no. 2, 161–169.
- [4] N. Boston, Explicit Deformation of Galois Representations, Inventiones Math. 103 (1991), 181-196.
- [5] J. Coates, P. Schneider and R. Sujatha, *Modules over Iwasawa algebras*, J. Inst. Math. Jussieu **2**:1 (2003), 73–108.
- [6] H. Cohen and H.W. Lenstra, Jr, *Heuristics on Class groups on Number Fields*, Number Theory, Noordwijkerhout 1983, Lecture Notes in Math., Vol. 1068, Springer 1984, 33-62.
- [7] A.A. Cuoco, Generalized Iwasawa invariants in a family, Compositio Math. **51** (1984), 89-103.

- [8] J.D. Dixon, M.P.F Du Sautoy, A. Mann and D. Segal, *Analytic pro-p-groups*, Cambridge studies in advances mathematics 61, Cambridge University Press, 1999.
- [9] B. Ferrero and L.C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Annals of Mathematics. Second Series **109** (1979), no. 2, 377–395.
- [10] D. Gildenhuysn W. Herfort and L. Ribes, *Profinite Frobenius group*, Arch. Math. **33** (1979/80), no. 6, 518–528.
- [11] G. Gras, Class Field Theory, SMM, Springer, 2003.
- [12] G. Gras, Les θ -régulateurs locaux d'un nombre algébrique Conjectures p-adiques, Canadian J. Math. **68** (2016), no. 3, 571-624.
- [13] G. Gras, Théorèmes de réflexion, J. Th. Nombres Bordeaux 10 (1998), no. 2, 399–499.
- [14] G. Gras and J.-F. Jaulent, Sur les corps de nombres réguliers, Math. Z. 202 (1989), 343-365.
- [15] R. Greenberg, Galois representations with open image, Ann. Math. Québec 40 (2016), no. 1, 83-119.
- [16] F. Hajir and C. Maire, On the invariant factors of class groups in towers of number fields, Canadian J. Math. (2017).
- [17] M. Harris, p-adic representations arising from descent on abelian varieties, Compositio Math. **39**:2 (1979), 177-245. With Correction: Compositio Math. **121**:1 (2000), 105-108.
- [18] W.N. Herfort and L. Ribes, On Automorphisms of Free Pro-p-Groups I, Proc. Amer. Math. Soc. 108 (1990), no. 2, 287–295.
- [19] S. Howson, Euler Characteristics as invariants of Iwasawa modules, Proc. London Math. Society 85 (2002) no. 3, 634-658.
- [20] Y. Ihara, How many primes decompose completely in an infinite unramified Galois extension of a global field?, J. Math. Soc. Japan **35** (1983), no. 4, 693-709.
- [21] K. Iwasawa, On the μ -invariants of \mathbb{Z}_{ℓ} -extensions. Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, pp. 1–11. Kinokuniya, Tokyo, 1973.
- [22] J.-F. Jaulent and T. Nguyen Quang Do, Corps p-réguliers, corps p-rationnels et ramification restreinte, J. Théor. Nombres Bordeaux 5 (1993), 343-363.
- [23] J. Gonzálo-Sánchez and B. Klopsch, Analytic pro-p groups of small dimensions, J. Group Theory 12 (2009), no. 5, 711–734.
- [24] B. Klopsch and I. Snopce, A characterization of uniform pro-p groups, Q. J. Math. 65 (2014), no. 4, 1277–1291.
- [25] M. Lazard, Groupes analytiques p-adiques, IHES, Publ. Math. 26 (1965), 389-603.
- [26] C. Maire, Sur la dimension cohomologique des pro-p-extensions des corps de nombres, J. Th. des Nombres de Bordeaux 17 fasc. 2 (2005), 575-606.
- [27] A. Movahhedi and T. Nguyen Quang Do, Sur l'arithmétique des corps de nombres p-rationnels, Séminaire de Théorie des Nombres, Paris 1987–88, 155–200, Progr. Math., 81, Birkhäuser Boston, Boston, MA, 1990.
- [28] A. Movahhedi, Sur les p-extensions des corps p-rationnels, Math. Nachr. 149 (1990), 163–176.
- [29] T. Nguyen Quang Do, Formations de classes et modules d'Iwasawa, Noordwijkerhout 1983, Lecture Notes in Math., Vol. 1068, Springer 1984, 167-185.
- [30] G. Perbet, Sur les invariants d'Iwasawa dans les extensions de Lie p-adiques (French) [On Iwasawa invariants in p-adic Lie extensions] Algebra Number Theory 5 (2011), no. 6, 819–848.
- [31] F. Pitoun and F. Varescon, Computing the torsion of the p-ramified module of a number field. (English summary) Math. Comp. 84 (2015), no. 291, 371–383.
- [32] L. Ribes and P. Zalesskii, Profinite Groups, EMG 40, Springer, 2010.
- [33] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. IHES, vol. **54** (1981), 123-201.

- [34] O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc. 4: (2002), 271–311.
- [35] K. Wingberg, Free pro-p-extensions of number fields, preprint 2005.

 $September\ 14,\ 2018$

Farshid Hajir, Department of Mathematics & Statistics, University of Massachusetts, Amherst MA 01003, USA.

CHRISTIAN MAIRE, Laboratoire de Mathématiques de Besançon (UMR 6623), Université Bourgogne Franche-Comté et CNRS, 16 route de Gray, 25030 Besançon, France