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Abstract. — Let p be a prime number and K an algebraic number field. What is the
arithmetic structure of Galois extensions L/K having p-adic analytic Galois group Γ =
Gal(L/K)? The celebrated Tame Fontaine-Mazur conjecture predicts that such extensions
are either deeply ramified (at some prime dividing p) or ramified at an infinite number of
primes. In this work, we take up a study (initiated by Boston) of this type of question under
the assumption that L is Galois over some subfield k of K such that [K : k] is a prime ` 6= p.
Letting σ be a generator of Gal(K/k), we study the constraints posed on the arithmetic of
L/K by the cyclic action of σ on Γ, focusing on the critical role played by the fixed points
of this action, and their relation to the ramification in L/K. The method of Boston works
only when there are no non-trivial fixed points for this action. We show that even in the
presence of arbitrarily many fixed points, the action of σ places severe arithmetic conditions
on the existence of finitely and tamely ramified uniform p-adic analytic extensions over K,
which in some instances leads us to be able to deduce the non-existence of such extensions
over K from their non-existence over k.
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1. Introduction

1.1. Background. — Fix a prime p. The theory of pro-p groups has seen major ad-
vances in the last few decades. In particular, the monumental work [28] of Lazard on
p-adic analytic groups (that is to say Lie groups over the field Qp of p-adic numbers)
has been simplified and reinterpreted in the book [9] by Dixon, du Sautoy, Mann, and
Segal and has made the subject more readily applied in many situations and much more
accessible to a variety of non-experts. At the same time, the theory of Galois repre-
sentations encodes vast amounts of arithmetic information via action of Galois groups
on finite-dimensional p-adic vector spaces, which is to say creates continuous homomor-
phisms from Galois groups to the p-adic Lie groups Gln(Qp). In this paper, we are
interested in using group-theoretical information to derive consequences for finitely and
tamely ramified Galois representations.

We recall that a pro-p group Γ is called uniform if Γp = 〈xp, x ∈ Γ〉 contains the
commutators [Γ,Γ] of Γ and if moreover Γ is torsion-free. By Lazard [28] (see also
[9]), every finite-dimensional p-adic analytic group (closed subgroup of Gln(Qp) for some
n ≥ 1) has a finite-index (open) uniform subgroup.
In [4] and [5], Boston initiated the study of the following situation (see also Wingberg
[41] and Maire [32]). We fix a uniform pro-p group Γ and assume that Γ is realized as
the Galois group of a tamely ramified extension L/K, i.e. Γ = Gal(L/K), and we assume,
moreover, that Γ is equipped with a semi-simple Galois action. To be more explicit, from
now on we assume that:

– K is a finite Galois extension of a number field k with Galois group ∆ = Gal(K/k)
– ∆ is a cyclic group of prime order ` dividing p− 1, and we fix a generator σ of ∆
– L/K is a finitely and tamely ramified Galois extension which is Galois over k
– Γ = Gal(L/K) is a uniform pro-p group of finite dimension d

Theorem (Boston). — Under the above assumptions, if in addition
– p does not divide the order of the class group of k, and
– L/K is everywhere unramified,

then Γ is trivial.

Here’s the strategy of Boston’s proof of this result. The assumptions made in the theorem
imply that σ acts without non-trivial fixed points on Γab (to simplify the terminology,
we say by way of shorthand that the action of σ is "FPF (fixed-point-free)"). By the
uniformity of Γ the action of σ is fixed-point-free also on Γ. The existence of this fixed-
point-free cyclic action on Γ implies that Γ is nilpotent (see Proposition 3.4). We recall
that a group is called FAb if for all open subgroups U , the abelianization Uab is finite.
Since L/K is tamely ramified, Γ is FAb. Since Γ is both nilpotent and FAb, it is finite;
but as a uniform group, it is torsion-free, hence must be trivial.
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In this work, we attempt to extend Boston’s strategy to the case of (tamely) ramified
L/K. The key challenge is to handle the fixed points introduced by ramification because
Boston’s proof relies heavily on the fact the σ-action in the unramified case is fixed-point-
free. We refer to [18] for a different application of this phenomenon in the context of
Iwasawa theory where one allows wild ramification in L/K.

1.2. A sample result. — In order to state our results, we need to introduce some more
notation and hypotheses. Let S be a finite set of places of K all of which are prime to p
(we say that the set S is tame and indicate this by writing (S, p) = 1). Since we will be
working p-extensions in which the primes in S are allowed to ramify, we further assume
that for finite places p ∈ S, we have #OK/p ≡ 1(mod p). We let KS be the maximal
pro-p extension of K unramified outside S and we put GS = GS(K) = Gal(KS/K).
Let us also take an auxiliary finite set T of places of K, disjoint from S, and define KT

S

to be the maximal pro-p extension of K unramified outside S and in which the places in
T split completely. We put GT

S = GT
S (K) = Gal(KT

S/K). We note then that KT
S ⊂ KS,

that GS � GT
S and that K∅S = KS.

Recall that K is a number field admitting a non-trivial automorphism σ of prime order
` dividing p− 1, and k = Kσ is the fixed field of ∆ = 〈σ〉. We will assume that the sets
S and T described above are stable under the action of σ. Thus, the extension KT

S/k is
Galois and σ acts on GT

S = Gal(KT
S/K).

Definition 1.1. — Consider a continuous Galois representation ρ : GT
S (K)→ Gln(Qp),

and let L be the subfield of KT
S fixed by ker(ρ) so that the image Γ of ρ is naturally

identified with Gal(L,K). We say that ρ (or Γ) is σ-uniform if we have (i) Γ = Gal(L/K)
is uniform; and (ii) L/k is Galois, i.e. the action of σ on GT

S (K) induces an action on Γ.

For a finitely generated pro-p group G, recall that closed subgroup generated by pth
powers and commutators, Φ(G) = Gp[G,G], is the Frattini subgroup of G; it is a charac-
teristic subgroup of finite index. The Frattini quotient Gp,el := G/Φ(G) is the maximal
abelian exponent p quotient of G. The method of Boston described in §1.1 in the un-
ramified case carries over to GT

S without any trouble only if the action of σ on Γ is
FPF. More precisely, if the action of σ on GT

S/Φ(GT
S ) is fixed-point-free, then any σ-

uniform representation of GT
S has trivial image. As indicated above, we try to extend

the method by introducing fixed points that result from allowing tame ramification. We
show that even in the presence of non-trivial fixed points, all σ-uniform quotients of GT

S

are trivial as long as the "new" ramification is restricted to the subgroup generated by
the fixed points. In §2, we will present our results in greater generality, but we first
illustrate them by presenting a special case for the well-known uniform and FAb pro-p
group Sl12(Zp) := ker

(
Sl2(Zp)→ Sl2(Fp)

)
of dimension 3.

Theorem. — Suppose K/k is a quadratic extension with Galois group ∆ = 〈σ〉 such that
the odd prime p does not divide the class number of k. Let Γ = Sl12(Zp). Suppose for all
finite sets Σ of places of k with (Σ, p) = 1, there is no continuous Galois representation
GΣ(k)� Γ. Then there exist infinitely many disjoint finite sets S and T of primes of K,
with (S, p) = 1 and |S| arbitrarily large, such that
(i) GT

S (K) is infinite,
(ii) GT

S (K)p,el has |S| independent fixed points under the action of σ,
(iii) there is no continuous σ-uniform representation ρ : GT

S (K)� Γ.
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Remark 1.2. — The above theorem holds with Γ = Sl1n(Zp) for arbitrary n, under
the additional assumption that the action of the automorphism σ on Γ corresponds to
conjugation by a matrix of order 2 in Gln(Zp). For more details, see §5.3.

1.3. Motivation. — An important and vast "modularity" conjecture forms the moti-
vation for the study begun by Boston and continued here. In [10], Fontaine and Mazur
propose a characterization of all Galois representations which arise from the action of
the absolute Galois group of K on Tate twists of étale cohomology groups of algebraic
varieties defined over K: namely they predict that these are precisely the representations
which are ramified at a finite number of primes of K and are potentially semistable at the
primes dividing p. If we restrict our attention to p-adic representations which are finitely
and tamely ramified, we obtain the following consequence (Conjecture 5a of [10]) of this
characterization (see Kisin-Wortmann [25] for the details).

Conjecture (Tame Fontaine-Mazur Conjecture). — For a finite set S of primes
of K of residue characteristic not equal to p, and n ≥ 1, any continuous Galois represen-
tation ρ : GS −→ Gln(Qp) has finite image.

The philosophy of this conjecture rests on the idea that the eigenvalues of Frobenius
(under a finitely and tamely ramified p-adic representation ρ) ought to be roots of unity.
Consequently, the image of such a representation is solvable, and hence finite by class
field theory (because it is also FAb). We refer the reader to [25] for further details.

One immediately checks the Conjecture for n = 1 by Class Field Theory. For n > 1, on
the other hand, the Tame Fontaine-Mazur Conjecture in general appears to be completely
out of reach, and the evidence for it for n > 2 is rather preliminary. However, for K = Q,
and n = 2, the pioneering methods of Wiles and Taylor-Wiles can be used to show that
many types of 2-dimensional representations do come from algebraic geometry (in fact
from weight one modular forms) and hence have finite image. As a partial list of such
results, we refer the reader to Buzzard-Taylor [7], Buzzard [6], Kessaei [23], Kisin [24],
Pilloni [35], Pilloni-Stroh [36].

Recalling that every finitely generated p-adic analytic group has a uniform open subgroup,
and that a uniform group of dimension 1 or 2 has quotient isomorphic to Zp, the Tame
Fontaine-Mazur conjecture can be rephrased as follows.

Conjecture (Tame Fontaine-Mazur Conjecture – Uniform Version)
Suppose K is a number field, and Γ is a uniform pro-p group of dimension d > 2, hence
infinite. Then there does not exist a finitely and tamely ramified Galois extension L/K
with Galois group Γ = Gal(L/K).

In the simplest non-trivial case, one can take K = Q and Γ = Sl12(Zp). We must then show
that Sl12(Zp) cannot be realized as the Galois group of a finitely and tamely ramified Galois
extension over Q. Given the recent spectacular breakthroughs listed above, perhaps the
current methods will one day prove sufficient to establish this special case of the Tame
Fontaine-Mazur conjecture, but at the moment the theory of even Galois representations
is still under-developed by comparison with odd ones. We should emphasize that in
this work, we rely exclusively on group-theoretical methods. However, as automorphic
methods approach a full proof of the tame Fontaine-Mazur conjecture (for 2-dimensional
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representations at least) over Q, one can use the group-theoretical techniques discussed
here to deduce some cases of the Tame Fontaine-Mazur conjecture over quadratic fields
from known cases over Q.

2. Presentation of results

2.1. A key definition. — Recall that Γ is a uniform pro-p group equipped with the
action of an automorphism σ of prime order ` | p− 1. We denote by

Γ◦σ = 〈γ ∈ Γ, σ(γ) = γ〉,
the closed subgroup of Γ generated by the fixed points of Γ under the action of σ, and
let Γσ be its normal closure in Γ. Let G := Γ/Γσ.

Definition 2.1. — With the above assumptions, the action of σ on Γ is said to be
fixed-point-mixing modulo Frattini (FPMF) if G = Γ/Γσ acts non-trivially on Γσ/Φ(Γσ).

This notion will be essential for our work; its relevance is explained at the end of §2.5. Let
us give two examples that we will study in section 5 and will be important to illustrate
our results.

Example 2.2 (See §5.2). — If a FAb and uniform pro-p group of dimension 3 admits
non-trivial action by an automorphism σ of order 2, then this action is fixed-point-
mixing modulo Frattini. Thus, any involution which acts non-trivially on the linear
group Sl12(Zp) := ker

(
Sl2(Zp)→ Sl2(Fp)

)
is fixed-point-mixing modulo Frattini.

Example 2.3 (See §5.3). — More generally, for the FAb pro-p group

Sl1n(Zp) := ker
(
Sln(Zp)→ Sln(Fp)

)
n ≥ 2,

and the automorphism σA coming from conjugation by a matrix A ∈ Gln(Zp) of order 2,
the action of σA is fixed-point-mixing modulo Frattini.

2.2. When σ is of order 2. — The case where the automorphism σ is an involution,
i.e. ` = 2, is particularly interesting. Let us begin with a definition.

Definition 2.4. — Let Γ be a uniform group of dimension d, which also then equals
the p-rank of Γ, i.e. Γ/Φ(Γ) is a d-dimensional vector space over Fp. Suppose σ ∈ Aut(Γ)
has order 2. If the multiplicity of the trivial character in the action of σ on Γ/Φ(Γ) is r,
we say that the action of σ on Γ is of type (r, d − r) and write tσ(Γ) = (r, d − r). We
will say that the type of action of automorphisms of order 2 on Γ is constant if for all
σ, τ ∈ Aut(Γ) of order 2, tσ(Γ) = tτ (Γ).

Under our blanket assumption that σ is non-trivial, it is easy to see that tσ(Γ) 6= (d, 0).
In [4] and [5], the assumption is always that tσ(Γ) = (0, d). In this work, we consider
the more general intermediate types tσ(Γ) = (r, d− r) with 0 < r < d, by allowing tame
ramification.
The result we want to present will involve the Hilbert p-class field KH of K so we recall
this concept. Recalling that the prime p has been throughout fixed, we let Cl(K) be the
p-Sylow subgroup of the ideal class group of K and KH the maximal abelian unramified
p-extension of K. The Artin map gives a canonical isomorphism Cl(K) → Gal(KH/K).
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More generally, if S is a finite tame set of places of K and T is another finite set of places
disjoint from S, ClTS will be the p-Sylow subgroup of the T -ray class group of K mod S,
which corresponds via the Artin map to Gal(KT

S/K).
As before, put GT

S = GT
S (K) = Gal(KT

S/K).

Theorem A. — Let p > 2 and let s ∈ N. Let K/k be a quadratic extension and suppose
that p does not divide |Cl(k)|. Let T be a finite set of places of k totally split in KH/K
of large enough cardinality (see Theorem 6.7 for a more exact statement), and such that
ClT (KH) is trivial. Then there exist s pairwise disjoint positive-density sets Si, i =
1, · · · , s of prime ideals p ⊂ Ok of k such that for finite sets S = {p1, · · · , ps}, with
pi ∈ Si, we have
(i) under the action of σ, there are s independent fixed points in GT

S/Φ(GT
S );

(ii) there is no continuous representation ρ : GT
S → Glm(Qp) with σ-uniform image Γ

which is fixed-point-mixing modulo Frattini.

Remark 2.5. — The key point for obtaining (ii) above is as follows. The choices of S
and T are made so that (GS)p,el = (GT

S )p,el. The action of σ on GT
S has type (s, dpCl(K)),

so we can rule out the existence of ρ with σ-uniform image Γ if tσ(Γ) is not compatible
with tσ(GT

S ). Such incompatibility can be caused at the level of the subgroup generated by
the fixed points of σ. Typically, condition (i) of Theorem A assures an incompatibility for
certain automorphisms of order 2. We will see that when σ has order 2, the contradiction
can be detected already at the level of the Hilbert p-class field of K.

When Γ has constant type for all order 2 automorphisms, the following interesting situ-
ation arises.

Corollary 2.6. — If the uniform group Γ of dimension d > 0 is such that for all σ ∈
Aut(Γ) of order 2, σ is fixed-point-mixing modulo Frattini, then under the conditions of
Theorem A, all continuous representations ρ : GT

S → Glm(Qp) with σ-uniform image Γ
come from k. In particular, such a representation does not exist if either

- The Tame Fontaine-Mazur conjecture holds for k, or
- d > |S|.

We can apply Theorem A to the groups Sl1n(Zp) = ker
(
Sln(Zp)→ Sln(Fp)

)
, n ≥ 2. For all

n ≥ 2, Sl1n(Zp) is a uniform FAb group of dimension n2− 1. We consider automorphisms
σA of order 2 obtained via conjugation by a diagonalizable matrix A ∈ Gln(Zp). According
to [39], all automorphisms σ which act trivially on the Cartan subalgebra are of the form
σA for some A ∈ Gln(Zp). We thus obtain the theorem of §1.2 and the remark following
it.

Corollary 2.7. — Under the conditions of Theorem A, there exist s positive-density sets
Si, i = 1, . . . , s of prime ideals p ⊂ Ok of k, such that for all finite sets S = {p1, · · · , ps},
with pi ∈ Si, and all n ≥ 2, there does not exist a continuous representation ρ : GT

S →
Glm(Qp) with σ-uniform image Sl1n(Zp) where the involution σ = σA is conjugation by a
diagonalizable matrix A ∈ Gln(Zp).

6



2.3. When σ is of order ` | p−1.— The results of the previous section for involutions
can be generalized for other automorphisms. When σ has order ` > 2, we need to
introduce a notion of ramification in relation to the normal subgroup Γσ of Γ.

Definition 2.8. — Let ρ : GT
Σ → Glm(Qp) with image Γ be a σ-uniform representation

for some σ ∈ Aut(Γ) of order prime to p. For a subset S ′ ⊂ Σ, we say that Γσ is supported
at S ′ if the inertia groups at the places in S ′ generate Γσ.

For a positive integer n, let K(n)
S /K be the nth stage of the p-tower KS/K, i.e. K(n)

S is the
fixed field of the nth term of the central series of GS = GS(K). Since S does not contain
primes dividing p, by class field theory, K(n)

S /K is a finite extension.
For a prime ` > 3, we put

m(`) = 1 + d2`−1 log2(`− 1)− log2(`− 1)(`− 2)e;(1)
we also define m(2) = 1 and m(3) = 2 – see remark 4.11 for an explanation of the
motivation for this definition.

Theorem B. — Let K be a number field admitting an automorphism σ of order ` | p−1
with fixed field k = Kσ. Let S be a finite set of primes of k not dividing p such that the
action of σ on Gab

S has no non-trivial fixed-points. Let s ∈ Z>0. Then there is an integer
A depending only on [K(m(`))

S : K], s and |S| such that if T is a finite set of places of k
that split completely in K(m(`))

S /k satisfying |T | ≥ A, then there exist s positive-density
sets Si, i = 1, · · · , s, of prime ideals p ⊂ Ok of k, with the property that for all finite sets
S ′ = {p1, · · · , ps}, with pi ∈ Si, we have:
(i) the action of σ on GT

Σ/Φ(GT
Σ) has s independent fixed points, where Σ = S ∪ S ′;

(ii) there is no FPMF σ-uniform continuous representation ρ : GT
Σ → Glm(Qp) such that

Γσ is supported at S ′, where Γ is the image of ρ.

2.4. Along the cyclotomic Zp-extension. — The realm of Zp-extensions is particu-
larly rich for providing situations where we can take T (in the consideration of previous
sections) as small as possible. Let k∞ =

⋃
n

kn (resp. K∞ =
⋃
n

Kn) be the cyclotomic

Zp-extension of k (resp. of K), where as before K/k is a cyclic degree ` | p− 1 extension
with Galois group 〈σ〉. Let us assume that all along k∞/k, the p-class groups of the fields
kn are trivial. Then σ acts without fixed-points on the p-class groups Cl(Kn) of the fields
Kn. On the other hand, the growth of [Kn : K] = pn allows us to apply Theorem B with
T = ∅ as long as n is sufficiently large (when ` = 2, we have to assume in addition that
the real infinite places of k do not complexify in K/k).

Theorem C. — Let s ∈ Z>0. Let K/Q be a real quadratic field and Gal(K/Q) = 〈σ〉.
Let K∞ =

⋃
n

Kn (resp. Q∞ =
⋃
n

Qn) be the cyclotomic Zp-extension of K (resp. of Q).

We assume that Greenberg Conjecture holds for K (the invariants µ and λ vanish). Then
for n0 � 0, there exist s positive density sets Si, i = 1, · · · , s, of places p ⊂ OQn0

, such
that for all finite sets S = {p1, · · · , ps}, with pi ∈ Si, and for all n ≥ n0,
(i) the action of σ on GS(Kn)/Φ(GS(Kn)) has s independent fixed points;
(ii) there is no FPMF continuous σ-uniform ρ : GS(Kn) −→ Glm(Qp) such that Γσ is

supported at S, where Γ is the image of ρ.
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Remark 2.9. — We note that the pro-p group G∅(K) is infinite as soon as the p-rank
of Cl(K) is at least 3 (Schoof [38]).

2.5. Strategy of the proofs and outline of the rest of the paper. — Our main
results combine a number of ingredients: the effect of a semisimple cyclic action with fixed
points on group structure, the rigid structure of uniform groups, arithmetic properties
of the arithmetic fundamental groups GT

S , existence of Minkowski units, etc. In this
subsection, we will give an outline of how these ingredients are combined together.

• Criteria for infinitude of GT
S . To simplify, let us consider the context of Theorem A. In

the statement of that theorem, we refer to the need for T to be "large enough" and here
we wish to explain this a bit more. In order to arrange to have enough fixed points, we
want to take

|T | ≥ αs+ β,(2)

with α and β depending on K. On the other hand, by the theorem of Golod-Shafarevich,
the group GT

S is infinite when the p-rank of GT
S is sufficiently large. To be more exact, if

dpGT
S ≥ 2 + 2

√
|T |+ r1 + r2 + 1,(3)

where (r1, r2) is the signature of K, the pro-p group GT
S is infinite (see for example [31]).

Moreover, the p-rank of GT
S is at least s (because of the choice of S and T ). Hence, by

(2) and (3), one can guarantee the infiniteness of GT
S by taking s sufficiently large, i.e.

by introducing sufficiently many fixed points.

• Uniform groups (Part I). Next we turn to the situation where a cyclic group 〈σ〉 of
order `, with ` | p−1, acts on a uniform group Γ. In particular we focus on the subgroup
Γ◦σ generated by the fixed points and its normal closure in Γ, denoted Γσ. Here, the key
result is Proposition 4.6: it specifies generators for Γσ and is crucial for the rest of our
work. When Γ is FAb, the quotient group G := Γ/Γσ, is a finite p-group. Moreover,
when σ is of order 2, G is abelian!

• The choice of the prime ideals (Part II.) We fix K and consider varying sets S, T where
L ⊆ KT

S has Galois group Γ = Gal(L/K). To simplify the exposition, we now assume σ
has order 2. Since G is abelian, the field F fixed by Γσ is abelian over K. If morevoer Γσ
is supported at S then F is contained in the p-Hilbert class field KH . To simplify further,
let us assume F = KH . The choice of prime ideals p of S is based on the following
desired outcomes: (i) to create enough fixed points for the action of σ; (ii) to control the
generators of GS(F) via their inertia groups. Typically, the group G, acts trivially on the
new ramification in Gab

S (F).

To show the existence of such prime ideals, one uses Kummer theory and the Chebotarev
density Theorem. In order to do this, we require information about the units of the
number field F, namely we need F to contain "Minkowski units". To be more precise, let
G = Gal(F/k); we say that F has a Minkowski unit if the quotient O×F /(O×F )p contains
a non-trivial Fp[G ]-free module. Note that we are not in the semisimple case as p | |G |!
This delicate and interesting question has been studied in recent work of Ozaki [33]: to
estimate the rank of the maximal free Fp[G ]-module of O×F /(O×F )p. Our idea here is to
introduce a set T and control the Fp[G ]-structure of T -units of F.
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• The strategy (III). There exists a morphism of Fp[G]-modules
ψ : Gab

S (F)/p� Γσ/Φ(Γσ).
The map ψ dictates the compatibility of two Fp[G]-modules, one of which comes from
arithmetic considerations, and the other from group-theoretical ones. We suspect that
the exploitation of this kind of compatibility can be useful in many other contexts.
We now give some examples for which the structures of Gab

S (F)/p and of Γσ/Φ(Γσ) as
Fp[G]-modules are not compatible. Typically, the given situations are those for which
the morphism ψ is deduced from a Fp[G]-module M on which G acts trivially, namely we
have a diagram as follows:

M = (Fp)⊕
s

jJ

ww

ψ

'' ''

Gab
S (F)/p // // Γσ/Φ(Γσ)

From the above diagram, one obtains a contradiction since G = Γ/Γσ does not act
trivially on Γσ/Φ(Γσ). This explains the relevance of the notion of the action of σ being
"fixed-point-mixing modulo Frattini" that was introduced in Definition 2.1.

PART I
UNIFORM GROUPS AND FIXED POINTS

Let p be a prime number and let Γ be a finitely generated pro-p group.
– For two elements x, y of Γ, denote by xy := y−1xy the conjugate of x by y, and
by [x, y] = x−1xy the commutator of x and y. Put [Γ,Γ] = 〈[x, y], x, y ∈ Γ〉 and
Φ(Γ) = [Γ,Γ]Γp;

– Let Γab := Γ/[Γ,Γ] be the maximal abelian quotient of Γ;
– The Frattini quotient Γp,el := Γ/Φ(Γ) is the maximal abelian p-elementary quotient
of Γ;

– Denote by dp(Γ) = dimFp H
1(Γ,Fp) = dimFp Γp,el the p-rank of Γ: by the Burnside

Basis Theorem, it is the minimal number of generators of Γ.

3. Schur-Zassenhaus

For this paragraph our reference is the book of Ribes and Zalesskii [37, Chapter 4].
If Γ is a finitely generated pro-p group of p-rank d, denote by Aut(Γ) the group of auto-
morphisms (always continous) of Γ. Recall that the kernel of the morphism ker

(
Aut(Γ)→

Aut(Γp,el)
)
is a pro-p group and that Aut(Γp,el) ' Gld(Fp). Let us start with the following

well-known result which is crucial in our context:

Theorem 3.1 (Schur-Zassenhaus). — Let 1 −→ Γ −→ G −→ G /Γ −→ 1 be an
exact sequence of profinite groups, where Γ is a pro-p group finitely generated and where
G /Γ is finite of order coprime to p. Then the group G has a subgroup ∆0 isomorphic
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to the quotient ∆ = G /Γ and ∆0 is unique up to conjugation in G . In particular:
G = Γ o ∆0 ' Γ o ∆. In other words, the pointed set H1(∆,Γ) is reduced to {[0]}.

Proof. — See for example Theorem 2.3.15, [37].

Let us now consider a finitely generated pro-p group Γ equipped with an automorphism
σ ∈ Aut(Γ) of order coprime to p. To simplify, we moreover assume here that the order
of σ is a prime number `.

Definition 3.2. — Denote by

Γ◦σ := 〈γ ∈ Γ, σ(γ) = γ〉

the closed subgroup generated by the fixed point of Γ and by

Γσ := Γ◦σ
Norm,

the normal closure of Γ◦σ in Γ.

Of course, σ acts trivially on Γ◦σ and σ ∈ Aut(Γσ).

Definition 3.3. — We say that the action of σ on Γ is Fixed-Point-Free (FPF) if Γ◦σ =
{e}.

Recall first a well-known result that shows the rigidity of the FPF-notion.

Proposition 3.4. — Let Γ be a pro-p group and let σ ∈ Aut(Γ) of order coprime to p.
If the action of σ on Γ is FPF, then Γ is nilpotent. Moreover if σ is of order ` = 2, then
Γ is abelian and if σ is of order 3 then Γ is nilpotent of class at most 2. For ` ≥ 5, the

nilpotency class of Γ is at most n(`) := (`− 1)2`−1−1 − 1
`− 2 .

Proof. — See Corollary 4.6.10, [37].

Now we may present the first step of our work.

Proposition 3.5. — Let Γ be a finitely generated pro-p group and σ ∈ Aut(Γ) of order
` coprime to p. Put G := Γ/Γσ. Then the action of σ on G is FPF, so G is nilpotent. If
moreover Γ is FAb then G is a finite group.

Proof. — Consider the non-abelian Galois 〈σ〉-cohomology of the sequence:

1 −→ Γσ −→ Γ −→ G −→ 1,

to obtain the sequence of pointed sets:

0 −→ H0(〈σ〉,Γσ) −→ H0(〈σ〉,Γ) −→ H0(〈σ〉, G) −→ H1(〈σ〉,Γσ) −→ · · ·

By the Schur-Zassenhaus Theorem 3.1, H1(〈σ〉,Γσ) = {[0]} and then as Γ◦σ =
H0(〈σ〉,Γ) = H0(〈σ〉,Γσ), one obtains H0(〈σ〉, G) = {[0]}: in other words, the ac-
tion of σ on G is FPF. Then by Proposition 3.4 the pro-p group G is nilpotent of class
at most n(`). Moreover if Γ is FAb, the pro-p group G is also FAb, one concludes that
G is finite.
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4. Uniform pro-p groups

We first recall some basic facts about p-adic analytic groups (Lie groups over Qp). The
main references for this section are [9] and [28].
Let Γ be a p-adic analytic pro-p group: the profinite group Γ is a closed subgroup of
Glm(Zp) for some integer m. The group Γ is called powerful if [Γ,Γ] ⊂ Γp ([Γ,Γ] ⊂ Γ4

when p = 2); a powerful pro-p group Γ is said uniform if it is torsion free. Let dim(Γ) be
the dimension of Γ as analytic variety.

Theorem 4.1. — Every p-adic analytic pro-p group contains an open uniform subgroup.

For i ≥ 1, denote by Γi+1 = Γpi [Γ,Γi] where Γ1 = Γ: it is the p-central descending series
of the pro-p group Γ.

Theorem 4.2. — A powerful pro-p group Γ is uniform if and only if for i ≥ 1, the map
x 7→ xp induces an isomorphism between Γi/Γi+1 and Γ/Γ2.

Remark 4.3. — It is conjectured that a torsion-free p-adic analytic pro-p group satis-
fying dp(Γ) = dim(Γ) must be uniform. This is known to be the case when dim(Γ) < p,
see [26].

4.1. Additive law and automorphisms. — Let Γ be a uniform pro-p group. If
{x1, · · · , xd} is a minimal system of (topological) generators of Γ, then {x1Φ(Γ), · · · , xdΦ(Γ}
forms a basis of Γp,el = Γ/Φ(Γ). The group Γ being uniform, the morphism x 7→ xp

n

induces an isomorphism ψn between Γ and Γn+1. By taking the limit on the pnth roots,
the group Γ can be equipped with an additive law (and we denote by Γ+ this "new"
group). More precisely, put x+n y = ψ−1

n (xpnypn) and

x+ y := lim
n→∞

(x+n y).

Then Γ+ := Zpx1 ⊕ · · · ⊕ Zpxd is a group isomorphic to Zdp.

Theorem 4.4 ([9], Theorem 4.9). — Let Γ be a uniform pro-p group. Then Γ =
〈x1〉 · · · 〈xd〉. In other words, for every x ∈ Γ, there exists a unique d-tuple (a1, · · · , ad) ∈
Zdp such that x = xa1

1 · · ·xann . Moreover the map

ϕ : Γ −→ Γ+
x = xa1

1 · · ·xadd 7→ a1x1 ⊕ · · · ⊕ anxn

is a homeomorphism (not necessarily of groups).

Let us fix σ ∈ Aut(Γ). It is not difficult to see that σ(x) +n σ(y) = σ(x+n y). Hence, by
passing to the limit, the action of σ becomes a linear action on Γ+, i.e. σ ∈ Gld(Zp) (see
§4.3 of [9]). One needs more to determine the Galois structure.

Theorem 4.5. — The map ϕ induces an isomorphism of Fp[〈σ〉]-modules between Γp,el

and Γ+/p.

Proof. — It suffices to note that ϕ induces an isomorphism of groups between Γp,el and
Γ+/p: it is exactly Corollary 4.15 of [9].
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4.2. Semisimple action and fixed points. — Recall the assumption that σ ∈ Aut(Γ)
is of finite order `, a prime number different from p. We first recall a result which is valid
in a more general context (not only for uniform groups), for ` = 2, see [19] ; for larger `
coprime to p, see [3], [42] and [16].
The action σ on Γ+ is semisimple, and the Zp[〈σ〉]-module Γ+ is projective. Hence the
action of σ on Γ+/p lifts uniquely (up to isomorphism) to Γ+ and then, one can find a
family of generators of Γ respecting this action, or that respects the decomposition of Γ+
as projective modules. If the action of σ on the generators x1, · · · , xd of Γ+ has (ai,j)i,j

for matrix with coefficients in Zp, we get σ(xi) =
d∑
j=1

ai,jxj ∈ Γ+, which becomes in Γ:

σ(xi) =
d∏
j=1

x
ai,j
j .

Put
r = dimFp(Γp,el)σ·

The integer r corresponds to the dimension of the Fp-vector subspace of Γp,el consisting
of fixed points of Γp,el. The integer r is the number of times that the trivial character
appears in the decomposition of the Fp[〈σ〉]-module Γp,el.
Now let us fix a basis {x1, · · · , xd} of Γ respecting the decomposition into irreducible char-
acters following the action of Γ. Suppose moreover that the set {x1 · · · , xr} corresponds
to a basis of (Γp,el)σ. In particular, σ(xi) = xi for i = 1, · · · , r. Clearly 〈x1〉 · · · 〈xr〉 ⊆ Γ◦σ.
For the reverse inclusion, one supposes moreover that ` divides p− 1.
In the rest of this section, we will rely heavily on the following result.

Proposition 4.6. — Let Γ be a uniform pro-p group and let σ ∈ Aut(Γ) be of order `.
Suppose that ` | (p− 1). Then, with the notation introduced above, we have

Γ◦σ = 〈x1〉 · · · 〈xr〉 = 〈x1, · · · , xr〉·

Proof. — As ` divides p − 1, the Qp-irreducible characters of 〈σ〉 are all of degree 1. In
particular, by the choice of the xi, we get that for i > r, σ(xi) = xλii , where λi ∈ Zp\{1}.
Take x ∈ Γ◦σ and let us write x = xa1

1 · · ·xadd . Then x = σ(x), if and only if,
d∏
i=1

xaii =
d∏
i=1

σ(xi)ai ·

As for i = 1, · · · , r, one has σ(xi) = xi, we get
d∏
i>r

xaii =
∏
i>r

xλiaii ·

Thanks to the uniqueness of the product in Theorem 4.4, one deduces that for i > r,
λiai = ai, i.e., ai = 0 because λi 6= 1. One has proven that Γ◦σ = 〈x1〉 · · · 〈xr〉. On the
other hand, trivially 〈x1, · · · , xr〉 ⊂ Γ◦σ and 〈x1〉 · · · 〈xr〉 ⊂ 〈x1, · · · , xr〉, which prove the
desired equalities.

Remark 4.7. — In the above considerations, the uniform property of Γ is essential. By
Proposition 4.6 and when ` | (p−1), the group Γσ is the normal subgroup of Γ generated
by the conjugates of the x1, · · · , xr.
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Remark 4.8. — The condition ` | (p − 1) implies that the irreducible characters of σ
are of degree 1 and then ϕ ◦σ = σ ◦ϕ. The existence of fixed points of σ can be detected
in Γ or in Γ+. Let us remark that we can omit the condition "` | (p − 1)" when for all
irreducible representations of Zp-basis {xi1 , · · · , xit}, one has xijxik = xikxij . If the group
Γ is obtained by a certain exponential of a Zp-Lie algebra L (see §4.4), the condition on
the commutativity can be tested in L: this remark should open some other perspectives.

We recover here, with a weaker hypothesis, i.e. ` | (p − 1), the following corollary used
in [18]:

Corollary 4.9. — Let Γ be a uniform pro-p group. Under previous conditions, Γ◦σ = {e}
if and only if (Γp,el)σ = {e}.

Corollary 4.10. — Under the conditions of Proposition 4.6, we have dp(Γ/Γσ) = d− r
where d = dpΓ and r = dimFp(Γp,el)σ.

Proof. — Put G = Γ/Γσ. Consider the minimal system of generators (xi)i=1,··· ,d of Γ
introduced above, satisfying in particular that σ(xi) = xi for i = 1, · · · , r. The group
Γσ contains the elements x1, · · · , xr. The quotient G is topologically generated by the
classes xiΓσ, i > r, so dpG ≤ d− r. In fact, the classes (xiΓσ)i>r form a minimal system
of generators of G: indeed, if not it would show that (possibly after renumbering) the
class xr+1Γσ can be expressed in terms of the classes xiΓσ, i ≥ r + 2, which would imply
that the class xr+1Φ(Γ) could be written in terms of the classes

(
xjΦ(Γ)

)
j 6=r+1

, which
contradicts the minimality of {x1, · · · , xd}. Hence dpG = d− r.

4.3. On the group Γσ. — Let us conserve the notations and assumptions of the
preceding subsection; in particular Γ is uniform, σ ∈ Aut(Γ) is of prime order ` and
` | (p− 1). Recall that Γ◦σ = 〈x1 · · · xr〉 and put G = Γ/Γσ.
By Proposition 3.5, if Γ is FAb, the group Γσ is open in Γ, the quotient G = Γ/Γσ is
finite and Zp[[G]] ' Zp[G].

Remark 4.11. — If Γ is FAb, the group G = Γ/Γσ is a finite p-group of p-rank at most
d and having an automorphism σ acting without non-trivial fixed points. By Shalev [40],
it is possible to give an upper bound for the solvability length dl(G) of G which depends
only on d: dl(G) ≤ 2d+1−d−4+dlog2 de. By taking the proof of Shalev (lemma 4.4, lemma
4.5 and Proposition 4.6 of [40]), we remark that a key point is the number of distinct
eigenvalues of σ. We note that in [40], a slightly different notion of G being “uniform”
is used: in Shalev’s terminology, for a such group G, one has dl(G) ≤ 2`−1 − 1. If we
remove the condition of G being uniform in the sense of Shalev, we have a weaker bound
dl(G) ≤ d(2`−1 − 1) + dlog2(d)e. One should compare these bounds to the bounds m(`)
coming from [37], Corollary 4.6.10 (see Proposition 3.4) and given in the introduction
(by recalling that dl(G) ≤ log2(n(`) + 1)).

Recall now as G is a pro-p group, the ring Zp[[G]] (resp. Fp[[G]]) is a local ring, with
maximal ideal the augmentation ideal ker(Zp[[G]]→ Fp) (resp. ker(Fp[[G]]→ Fp)). The
ring Zp[[G]] (resp. Fp[[G]]) acts by conjugation on Γσ/[Γσ,Γσ] (resp. Γp,elσ ). The following
proposition gives a system of minimal generators of this action.

Proposition 4.12. — (i) The cosets x1Φ(Γσ), · · · , xrΦ(Γσ) form a minimal system of
generators of the quotient Γp,elσ of Γσ seen as Fp[[G]]-module. In particular dpΓσ ≥ r.
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(ii) The automorphism σ acts trivially on
(
Γabσ

)
G
.

Proof. — (i) By Proposition 4.6, the group Γ◦σ is topologically generated by the elements
x1, · · · , xr: they form a minimal system of generators. Thus the quotient Γp,elσ is topolog-
ically generated by the G-conjuguates G · xiΦ(Γσ) of the classes of the xi, i = 1, · · · , r,
in Γp,elσ . Consider now the exact sequence

· · ·H2(Γ,Fp) −→ H2(G,Fp) −→
(
Γp,elσ

)
G
−→ Γp,el � Gp,el,

coming from the short exact sequence 1 −→ Γσ −→ Γ −→ G −→ 1. The automorphism
σ acts ont these exact sequences. As the group Γσ contains the elements x1, · · · , xr, the
action of σ onGp,el has no non-trivial fixed points. Moreover as Γp,elσ is generated by theG-
conjuguates of the classes of the xi, i = 1, · · · , r, one gets that σ acts trivially on

(
Γp,elσ

)
G
.

By comparing the character of the action of σ on the initial exact sequence, one obtains
that dp

(
Γp,elσ

)
G

= r. Thus by Nakayama’s lemma, the classes x1Φ(Γσ), · · · , xrΦ(Γσ) form
a minimal system of generators of the Fp[[G]]-module Γp,elσ . In conclusion we get dpΓσ ≥ r.
Now (ii) is obvious: the group Γabσ is generated by the G-conjuguates of the classes of the
xiΦ(Γσ), i = 1, · · · , r, hence σ acts trivially on

(
Γabσ

)
G
.

Remark 4.13. — As consequence of the proof, we get an exact sequence:
1 −→

(
Γp,elσ

)
G
−→ Γp,el −→ Gp,el −→ 1,

and then H2(Γ,Fp)� H2(G,Fp).

Recall that for a uniform group Γ of dimension d, for all closed subgroup U of Γ, one has
dpU ≤ d.

Remark 4.14. — Assume G finite. On can define its maximal free sub-Fp[G]-module(
Γp,elσ

)
0
of Γp,elσ . As the p-rank of Γσ is smaller than d, one sees that

(
Γp,elσ

)
0
is trivial as

soon as |G| > d.

We now recall a notion introduced in Definition 2.1: the action of σ on the group Γ is
called fixed-point-mixing modulo Frattini (FPMF) if G = Γ/Γσ does not act trivially on
Γσ/Φ(Γσ) = Γp,elσ .

Proposition 4.15. — If the action of σ on Γ is not fixed-point-mixing modulo Frattini,
then Γσ = Γ◦σ and dpΓσ = r.

Proof. — It is a consequence of Proposition 4.12.

Proposition 4.16. — Let Γ be a uniform group of dimension dimension d > 1. Suppose
σ ∈ Aut(Γ) of order ` = 2. Recall that r = dimFp(Γp,el)σ.
(i) If tσ(Γ) = (1, d−1) and if Γσ is open (which is the case if Γ is FAb), then the action

of σ on Γ is fixed-point-mixing modulo Frattini.
(ii) If tσ(Γ) = (d− 1, 1) and if dpΓσ > r, then Γσ is uniform.

Proof. — (i) If dpΓσ = 1, the group Γσ is generated by only one element and then is
procyclic. If Γσ is open, the quotient Γ/Γσ is finite and then the p-adic analytic group Γ
is of dimension 1 which is a contradiction. Thus, dpΓσ > 1 and the action of σ on Γ is
fixed-point-mixing modulo Frattini thanks to Proposition 4.15.
(ii) Here dpΓσ = d which is equivalent to Γσ being a uniform group (of dimension d).
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Remark 4.17. — We will see in Proposition 4.30 that when Γ is FAb and uniform of
dimension d, tσ(Γ) 6= (d− 1, 1).

Remark 4.18 (See [29]). — For every uniform group Γ, there exists an open subgroup
Γ0 such that for all open subgroup U of Γ0, one has dpU ≥ dim(L(Γ)), where dim(L(Γ))
is the dimension of the Lie algebra associated to Γ (see the next section). If moreover Γ
is FAb, one has also dim(L(Γ)) < dim(Γ) = dpΓ.

4.4. Uniform groups and Lie algebras. —
4.4.1. The correspondence. — Consider a uniform group Γ of dimension d. We have seen
how to associate to Γ a uniform abelian group Γ+ ' Zdp. In fact, this group is naturally
equipped with more algebraic structure, as we now explain.

For x, y ∈ Γ, put (x, y)n := ψ2n([xpn , ypn ]) and define
(x, y) = lim

n→∞
(x, y)n·

Theorem 4.19 ([9],Theorem 4.30). — The Zp-module Γ+ equipped with the bracket
(·, ·) is a Zp-Lie algebra of dimension d. Denote by LΓ this new Lie algebra.

Remark 4.20. — Recall that each σ ∈ Aut(Γ) induces an automorphism of Γ+. By
noting that σ((x, y)n) = (σ(x), σ(y))n, we see that σ(x, y) = (σ(x), σ(y)), so σ becomes
an automorphism of the Zp-Lie algebra LΓ.

Remark that as Γ is uniform, thus [Γ,Γ] ⊂ Γ2p and (x, y)n ∈ Γ2p; by passing to the limit,
one obtains: (LΓ,LΓ) ⊂ 2p LΓ.

Definition 4.21. — A Zp-Lie algebra L is called powerful if (L ,L ) ⊂ 2pL .

Recall now the following correspondence.

Theorem 4.22 ([9], Theorem 9.10). — There exists a bijective correspondence be-
tween the category of uniform groups of dimension d and the category of powerful Zp-Lie
algebras of dimension d.

Given a uniform group of dimension d, we have already seen how to associate to it a
Zp-Lie algebra of dimension d. The inverse map is obtained by using the development
of Campbell-Hausdorff Φ (see section 9.4 of [9]), which we now sketch. Using the formal
series of Qp[[X]]

E(X) =
∑
n≥0

1
n!X

n and L(X) =
∑
n≥1

(−1)n+1

n
Xn,

we define
Φ(X, Y ) = L(E(X)E(Y )− 1)·

We consider the series Φ in the Lie algebra Qp((X, Y )) equipped with the bracket [X, Y ] =
XY − Y X. For U1, · · · , Ut ∈ Qp((X, Y )), let us define by induction [U1, · · · , Ut] =
[[U1, · · · , Ut−1], Ut]. If e is the multiset e = (e1, · · · , es), ei ≥ 1 for all i, put [X, Y ]e =
[X,X(e1), Y (e2), · · · ], where X(ei) (resp. Y (ej)) denotes the constant ei-tuple X(ei) =
(X, · · · , X) (resp. the ej-tuple Y (ej) = (Y, · · · , Y )). Hence [X, Y ]e is a bracket of length
〈e〉 := 1 + e1 + · · ·+ es.
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In Qp((X, Y )), let us write Φ =
∑
n

un(X, Y ), where un denote the elements of degree n

which can be expressed as a sum
un(X, Y ) =

∑
〈e〉=n−1

qe[X, Y ]e,

where qe ∈ Q. One translate these formulas to the Zp-Lie algebras L equipped with the
bracket (·, ·). Suppose L powerful. Then for all x, y ∈ L , the specialization of Φ at the
bracket (x, y) converges in L (see Corollary 6.38 of [9]). Concretely, in the formulas one
has replaced [X, Y ] by (x, y).

Theorem 4.23 ([9], Theorem 9.8 and Theorem 9.10). — Let L be a powerful Zp-
Lie algebra of dimension d. Let {x1, · · · , xd} be a Zp-basis of L . The law x ∗ y =
Φ(x, y) makes L into a uniform group ΓL of dimension d, topologically generated by
{x1, · · · , xd}. Moreover LΓL

' L and ΓLΓ ' Γ.

Remark 4.24. — Let us examine carefully the case where L is a powerful sub-Lie-
algebra of the Lie algebra Mn(Qp) of p-adic n × n matrices equipped with the bracket
(A,B) = AB−BA. Consider the map "exponential" exp and "logarithm" log of matrices

well-defined in our context (see §6.3 of [9]): L

exp
++

exp(L )
log

hh . Thus for A,B ∈ L ,

we get exp(A) exp(B) = exp(Φ(A,B)), where Φ is the Campbell-Hausdorff series (see
Proposition 6.27) and then exp(L ) is isomorphic to the uniform group ΓL (see Corollary
6.25 of [9]).

Since we are especially interested in uniform groups which are FAb, we give a character-
ization of such groups, which is probably well-known to specialists.

Proposition 4.25. — A uniform group Γ is FAb if and only if
LΓ(Qp) = (LΓ(Qp),LΓ(Qp)),

where L (Qp) is the Qp-Lie algebra obtained from L by extending the scalars to Qp.

Proof. — For every open subgroupH of the uniform group Γ, LH(Qp) = LΓ(Qp). Hence,
one has to prove that Γab is finite if and only if, LΓ(Qp) = (LΓ(Qp),LΓ(Qp)). Suppose
Γab infinite. There exists a closed and normal subgroup H of Γ such that Γ/H ' Zp.
By Proposition 4.31 of [9], the subgroup H is uniform, the Zp-Lie algebra LH is an
ideal of LΓ, and LΓ/H ' LΓ/LH . As Γ/H is abelian, the Lie algebra LΓ/H is comm-
tutative (corollary 7.16 of [9]). In fact, LΓ/H = Zp. Then LH contains [LΓ,LΓ]; thus
LΓ/(LΓ,LΓ)� LΓ/LH ' Zp and therefore (LΓ(Qp),LΓ(Qp)) ( LΓ(Qp).

In the other direction, suppose that (LΓ(Qp),LΓ(Qp)) ( LΓ(Qp), or equivalently that
the Zp-rank of LΓ/(LΓ,LΓ) is not trivial. Put L1 = LΓ/(LΓ,LΓ). As Zp-modules,
let us write L1 = L0 ⊕ Tor(L1). It is then easy to see that Tor(L1) is an ideal of
the Lie algebra L1. Thus consider the quotient L0 := L1/Tor(L1): it is a non trivial,
commutative and torsion-free Zp-Lie algebra! By the correspondence of Theorem 4.22,
the algebra L0 corresponds to a uniform abelian group Γ0 (by Corollary 7.16 of [9]). In
fact, as L0 ' Ztp, with t > 0, on has Γ0 ' Ztp. The algebra L0 is also the quotient
of LΓ by the ideal L2 generated by (LΓ,LΓ) and the lifts of Tor(L1). By Proposition
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7.15 of [9], under the correspondence of Theorem 4.22, the algebra L2 corresponds to a
uniform closed subgroup H of Γ; moreover Γ/H is uniform. Therefore as for the previous
implication, we get LΓ/H ' LΓ/L2 ' L0 ' Ztp and then Γ/H ' Γ0 ' Ztp.
The proof has shown the following result:

Corollary 4.26. — A uniform group Γ is FAb if and only if Γab is finite.

In this subsection, we have seen the relevance of powerful Zp-Lie algebras and their
automorphisms in our study. If moreover we restrict attention to FAb and uniform
groups, one sees the importance of simple algebras. Indeed, it follows from definitions
that every Zp-Lie algebra L which is simple or even semisimple (after extending scalars)
produces a uniform FAb group by Proposition 4.25.
4.4.2. Lie algebras and fixed points. — We now further explore the Lie algebra L over
Qp. Denote by (·, ·) the Lie bracket of L . For algebras of dimension 2 or 3, see for
example [22], §I.4.

Definition 4.27. — Let L be a Lie algebra and let σ ∈ Aut(L ). Put Lσ = {x ∈
L , σ(x) = x}.

Let us introduce the notion of FAb algebra.

Definition 4.28. — A Lie algebra L over Qp is called FAb if (L ,L ) = L . In partic-
ular a semisimple Lie algebra is FAb.

As for pro-p groups having a FPF automorphism σ of order ` 6= p, the same phenomenon
occurs for Lie algebras. Indeed as a consequence of a result of Borel and Serre [2] (cf the
remark of Jacobson [21], page 281), we have the following Proposition.

Proposition 4.29. — Let L be a FAb Lie algebra and let σ ∈ Aut(L ) of order `.
Then Lσ 6= {0}.

Proof. — Indeed, by Proposition 4 of [2], if Lσ = {0} then L is nilpotent and the
conclusion is obvious.
An automorphism of order ` of a FAb Qp-Lie algebra must have a non-trivial fixed point.
One finds again Proposition 3.4 in the context of uniform groups. If σ ∈ Aut(L ) is
of order 2, as for pro-p groups, one define the σ-type of L as tσ(L ) = (a, b), where
a = dim ker(σ − ι) and b = dim ker(σ + ι), ι being the trivial automorphism. We have
a = dim Lσ and b = d− a where d = dim L .

Proposition 4.30. — Let L be a FAb Qp-Lie algebra of dimension d and let σ ∈
Aut(L ) be of order 2. Let tσ(L ) = (a, b) be the σ-type of L . Then a 6= 0 and b > 1.

Proof. — By Proposition 4.29, the type (0, d) is excluded. Suppose L of type (d− 1, 1).
Take a Qp-basis {e1, e2, · · · , ed−1, ε} of L respecting the action σ, i.e. for i = 1, · · · , d−1,
σ(ei) = ei and σ(ε) = −ε. One then remarks that σ acts by +1 on (ei, ej) and by
−1 on (ei, ε): therefore (ei, ej) ∈ 〈e1, · · · , ed−1〉 and (ei, ε) ∈ 〈ε〉. Hence, for i 6= j,

(ei, ej) =
d−1∑
k=1

ak(i, j)ek, with ak ∈ Qp, and also for i = 1, · · · , d− 1, (ei, ε) = λiε. As the

Lie algebra is FAb, the matrix (ak(i, j))((i,j),k) of size
(d− 1)(d− 2)

2 × (d− 1) must be of
maximal rank, i.e. d− 1. Also the vector (λ1, · · · , λd−1) are non zero.
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Now the elements (ei)i and ε should verify the Jacobi identity; in particular one should
have for i 6= j :

(ei, (ej, ε)) + (ej, (ε, ei)) + (ε, (ei, ej)) = 0·
Thus one gets

(ei, (ej, ε)) + (ej, (ε, ei)) + (ε, (ei, ej)) = λj(ei, ε)− λi(ej, ε) +
d−1∑
k=1

ak(i, j)(ε, ek)

= λjλiε− λiλjε−
d−1∑
k=1

ak(i, j)λkε

and then
d−1∑
k=1

ak(i, j)λk = 0·

If the matrix (ak(i, j))((i,j),k) is of maximal rank, then λk = 0 for all k and L is not
FAb.

Applying the correspondence of uniform groups/Lie algebras, this proposition allows us
to obtain the following corollary:

Corollary 4.31. — Let Γ be a FAb uniform group of dimension d and let σ ∈ Aut(Γ)
be of order 2. Then tσ(Γ) = (d − k, k) with k ≥ 2. Therefore for a FAb uniform group
of dimension 3 the type of every automorphism σ of order 2 is constant and equal to
tσ(Γ) = (1, 2).

On other hand, look at Lie algebras L having few fixed points. Consider, say, a Lie
algebra L of dimension 4 such that Lσ is of dimension 1. Let {e1, e2, e3, ε} be a Qp-basis
of L respecting the action if σ, i.e. here σ(ei) = −ei and σ(ε) = ε. Then (ei, ej) ∈ 〈ε〉
and (ei, ε) ∈ 〈e1, · · · , e3〉. A linear algebra computation similar to those of Proposition
4.30 shows that L can not be FAb: necessarily, L /(L ,L ) � Qp. The same holds for
the dimension 5. In fact, it is a general and well-known phenomenon for semisimple Lie
algebras L . Indeed dimension of Lσ grows with the dimension of L (see Theorem 10
and Theorem 8 of [21]).

5. Examples

5.1. First examples. — We first give examples of non FAb uniform groups having an
automorphism σ of order 2 with fixed points. We assume that p > 2.
5.1.1. Direct product. — Consider Zp × Zp = 〈x〉 × 〈y〉 with σ(x) = x and σ(y) = y−1;
tσ(Γ) = (1, 1). Then Γσ = Γ◦σ = 〈x〉 and G = Γ/Γσ = 〈y〉 ' Zp. Here Zp[[G]] ' Zp[[T ]]
and the action of y on x is trivial.
5.1.2. Semidirect product. — For a ∈ Z×p , Consider

Γ = Γ(a) = 〈x, y | yx = ya〉

which can be realized concretely as Γ = 〈ξ, η〉 ⊂ Gl2(Zp) where

ξ =
(
a−1 0
0 1

)
, η =

(
1 p
0 1

)
.
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Without loss of generality, we may take a = 1 + pk. Let σ ∈ Aut(Γ) of order 2 such
that σ(x) = x and σ(y) = y−1. Here, tσ(Γ) = (1, 1). One then has Γσ = 〈x, ya−1〉 and
G ' Z/pkZ, where k is the p-adic valuation of a − 1: the subgroup Γσ is open. One
has [x, y] = yp

k , therefore [x, yn] = ynp
k . Put xi = σi(x) and let us use the additive

notation. For 2 ≤ n ≤ pk − 1, one has the relation xn = (1 − n)x0 + nx1. Thus
(Γσ)p,el = Fp[G] · x = 〈x0, x1〉 which is of p-rank 2. The action of σ on Γ is fixed-point-
mixing modulo Frattini (see also Proposition 4.16).
If we consider the decomposition of (Γσ)p,el as the sum of indecomposable modules (see
[8], lemma 64.2), one necessarily obtains (Γσ)p,el 'G Ip

k−2, where I := ker
(
Fp[G] → Fp

)
is the augmentation ideal of Fp[G].
5.1.3. The Heisenberg group. — Let L be the Zp-Lie algebra of dimension 3 generated by

the matrices x =
(
p 0
0 0

)
, y =

(
0 0
0 p

)
, z =

(
0 p
0 0

)
, with bracket [A,B] = AB −

BA. Hence [x, y] = 0, [x, z] = pz and [y, z] = −pz. Moreover L is powerful but not
FAb because [L (Qp),L (Qp)] = Qpz. Denote by Γ the uniform group generated by the
exponentials of x, y and z:

X = exp(x) =
(
ep 0
0 1

)
, Y = exp(y) =

(
1 0
0 ep

)
, Z = exp(z) =

(
1 p
0 1

)
,

under the correspondence of Theorem 4.23 (see remark 4.24). The Zp-rank of Γab is equal
to 2 and Γab ' Z2

p × Z/pZ. Let σ = σA ∈ Aut(Γ) be the automorphism of order 2

corresponding to conjugation by the matrix A =
(

1 0
0 −1

)
: σ(M) = A−1MA. Then

Γ◦σ = 〈X, Y 〉 ' Z2
p and G := Γ/Γσ = 〈ZΓσ〉 ' Z/pZ. As here G is finite and as Γ◦σ is of

analytic dimension 2, necessarily Γ◦σ ( Γσ and then G does not act trivially on (Γσ)p,el.

5.2. The group Sl12(Zp). — As before, we assume p > 2. Let us start with the Zp-Lie
algebra sl2 of dimension 3 generated by the matrices

x =
(

0 p
0 0

)
, y =

(
0 0
p 0

)
, z =

(
p 0
0 −p

)
·

The algebra sl2 is the subalgebra of the trace zero matrices for which the reduction
modulo p is trivial. One has the relations [x, y] = pz, [x, z] = −2px and [y, z] = 2py. As
[sl2, sl2] ⊂ p · sl2, the algebra sl2 is FAb and powerful. Put

X = exp(x) =
(

1 p
0 1

)
, Y = exp(y) =

(
1 0
p 1

)
, Z = exp(z) =

(
ep 0
0 e−p

)
·

Let Sl12(Zp) be the subgroup of Sl2(Zp) generated by the X, Y, Z; it is the kernel of
the reduction morphism Sl2(Zp) → Sl2(Fp). The group Sl12(Zp) is FAb, uniform and of
dimension 3.

Proposition 5.1. — For every involution σ of the uniform pro-p group Sl12(Zp), the
action of σ is fixed-point-mixing modulo Frattini.

Proof. — The uniform pro-p group Sl12(Zp) is FAb and of dimension 3: by Corollary
4.31, every automorphism σ of order 2 is of type (1, 2). One concludes with Proposition
4.16.
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By using the correspondence of Section 4.4.1, one can say more. Consider the homomor-

phisms "exponential" and "logarithm" of matrices: sl2

exp
++

Sl12(Zp)
log

hh .

Given A ∈ Gl2(Zp) and B ∈ sl2, one has exp(σA(B)) = σA(expB), where σ = σA is the
conjugation by A, providing the passage from Aut(Sl12(Zp)) to Aut(sl2), and vice versa.
Let τ be an involution of Sl12(Zp). The automorphism τ induces an involution on sl2 and
then on sl2(Qp). The key point comes from the fact that every automorphism of sl2(Qp) is
the automorphism σA of conjugation by a certain matrix A ∈ Gl2(Qp) (see [39], Theorem
1); thus τ(T ) = σA(T ) = A−1TA. Now, one can assume that the coefficients of A are in
Zp. Then, as σ is of order 2 and acts on sl2, the minimal polynomial of A is X2 − 1 or
X2 − ε, for ε ∈ Z×p \(Z×p )2. And, at the end, one can assume that A ∈ Gl2(Zp). Hence

the matrix A is similar in Gl2(Zp) to D =
(

1 0
0 −1

)
or to Dε =

(
0 ε
1 0

)
(see [34]).

Let σ = σD and σε = σDε be the two involutions of Sl12(Zp) corresponding to the conju-
gation by D or by Dε respectively. They are defined by

– σ(X) = X−1, σ(Y ) = Y −1 and σ(Z) = Z;
– σε(X) = Y 1/ε, σε(Y ) = Xε and σε(Z) = Z−1.

Hence there exists M ∈ Gl2(Zp) such that MAM−1 = D or Dε. Thus τ = σA = σ−1
M σσM

or τ = σ−1
M σεσM . As the matricesM and A are in Gl2(Zp), σM and σA are in Aut(Sl12(Zp)):

the correspondence gives that the identity τ = σ−1
M σσM can be seen to be in Aut(Sl12(Zp))

showing that τ is conjuguate to σ or to σε in Aut(Sl12(Zp)). Lastly, let us remark that
for σ, the situation is easy to describe: one has Γ◦σ = 〈Z〉. Let Γσ = 〈Z〉Norm be the
normal subgroup of Sl12(Zp) generated by the conjuguates of Z and put G := Γ/Γσ. As

XZX−1Z−1 =
(

1 p(1− e2p)
0 1

)
becomes trivial in G, one has that Xp is trivial in G.

Then thanks to Proposition 4.10, one has: G ' Z/pZ× Z/pZ.

5.3. The group Sl1n(Zp). — Let sln(Qp) be the Qp-Lie algebra constitued by the square
matrices n×n with coefficients in Qp and of zero trace. It is a simple algebra of dimension
n2 − 1. Recall a natural basis of it:
(a) for i 6= j, Ei,j = (ek,l)k,l for which all the coefficient are zero excepted ei,j that takes

value p;
(b) for t > 1, Di = (dk,l)k,l which is the diagonal matrix Di = (p, 0, · · · , 0,−p, 0, · · · , 0),

where di,i = −p.
Let sln be the Zp-Lie algebra generated by the Ei,j and theDi. The algebra sln is powerful
and uniform.
PutXi,j = expEi,j and Yi = expDi. Denote by Sl1n(Zp) the subgroup of Sln(Zp) generated
by the matrices Xi,j and Yi. The group Sl1n(Zp) is FAb, uniform and of dimension n2− 1.
It is also the kernel of the reduction map of Sln(Zp) modulo p.
By Seligman [39], one knows that the automorphisms of the algebra sln(Qp) are generated
by those of two types, namely those of the form σA(X) = X−1AX with A ∈ Gln(Qp), or
of the form X 7→ σA(−X ′), where X ′ corresponds to the transposition of X.
We now examine the inner automorphisms σA. Put Γ = Sl1n(Zp) and take an automor-
phism σ of order 2. The automorphism σ induces an automorphism of order 2 on sln(Qp)
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that we assume of the form σA. As for Sl12(Zp), one reduces to the case where A has
X2 − 1 or X2 − ε as minimal polynomial, for some ε ∈ Z×p \(Z×p )2. In particular, when n
is odd, this polynomial is X2 − 1. It is also the case if we have:

Γ o 〈σ〉 ' Γ o 〈A〉 ↪→ Gln(Zp),
where A is a matrix of order 2 that acts by conjugation. Let us assume that A is of
order 2. As with the case of Sl12(Zp), we can simplify to the case where A is diagonal with
±1 eigenvalues. Denote by k = dim ker(A− I), i.e. the number of +1s on the diagonal.

Lemma 5.2. — With the above assumptions, the vector subspace
(
sln
)
σA

of the fixed
points of the algebra sln under conjugation by A is generated by the diagonal matrices and
by the matrices Ei,j for {i, j} ⊂ {1, · · · , k} or for {i, j} ⊂ {k + 1, · · · , n}. The matrices
Ei,j and Ej,i, with i ≤ k and j > k, form a basis of the subspace of the eigenvalue −1.

Proof. — It is a simple computation.

Denote by H the subgroup of Γ generated by the matrices Xi,j for {i, j} ⊂ {1, · · · , k}
and for {i, j} ⊂ {k + 1, · · · , n}.

Proposition 5.3. — Under the above conditions, one has
(i) Γ◦σ = 〈Xi,j, {i, j} ⊂ {1, · · · , k}, {i, j} ⊂ {k + 1, · · · , n}, Dl, i 6= j, l > 1〉·
(ii) H C Γ◦σ ;

(iii) H ⊂
(
Ak,k 0

0 Bn−k,n−k

)

Proof. — (i) is a consequence of Proposition 4.6.
(ii) is an easy computation.

Hence one sees that the subgroup H is of dimension (as variety over Qp) at most k2 +
(n− k)2 which is strictly smaller than n2 − 1. On the other hand, the quotient Γ◦σ/H is
generated by the diagonal matrices, and is hence abelian; it will be finite if the subgroup
Γ◦σ is open in Γ, because Γ is FAb. Therefore Γ, which is of dimension n2 − 1, is of the
same dimension as Γσ, which can not be of the same dimension as H. Then Γ◦σ ( Γσ,
which proves that the action of σ on Γ is fixed-point-mixing modulo Frattini.

Proposition 5.4. — Let n ≥ 2 and let σ = σA with A ∈ Gln(Zp) of order 2. Then
(i) Sl1n(Zp)/Sl1n(Zp)σ ' (Z/pZ)2k(n−k) ;
(ii) The action of σ on Sl1n(Zp) is fixed-point-mixing modulo Frattini.

Proof. — One only has to verify (i): it is a computation as for Sl12(Zp).

PART II
ARITHMETIC RESULTS

First, let us recall some notations.
– p is a prime number.
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– If K is a fixed number field, and if S and T are two finite and disjoints sets of primes
ideals of OK , denote by KT

S the maximal pro-p extension of K unramified outside S
and totally split at T ; GT

S = Gal(KT
S/K).

– We assume throughout that S contains no primes above p and that for finite places
p ∈ S, we have #OK/p ≡ 1(mod p). Hence, by class field theory, the pro-p group
GT
S is FAb.

– Put ClTS (K) := GT
S
ab. It is the p-Sylow of the S-ray T -class class group of K.

– Let OT
K be the group of T -units of K.

– Let OT
K,S be the subgroup of OT

K defined as the kernel of the natural map

OT
K →

∏
v∈S

F(K, v)×,

where F(K, v) denote the residue field of K at v; in other words, OT
K,S is the group

of T -units of K congruent to 1 modulo p, for all p ∈ S.
– If L/K is an extension of K, we still denote by abuse, S = S(L) be the set of primes
of OL above the primes p ∈ S.

6. On the freeness of T -units in the non-semisimple case

6.1. The context. —
– Let us start with a number field k with two finite and disjoints sets S and T of
primes of k.

– Let L/k be a finite Galois extension with Galois group G . We assume that G has
only one p-Sylow subgroup G; put ∆ := G /G. Hence ∆ is a finite group of order
coprime to p. Put K = LG. The group OT

L of T -units of L has a structure of
Z[G ]-module.

– Put E := OT
L /(OT

L )p = Fp ⊗ OT
L .

– Henceforth, we assume that:
− the archimedean places of K split completely in L,
− the primes of T split completely in L/k,
− the extension L/K is unramified outside S.

– Denote by Sram the set of primes of primes of OK in S that are ramified in L/K.

We are interested in finding some arithmetic situations for which the Fp[G ]-module E
contains a non-trivial free G -module. To this end, we are going to use and extend an idea
of Ozaki [33].
Let us first recall the semisimple version of Dirichlet’s unit theorem that will be of interest
to us.

Theorem 6.1 (Dirichlet’s unit theorem - see [14]). — With all the notation
and assumptions as listed above, let D1, · · · , Dm be the decomposition groups of the
archimedean places of k in K/k. Then one has the isomorphism of Fp[∆]-modules:

1⊕ OT
K/(OT

K)p ' Ind∆
D1Fp ⊕ · · · ⊕ Ind∆

DmFp ⊕ Fp[∆]|T | ⊕ χp,
where χp is the cyclotomic character corresponding to the action of ∆ on the pth roots of
the unity in K.

6.2. Technical results. —
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6.2.1. On some structural elements. — Let ∆ be a finite group of order coprime to p.

Definition 6.2. — If M is a finitely generated Fp[∆]-module, denote by r∆(M) its
minimal number of generators.

Remark 6.3. — The semisimplicity of Fp[∆] allows us to study r∆(M). First, let us
recall that an Fp[∆]-module M is monogenic if and only if its character χM is contained
in the regular character Reg of Fp[∆] (we write this as χM ≤ Reg). Hence, given an
Fp[∆]-moduleM , to determine r∆(M) is equivalent to resolving the decomposition of χM
into characters, all of them being in the regular representation.

Denote by (·)∗ the Pontryagin dual Hom( · ,Qp/Zp). From now on, all the Fp[∆]-modules
under consideration are assumed finitely generated.

Lemma 6.4. — (i)If A� B is a surjective Fp[∆]-morphism, then r∆(A) ≥ r∆(B).
(ii) If A is an Fp[∆]-module, then r∆(A) = r∆(A∗).
(iii) If A and B are Fp[∆]-modules such that A ↪→ B, then r∆(A) ≤ r∆(B).
(iv) Let · · · −→ A −→ B −→ C −→ · · · be an exact sequence of Fp[∆]-modules. Then

r∆(B) ≤ r∆(A) + r∆(C) ·

(v) If A and B are two Fp[∆]-modules such that B ' Fp[∆]t⊕A, then r∆(B) = t+r∆(A).
(vi) If A and B are two ∆-modules such that pA = 0 and A ↪→ B, then r∆(A) ≤ dpB.

Proof. — (i) is obvious.
For (ii), let us write χA = χ1 + · · ·+χs with s = r∆(A) and χi ≤ Reg, i = 1, · · · , s. Then
χA∗ = χ∗A = χ∗1 + · · ·+χ∗s, where χ∗i is the dual character of χi defined by χ∗(s) = χ(s−1).
But trivially, χ∗i ≤ Reg and then r∆(A∗) ≤ r∆(A). It then implies, r∆(A∗∗) ≤ r∆(A∗)
and the conclusion holds by using the ∆-isomorphism A ' A∗∗.
(iii) is a consequence of (i) and (ii), after passing to the dual.
(iv) is consequence of (i) and (iii).
For (v): it suffices to prove the equality for t = 1. First of all, one has r∆(B) ≤ 1+r∆(A),
i.e. r∆(A) ≥ r∆(B) − 1. Then let us write χB = χ1 + · · ·χs, with s = r∆(B) and
χi ≤ Reg, i = 1, · · · , s. As χB contains the regular representation Reg, one may complete
for example the character χ1 with some irreducible characters coming from the other
characters χi, i > 1, to obtain Reg. Then we get χB = Reg + χ′2 + · · · + χ′s, with for
i = 2, · · · , s, χ′i ≤ χi ≤ Reg. It implies that Reg + χA = χB = Reg + χ′2 + · · · + χ′s
showing χA = χ′2 + · · ·+ χ′s and then r∆(A) ≤ s− 1 = r∆(B)− 1. In conclusion, one has
the desired equality: r∆(B) = r∆(A) + 1.
(vi) It is a trivial estimation. It is clear that r∆(A) ≤ dpA; the conclusion follows from
the fact that dpA ≤ dpB.

6.2.2. Semilocal rings and a lower bound. — We first recall some classical results about
semilocal rings; for more details see [27, Chapter 2].

Let us conserve the arithmetic context of the previous section 6.1: we start with G '
Go ∆, where G is the unique p-Sylow G of G .

The group algebra Fp[G ] is a semilocal ring of radical R := 〈g − 1, g ∈ G〉; the quotient
Fp[G ]/R is isomorphic to the semisimple algebra Fp[∆] (see [8], §64, exercice).
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The algebra Fp[G ] is also Frobenius: one has the Fp[G ]-modules isomorphism Fp[G ] '(
Fp[G ]

)∗
, coming from the symmetric non-degenerate bilinear form (f, g) =

∑
g∈G

f(h)g(h−1),

for f =
∑
h

f(h)h and g =
∑
h

g(h)h ∈ Fp[G ]. Thus, every free submodule M0 of a finitely

generated Fp[G]-module M is in direct factor in M : indeed, if Fp[G ] ↪→ M then by
duality M∗ � Fp[G ]∗; by projectivity of Fp[G ], the free module can be lifted in direct
factor in M∗, and it suffices to take the dual again.

In conclusion, every finitely generated Fp[G ]-module M has a free maximal submodule
(in direct factor): there exists an integer t = t(M) such that

M ' Fp[G ]t ⊕N,
where N is of torsion (for all x ∈ N , there exists λ ∈ Fp[G ], λ 6= 0, such that λ · x = 0).
The integer t is unique. We deduce a first relation:

dpM = |G |t+ dpN,

where here dp means as usual the p-rank.
On the other hand, as Fp[G ]G ' Fp[∆], we get MG ' Fp[∆]t⊕NG, and then by 6.4 (iv),
r∆(MG) = t+ r∆(NG).
Recall that for a finitely generated Fp[G ]-module A, one has a ∆-isomorphism: (A∗)G '
(AG)∗.
Recall now Nakayama’s Lemma (see [27, Chapter 2 §4]).

Lemma 6.5. — The Fp[G ]-module A is generated by m1, · · · ,ms if and only if, the
Fp[∆]-module A/(RA) = AG is generated by m1RA, · · · ,msRA. In particular, one can
take s = r∆(AG).

Let us come back to our context and start with M = Fp[G ]t ⊕ N . By Lemma 6.4
(ii), r∆(NG) = r∆((NG)∗). By Nakayama’s Lemma 6.5, the Fp[G ]-module N∗ can be
generated by r∆((N∗)G) = r∆((NG)∗) = r∆(NG) = r∆(MG)− t elements. Then, let us
remark that:

dpN
∗ ≤ (|G | − 1)

(
r∆(MG)− t

)
·

Indeed, as N∗ is of torsion (because N is), for every element x ∈ N\{0}, we have
Fp[G ] · x ' Fp[G ]/Ann(x), where Ann(x) is the annulator of x, it is a non zero ideal of
Fp[G ], and then dpFp[G ] · x = |G | − dpAnn(x) ≤ |G | − 1. Then

dpN = dpN
∗ ≤

(
|G | − 1

)
r∆(N∗),

by Lemma 6.5.

Proposition 6.6. — Let M be a finitely generated Fp[G ]-module. Then there is a well-
defined non-negative integer t = t(M) such that M ' Fp[G ]t⊕N , with N of torsion. For
this t, we have the following lower bound:

t ≥ dpM −
(
|G | − 1

)
· r∆(MG)·

Proof. — Note that dpN = dpM − t|G | and that dpN ≤ (|G | − 1)
(
r∆(MG) − t

)
: the

conclusion is obvious.
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6.3. Cohomology of units. — We are going to apply Proposition 6.6 to the Fp[G ]-
module M = E = Fp ⊗OT

L . Our arithmetic context will allow us to give some situations
where, in the notation of the preceding proposition, t may be as big as possible (thanks to
the choice of T ). To do this, we need to give a sharp estimate of r∆(E G). More precisely,
we propose to show the following result in this direction.

Theorem 6.7. — As introduced at the beginning of this section, let L/k be a finite Galois
extension with Galois group G . We assume that G has only one p-Sylow subgroup G;
put ∆ := G /G. Hence ∆ is a finite group of order coprime to p. Put K = LG. We
assume that the archimedean places of K split completely in L. There exists a constant
A = A(L/K) ∈ Z (depending on the "arithmetic" in L/K) such that if m is any given
positive integer, there exists a choice of a set T of size |T | ≤ m + A consisting of finite
places of k that split completely in L/k, such that the Fp[G ]-module E = Fp⊗OT

L contains
a submodule isomorphic to Fp[G ]m.

This theorem will be proved in two stages (Theorem 6.10 and Theorem 6.13) which will
give an explicit formula for A(L/K) depending on whether L contains a primitve pth root
of unity or not. The proofs will occupy us in the next two subsections.

Remark 6.8. — We will see that when [K : Q] is small with respect to |G | then A >
0. But, as we will see too, the context of the cyclotomic Zp-extension produces some
situations where A is negative.

Remark 6.9. — When the arithmetic context L/k is fixed, the growth of T allows us
to assure that the T -units admit an arbitrarily large free Fp[G ]-submodule. This explains
the appearance of the constant A in Theorems A and B.

To achieve our goal, we are going to develop an idea of Ozaki [33]. Let us introduce a
bit more notation. Let us write d∞ for the number of archimedean places of k that split
completely in K/k and r∞ the number of ramified archimedean places (i.e. those that are
real in k and not real in K). We let (r1, r2) be the signature of k. We also let µp = 〈ζp〉 be
the group of pth roots of unity. The proof will very much depend on whether non-trivial
pth roots of unity are present in L.
6.3.1. When OT

L does not contain µp. — We prove

Theorem 6.10. — Let L/K be a Galois extension with Galois group G ' Go∆, where
the order of ∆ is coprime to the p-Sylow G of G . Suppose that L does not containt µp.
Let us decompose the Fp[G ]-module E := Fp ⊗OT

L as Fp[G ]t ⊕N , where N is of torsion.
Under the arithmetic conditions of section 6.1, one has

t ≥ |T |+ d∞ + 1
2r∞ − (|G | − 1)

(
r1 + r2 − d∞ −

1
2r∞ + dpClTS (K) + |G ||S|+ |Sram|

)
− 1·

Remark 6.11. — When µp is not contained in OT
L , put

A = −
(
d∞ + 1

2r∞ − (|G | − 1)
(
r1 + r2 − d∞ −

1
2r∞ + dpClS(K) + |G ||S|+ |Sram|

)
− 1

)
.

We note that dpClTS (K) ≤ dpClS(K).

The goal of the end of this section is to prove Theorem 6.10.
First of all, let us remark that all the cohomology groups H•(G, ·) are finite ∆-modules.
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Let us start with the exact sequence of G-modules corresponding to raising to the pth-
power :

1 −→ OT
L

p−→ OT
L −→ E −→ 1·

We then have
Fp ⊗ OT

K ↪→ E G � H1(G,OT
L )[p]·(4)

Thanks to Lemma 6.4 (iv), this exact sequence of Fp[∆]-module gives the inequality

r∆(E G) ≤ r∆(H1(G,OT
L )[p]) + r∆(Fp ⊗ OT

K)·(5)

We want to bound the quantities r∆(H1(G,OT
L )[p]) and r∆(Fp ⊗ OT

K).

As the extension L/K is unramified outside S, it is possible to control the cohomology
group H1(G,OT

L ). Indeed put jTL/K,S : ClTS (K) → ClTS (L) for the natural "conorm" mor-
phism of ideal classes. The following proposition, that is a generalization of a result of
Iwasawa [20] when T = S = ∅, has been proved in Maire [30]:

Proposition 6.12. — Let L/K be a finite Galois extension unramified outside S and
tamely ramified at S. Put G = Gal(L/K). Then H1(G,OT

L,S) '∆ ker(jTL/K,S).

Proof. — See [30].

Let us estimate the difference between OT
L and OT

L,S. Start with the exact sequence

1 −→ OT
L,S −→ OT

L −→ B −→ 1,

where ϕ : B ↪→
∏
v∈S

F(L, v)× and where F(L, v) is the residue field of L at v. One has

· · · −→ H1(G,OT
L,S) −→ H1(G,OT

L ) −→ H1(G,B) −→ · · ·
and

· · · −→ H0(G, cokerϕ) −→ H1(G,B) −→ H1(G,
∏
v∈S

F(L, v)×) −→ · · ·

Denote by α the morphism α : H1(G,OT
L )[p] −→ H1(G,B)[p]. Then, one has the exact

sequence of Fp[∆]-modules:

1 −→ ker(α) −→ H1(G,OT
L )[p] −→ Im(α) −→ 1·

By Lemma 6.4 (iv), one has
r∆(H1(G,OT

L )[p]) ≤ r∆(Im(α)) + r∆(ker(α)).(6)
By Lemma 6.4 (iii), as Im(α) ↪→ H1(G,B)[p], one obtains

r∆(Im(α)) ≤ r∆(H1(G,B)[p]).(7)

Moreover, if we denote B′ := Im
(
BG → H1(G,OT

L,S)
)
, then

ker(α) '
(
H1(G,OT

L,S)/B′
)
[p] ↪→ H1(G,OT

L,S)/B′ � H1(G,OT
L,S)

and then, by Proposition 6.12 and Lemma 6.4 (vi), one obtains the upper bound:

r∆(ker(α)) ≤ dpClTS (K).(8)
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Using (6), (7) and (8), one obtains:

r∆(H1(G,OT
L )[p]) ≤ r∆(H1(G,B)[p]) + dpClTS (K)·(9)

To estimate r∆(H1(G,B)[p]), let β be the morphism

β : H1(G,B)[p] −→
(
H1(G,

∏
v∈S

F(L, v)×)
)
[p].

One has
r∆(H1(G,B)[p]) ≤ r∆(Im(β)) + r∆(ker(β)).(10)

As before, the evaluation of r∆(Im(β)) is made thanks to the estimation of

r∆(H1(G,
∏
v∈S

F(L, v)×)[p]).

By Shapiro’s Lemma, one has the ∆-isomorphism

H1(G,
∏
v∈S

F(L, v)×) '
⊕
v∈S

H1(Gv,F(L, v)×)·

Let us fix v ∈ S. Let Gv = Gal(Lv/Kv) be the decomposition group in L/K of a place of
L above v; put Iv the inertia group Iv associated to Gv. The quotient Gv/Iv corresponds
to the Galois group of the local maximal unramified extension Lnrv /Kv in Lv/Kv. The
quotient Gv/Iv is isomorphic to the Galois group of the associated residual extensions;
as F(L, v) is isomorphic to the residual field of Lnrv , By Hilbert Theorem 90, one has:
H1(Gv/Iv,F(L, v)×) = 0. Hence the exact sequence 1 −→ Iv −→ Gv −→ Gv/Iv −→ 1
induces

1 −→ H1(Gv,F(L, v)×) −→ H1(Iv,F(L, v)×)Gv/Iv −→ · · ·
The finite group Iv acts trivially on the cyclic group F(L, v)×, then H1(Iv,F(L, v)×) is
cyclic because the ramification of v is tame. To resume,

H1(G,
∏
v∈S

F(L, v)×) '
⊕

v∈Sram(K)
Cv,

where Sram(K) is the set of places of S(K) that are ramified in L/K and where Cv is a
cyclic group with Cv := ker

(
H1(Iv,F(L, v)×)→ H2(Gv/Iv,F(L, v)×)

)
.

For v0 ∈ S(k), the group ∆ acts transitively on
∏
v|v0

Cv, where the produce is on the places

v of K above v0. Then
r∆(H1(G,

∏
v∈S

F(L, v)×)[p]) ≤
∑

v0∈Sram(k)

r∆(
∏
v|v0

Cv[p]) ≤ |Sram|,

where here Sram = Sram(k) is the subset of places of S (= S(k)) ramified in L/K. Finally
r∆(Im(β)) ≤ |Sram|.(11)

To control ker(β), as before, one uses the estimation of Lemma 6.4 (vi) to obtain
r∆(ker(β)) ≤ dp

(
cokerϕ

)G
and then:

dp
(
cokerϕ

)G
≤ dpcokerϕ ≤ dp

( ∏
v∈S(L)

F(L, v)×
)
≤ |S(L)| ≤ |S||G |·(12)
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By using (9), (10), (11), and (12):
r∆(H1(G,OT

L )[p]) ≤ r∆(H1(G,B)[p]) + dpClTS (K)
≤ |S||G |+ |Sram|+ dpClTS (K),

where we put S = S(k) and Sram = Sram(k). Now it suffices to use Dirichlet’s unit
Theorem 6.1 to obtain:
r∆(E G) ≤ r∆(H1(G,OT

L )[p])+r∆(Fp⊗OT
K) ≤ |G ||S|+|Sram|+dpClTS (K)+r1 +r2−1+|T |·

We finish the proof of Theorem 6.10 thanks to Proposition 6.6 and to the fact that

dpE = |G |
(1

2r∞ + d∞ + |T |
)
− 1·

6.3.2. When OT
L contains µp. — As for the previous section, let us write the Fp[G ]-

module E := Fp ⊗ OT
L as Fp[G ]t ⊕N , where N is of torsion.

Theorem 6.13. — Let us consider the same context as for Theorem 6.10, with the
exception that L contains µp. Let us decompose the Fp[G ]-module E := Fp ⊗ OT

L as
Fp[G ]t ⊕N , where N is of torsion. Then

t ≥ |T |+d∞+1
2r∞−(|G |−1)

(
r1+r2+1−d∞−

1
2r∞+dpClTS (K)+|G ||S|+|G ||Sram|+dpH2(G,Fp)

)
·

Remark 6.14. — When µp ⊂ OT
L , put

A = −
[
d∞+1

2r∞−(|G |−1)
(
r1+r2+1−d∞−

1
2r∞+dpClS(K)+|G ||S|+|G ||Sram|+dpH2(G,Fp)

)]
.

As before, we note that dpClTS (K) ≤ dpClS(K).

Let us start with the following sequence of G-modules
1 −→ OT

L /µp
p−→ OT

L −→ E −→ 1 ·(13)
Then (13) becomes

Fp ⊗ OT
K ↪→ E G −→ H1(G,OT

K/µp) −→ · · ·(14)
Consider

1 −→ µp −→ OT
L−→OT

L /µp −→ 1
which gives
· · · −→ H1(G, µp) −→ H1(G,OT

L ) −→ H1(G,OT
L /µp) −→ H2(G, µp) −→ H2(G,OT

L ) −→ · · ·
Let us remark here that the p-group G acts trivially on µp. Thus for i = 1, 2, the groups
H i(G, µp) describe generators and relations of G.
One then has

dpH
1(G,OT

L /µp) ≤ dpH
2(G,Fp) + dpH

1(G,OT
L,S)·

and
r∆(E G) ≤ r∆(Fp ⊗ OT

K) + dpH
1(G,OT

L /µp)
≤ r∆(Fp ⊗ OT

K) + dpH
1(G,OT

L ) + dpH
2(G,Fp)

≤ r∆(Fp ⊗ OT
K) + |G ||S|+ |G ||Sram|+ dpClTS (K) + dpH

2(G,Fp)
where for the last inequality, one takes the previous computation concerning H1(G,OT

L )
to obtain an upper bound for dpH1(G,OT

L ). The conclusion may be deduced from Propo-
sition 6.6.
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7. Ramification with prescribed Galois action

7.1. Preparation. —
7.1.1. Kummer Theory. — Our reference here is the book of Gras [13], §6, chapter I.
Let us start with a Galois extension L/k of Galois group G and recall some notations.

– Denote by χp = Fp(1) the cyclotomic character resulting from the action on the pth
roots of unity. For a Fp[G ]-module M , put M(1) = M ⊗Fp Fp(1).

– Let T be a finite set of primes of Ok all of which split completely in L, and consider

VT = {α ∈ L×, vP(α) ≡ 0 (modp),∀OL-primes P|p /∈ T}·

– Consider now the governing field FT := L′( p
√

VT ), where L′ = L(ζp). The Kummer
extension FT/L′ is unramified outside T ∪ Sp(L′).

– We also define analogous objects over k, namely:

VT
k = {α ∈ k×, vP(α) ≡ 0 (modp),∀OL-primes P|p /∈ T}},

and the governing field FTk := k(ζp, p

√
VT

k ).

Remark 7.1. — One easily see that Fp ⊗ OT
L ↪→ VT/(L×)p. We will be interested in

finding some free sub-Fp[G ]-modules of VT/(L×)p: they will appear thanks to control
over the group of T -units Fp ⊗ OT

L in conjunction with Theorem 6.7.

Put H = Gal(FT/L′); the group G acts on VT/(L∗)p and then on H . Recall that the
bilinear form

b : VT/(L∗)p ×H −→ µp
(x, h) 7→ p

√
x
h−1

is non-degenerate and functorial with respect to the action of G :

b(g(x), h) = b(x, g−1(h)χp(g)).

This bilinear form induces an isomorphism of G -modules :

Θ :
(
VT/(L×)p

)∗
(1) u−→H ·(15)

Proposition 7.2. — If the Fp[G ]-module Fp ⊗ OT
L contains a free submodule 〈ε〉G gen-

erated by the unit ε, then H = Gal(FT/L′) contains, as a direct factor, a free sub-
Fp[G ]-module Hε of rank 1, isomorphic to

(
〈ε〉G

)∗
(1), the latter being isomorphic to

Hε := Gal(L′( p

√
〈ε〉)/L′).

Proof. — As 〈ε〉G is free, it is a direct factor in VT/(L×)p. By passing to the dual, the
module

(
〈ε〉G

)∗
(1) is free and is in direct factor in

(
VT/(L×)p

)∗
(1) Θ−→∼ H = Gal(FT/L′).

Finally by Kummer theory,
(
〈ε〉G

)∗
(1) 'Hε.

Definition 7.3. — Under the hypothesis of Proposition 7.2, denote by xε a generator
of the free module Hε.
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7.1.2. The Theorem of Gras-Munnier. —

Definition 7.4. — Let K be a number field and S a finite set of prime ideals of OK. We
say the extension L/K is S-ramified if it is unramified outside S and S-totally ramified
if it is S-ramified and moreover all primes in S are totally ramified in L/K.

Let us conserve the notation introduced in the beginning of this section 7.1: L′ = L(ζp)
and FT = L′( p

√
VT ). Let us recall the Theorem of Gras-Munnier (see [15], [13]) that will

be extremely useful to us.

Theorem 7.5 (Gras-Munnier [15]). — Let S = {p1, · · · , pm} and T be two finite sets
of prime ideals of OL, such that S ∩T = ∅, and such that for all pi ∈ S, Npi ≡ 1(modp).
For each i = 1, · · · ,m, let Pi be a prime of OL′ above pi. Then, there exists a T -split,
S-totally ramified cyclic extension F/L of degree p if and only if, for i = 1, · · · ,m, there
exists ai ∈ F×p , such that

m∏
i=1

(FT/L′
Pi

)ai
= 1 ∈ Gal(FT/L′),

where
(FT/L′
•

)
is the Artin symbol in the extension FT/L′.

Note that the condition does not depend on the choice of the primes Pi above pi (which
merely causes a shift in the exponents ai).
7.1.3. Chebotarev density Theorem and applications. — The Chebotarev density The-
orem allows us to give a relationship between the Theorem of Gras-Munnier and the
section about Kummer Theory. We continue to conserve the notations and the context
of section 7.1.

Definition 7.6. — Let U , S and T be three pairwise disjoint sets of prime ideals of
OL. Put Σ = S ∪ U and assume that Σ is tame, i.e. (Σ, p) = 1. Denote by ITS (U,L) the
subgroup of GT

Σ(L)/Φ(GT
Σ(L)) generated by the inertia groups of the prime ideals of U .

Lemma 7.7. — With notation as above, the following conditions are equivalent.
– ITS (U,L) = {1}
– Every T -split Σ-ramified cyclic degree p extension of L is S-ramified
– For every non-empty subset U ′ of U , there does not exist a cyclic degree p T -split
U ′ ∪ S-ramified extension of L where all primes of U ′ are totally ramified.

Proof. — Obvious.

Corollary 7.8. — Suppose that the Fp[G ]-module Gal(FT/L′) contains a free submodule
Hε = 〈xε〉G of rank 1. By Chebotarev density Theorem, choose a prime ideal p of OL

such that 〈
(FT/L′

P

)
〉 = 〈xε〉, where P|p. Then for U = {g(P) = Pg, g ∈ G }, we have

IT (U,L) = {1}.

Proof. — Let first recall the property of the Artin symbol: for g ∈ G and P ⊂ OL, one
has: (FT/L′

Pg

)
= g

(FT/L′
P

)
g−1 =

(FT/L′
P

)g−1

·
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By hypothesis there does not exist a non-trivial relation between the conjugates of(FT/L′
P

)g
with g ∈ G . Then by Theorem 7.5, there exists no T -split, U ′-totally ramified,

cyclic degree p extension of K, for every non empty set U ′ of S, meaning that IT (U,L) is
trivial (thanks to Lemma 7.7 with S = ∅).

In fact, we want to say more. For a finite set S, G -stable, of tame ideal primes of OL with
S∩T = ∅, denote by F(S) the subgroup of Gal(FT/L′) generated by the Frobenius of the
ideals of S (with an abuse of notation); here the primes in S are unramified in FT/L′.

Corollary 7.9. — Suppose that the Fp[G ]-module Gal(FT/L′) contains a free submodule
Hε = 〈xε〉G of rank 1 such that

Hε

⋂
F(S) = {0}·

By Chebotarev density Theorem, choose a prime ideal p of OL such that 〈
(FT/L′

P

)
〉 = 〈xε〉,

for any P|p. Put U = {g(P) = Pg, g ∈ G }. Then ITS (U,L) = {1}.

Proof. — Let L0/L be a T -split, S ∪ U -ramified, degree p cyclic extension of L. As

the free Fp[G ]-module 〈
(FT/L′

P

)
〉G intersects trivially F(S), one has thanks to Theorem

7.5 that the extension L0/L is unramified at U . By Lemma 7.7, one concludes that
ITS (U,L) = {1}.

7.2. The set S . — We are now going to give a non free situation that will be used in
the proof of Theorem 9.2. It is essential for the definition of the sets S .
Let us start from the existence of a free submodule Fp[G ]|G | of VT/(L×)p, of rank |G |.
Let (εg)g be a basis of Fp[G ]|G | indexed by the elements of G .
As Fp[G ] is a Frobenius ring, the free module

⊕
g∈G

Fp[G ]εg is a direct factor in VT
L/(L×)p;

put then
VT

L/(L×)p =
⊕
g∈G

Fp[G ]εg ⊕W,

as the sum of G -modules.
Let N =

∑
h∈G

h be the algebraic norm. Let us mention an easy lemma:

Lemma 7.10. — The module FpN is a sub-Fp[G ]-module of Fp[G ] generated by N . In
other words, 〈N〉G = 〈N〉. It is also the only sub-G -module of Fp[G ] on which G acts
trivially.

Proof. — Put
∑
g∈G

agg ∈ Fp[G ], ag ∈ Fp. Then

∑
g∈G

agg
( ∑
h∈G

h
)

=
∑
g∈G

ag
∑
h∈G

gh =
∑
g∈G

agN ∈ FpN,

which proves the first part. Now clearly G acts trivially on N and moreover if we start
with an element

∑
g∈G

agg on which G acts trivially, then obviously, ag is constant (not

depending on g ∈ G ).

31



Take ε0 ∈ VT
k (L×)p/(L×)p and write ε0 =

(∑
g∈G

yg
)

+ z, with yg ∈ Fp[G ]εg and z ∈ W . As

G acts trivially on ε0, then G acts trivially on the elements yg and Lemma 7.10 shows
that yg ∈ FpN · εg. Denote by abuse, 〈N〉 := FpN · εg.
The morphism of Fp[G ]-modules

VT
L/(L×)p �

⊕
g∈G

(
Fp[G ]εg/〈N〉

)
factors through VT

k (L×)p/(L×)p. Passing to the dual, on obtains:(⊕
g∈G

Fp[G ]εg/〈N〉
)∗

(1) ↪→
(
VT

L/(L×)pVT
k

)∗
(1)

where (
VT

L/(L×)pVT
k

)∗
(1) = ker

[(
VT

L/(L×)p
)∗

(1)�
(
VT

k (L×)p/(L×)p
)∗

(1)
]
·

By passing to Kummer theory and by using the isomorphism Θ of (15), we get:

0 //

(
VT

L/(L×)pVT
k

)∗
(1)

u
��

//

(
VT

L/(L×)p
)∗

(1)

uΘ
��

//

(
VT

k (L×)p/(L×)p
)∗

(1)

u
��

// 0

0 // Gal(FT/FTk L′) // Gal(FT/L′) // Gal(FTk L′/L′) // 0

Put

H ′ := Θ
((⊕

g∈G

Fp[G ]εg/〈N〉
)∗

(1)
)
;(16)

then H ′ ⊂ Gal(FT/FTk L′).

Let us study more carefully H ′. First, by Kummer duality, one has⊕
g∈G

(
Fp[G ]εg/〈N〉

)∗
↪→

⊕
g∈G

(
Fp[G ]εg

)∗
�

⊕
g∈G

〈N〉∗·

We will continue to denote by (εg)g the dual basis of εg.

Let us fix an element εg. Then
(
Fp[G ]/〈N〉

)∗
' {f ∈ Hom(Fp[G ],Fp), f(N) = 0}, see

for example [8], §60, chapter IX. Let

I = ker
(
Fp[G ]→ Fp

)
be the augmentation ideal of the algebra Fp[G ]. Obviously, via the isomorphism be-
tween Fp[G ]∗ and Fp[G ], one has I ⊂ {f ∈ Hom(Fp[G ],Fp), f(N) = 0}; these two
Fp-spaces vector have the same dimension, i.e. |G | − 1, and then finally I = {f ∈
Hom(Fp[G ],Fp), f(N) = 0}. The exact sequences

1 −→ 〈N〉 −→ Fp[G ] −→ Fp[G ]/〈N〉 −→ 1

and
1 −→ I −→ Fp[G ] −→ Fp −→ 1

are dual to each other, and the same holds after tensoring by µp.
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Put xg = εg⊗ζp: it is a generator of the free module
(
Fp[G ]εg

)
(1). In the sum

⊕
g∈G

I · xg ↪→⊕
g∈G

Fp[G ]xg, let us choose the particular element x defined by

x :=
(∑
g∈G

(g − 1)xg
)
·(17)

Obviously the algebraic norm kills each component g − 1 of xg and then N(x) = 0. In
fact:

Lemma 7.11. — The relation N(x) = 0 is the unique non trivial relation of x, i.e if∑
h∈G

ahh · x = 0 then ah = ae for all h ∈ G . Equivalently, Ann(x) = FpN .

Proof. — Write λ =
∑
h∈G

ahh ∈ Fp[G ] such that λ · x = 0. Then

0 = λx =
∑
g∈G

λ(g − 1)xg·

As the modules 〈xg〉 are in direct factor, one has for every g ∈ G , λ(g − 1)xg = 0. The
modules 〈xg〉 being moreover free, one gets λ(g − 1) = 0. Thus λ ∈

⋂
g∈G

Ann(g − 1) ∈

Fp[G ]. To conclude, it suffices to remark that the intersection is reduced to (N) = FpN .
Indeed, when g is fixed, we get

∑
h∈G

ahh(g − 1) = 0 if and only if, ah−1g = ag for all h.

When varying g, one obtains ahg = ag for all h and g, implying ag = ae for all g ∈ G .

7.3. Some consequences. — Let us start now with x given by Definition (17).
Recall that x ∈

⊕
g∈G

Ixg, where I = {f ∈ Hom(Fp[G ],Fp), f(N) = 0}.

Put x0 = Θ(x) ∈ Gal(FT/L′), where Θ is the isomorphism coming from Kummer theory,
see (15). The element x0 is in H ′ and then x0 ∈ Gal(FT/FTk L′).
By Chebotarev density Theorem, let us choose a prime ideal P of OL which splits totally

in L/k and such that 〈
(FT/L′

P

)
〉 = 〈x0〉.

Let pk = N(p) = NL/k(P) be the unique prime ideal of Ok under p. Put U = {pk} and
still denote by abuse U = U(F) = {P ⊂ OF, P|pk} when F/k is a finite extension.

Remark 7.12. — When S = ∅ and s = 1, in the main theorems (Theorems A and B)
the set S considered is composed of such prime ideals. The set S is of positive density.
This density depends on the discriminant of FT/Q and on the size of Gal(FT/Q). The
discriminant of L′/Q is related to the number field K; the discriminant of FT/L′ depends
on the wild ramification in FT/L′ and on the tame ramification at T ; and the size of
Gal(FT/L′) depends the p-class group of K, on the signature of K and on the size of |T |.

Proposition 7.13. — With the previous notations and conditions (especially the choice
of P), we get the isomorphism of G -modules: IT (U,L) ' IT (U, k) ' Fp.

Proof. — Suppose that there exists a non-trivial relation between the conjuguates(FT/L′
P

)g
, g ∈ G , of

(FT/L′
P

)
:
(∑
g∈G

agg
)
·
(FT/L′

P

)
= 0, with ag0 6= 0 for at least one
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g0 ∈ G . Then, as 〈
(FT/L′

P

)
〉 = 〈x0〉, by Lemma 7.11, one gets ag = ag0 6= 0 for all g ∈ G .

Thus by Theorem 7.5, every T -split degree p cyclic extension of L which is ramified at
one prime P0|p is totally ramified at all Pg

0, g ∈ G . That means that dpIT (U) ≤ 1 (it is
an easy generalization of Lemma 7.7).
We now show that the number field k has a T -split, {pk}-totally ramified, degree p cyclic

extension. Indeed, by the choice of P, one knows that
(FT/L′

P

)
∈ 〈x0〉 ⊂ H ′ and

consequently,
(L′FTk /L′

P

)
= 1. By the properties of the Artin symbol, one gets

( L′FTk /k′
NL′/k′(P)

)
=
(L′FTk /L′

P

)
= 1,

where
( FTk /k′

NL′/k′(P)
)

= 1. We then remark that NL′/k′(P) is a prime ideal of Ok above

p. By Theorem 7.5, it proves the existence of a T -split, {pk}-totally ramified, degree p
cyclic extension of k. Then, IT (U, k) ' Fp as G -modules. But one still has IT (U,L) �G

IT (U, k), because pk splits totally in L/k. By comparing the p-rank, one finally obtains:
IT (U,L) ' IT (U, k) ' Fp.

To finish this part, we present a result of avoidance.

Proposition 7.14. — Suppose that the Fp[G ]-module Gal(FT/L′) contains a free sub-
module H ′ of rank |G | with basis (xg)g∈G . Put x0 =

∑
g∈G

(g − 1)xg ∈H ′. By Chebotarev

density Theorem, take a prime ideal P of OL such that 〈
(FT/L′

P

)
〉 = 〈x0〉. Suppose

moreover that
H ′⋂F(S) = {0},

where F(S) is the subgroup of Gal(FT/L′) generated by the Frobenius of a G -stable set
S of ideals of OL. Then, as G -modules, ITS (U,L) ' ITS (U, k) ' IT (U, k) ' Fp, where
U = {Pg, g ∈ G }. Moreover ITS (U,L) ∩ ITU(S,L) = {e}.

Proof. — As x0 ∈ H ′, the module 〈x0〉G intersects F(S) trivially. As for Proposition
7.13, it implies that any T -split cyclic degree p extension of L, S-ramified and totally
ramified at P0|p is totally ramified at all Pg

0, g ∈ G . Hence, dpITS (U,L) ≤ 1. But by
Proposition 7.13, one knows that dpIT (U,L) ≥ 1. As ITS (U,L) � IT (U,L) one obtains
ITS (U,L) 'G Fp.
Suppose now ITS (U,L)∩ITU(S,L) 6= {e}. As ITS (U,L) is of order p, it implies that ITS (U,L) ⊂
ITU(S,L) and then every T -split, U -ramified, cyclic degree p extension of L, is in fact
everywhere unramified, which contradicts IT (U,L) ' Fp.

Remark 7.15. — The main question it to find an element x in
(
VT/(L×)p

)∗
such that

Ann(x) = FpN . In some cases, one can find a such element in a free module of rank 1.
Typically if G = 〈x〉 is cyclic, it suffices to take x = g − 1. Or, in the semisimple case,
i.e. when the order of G is coprime to p, take x =

∑
g∈G

(g − 1).
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PART III
PROOF OF THE MAIN RESULTS

8. The strategy

8.1. — Let L/K/k be a σ-uniform tower; put Γ = Gal(L/K), G = Gal(L/k) and
∆ = 〈σ〉. We still assume that σ is of order ` | (p− 1).
Denote by d the p-rank of Γ and by r the p-rank of the fixed points of σ acting on
Γp,el = Γ/Φ(Γ). Let x1, · · · , xn ∈ Γ be some lifts of some generators of Γp,el respecting
the action of σ (see §4.2). We fix x1 · · · , xr the lifts of the fixed points. Hence, by
Proposition 4.6, Γ◦σ = 〈x1, · · · , xr〉, the pro-p group Γσ is topologically generated by the
conjuguates xgi , i = 1, · · · , r, g ∈ G := Γ/Γσ of the xi. Moreover by proposition 4.12, Γp,elσ

is minimaly generated as Fp[[G]]-module by the family {x1Φ(Γσ), · · · , xrΦ(Γσ)}.

8.2. — Now assume that Γ is the Galois group of a pro-p extension unramified outside
S and totally split at T , i.e. a quotient of GT

S = Gal(KT
S/K). Suppose moreover that the

places in S are coprime to p, in other words, S is tame. Then GS and Γ are FAb. Put
F := LΓσ and G := Gal(F/K). The situation is summarized in the diagram below.

KT
S

L

Γ

Γσ

G F
G

K
〈σ〉

k

By Proposition 3.5: [F : K] < ∞, and by maximality of KT
S , one has KT

S = FTS ; put
GT
S (F) := Gal(KT

S/F).

Then the natural map GT
S (F)� Γσ factors through ψ : GT,ab

S (F)� (Γσ)ab.
Of course, G acts on GT

S (F) and on Γσ and then ψ is a G-morphism of abelian groups.

We recall that x1 · · · , xr are in Γ, they can be lifted to GT
S . In fact, by construction, the

elements x1 · · · , xr are in GT
S (F) and by Proposition 4.12, their classes generate Γp,elσ as

Fp[G]-modules. Put M := 〈G · xiΦ(GT
S (F)), i = 1, · · · , r〉 ⊂

(
GS(F)

)p,el
.

Proposition 8.1. — The morphism ψ induces a surjective G-morphism from M to Γp,elσ .
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Now, we make our key observation: the group M is a subgroup of
(
GT
S (F)

)p,el
, it may

be described by class field theory, and the G-structure of Γp,elσ depends only on the pro-p
group Γ.
As we have mentioned in the beginning of this work, the goal is to find some situations
where the G-structures of M and of Γabσ are not compatible.

9. Proof of Theorem B

Let us start with a notation. For a finitely generated pro-p-group G, denote by (Gn)n
the central series of G: G0 = G, and for n ≥ 0, Gn+1 = [Gn, Gn]. Put Gn = G/Gn.

Definition 9.1. — Let n ≥ 1. Denote by K(n)
S the subfield of KS fixed by (GS)n, whose

Galois group over K is thus Gn
S. It is also the nth step of the p-tower KS/K of K,

unramified outside S.

Recall the integer m(`) defined in (1): it is an upper bound of the solvability length of
the quotient G := Γ/Γσ. See also remark 4.11.
We are now able to prove Theorem B of the section 2.

Theorem 9.2 (Theorem B). — Let K be a number field equipped with an automor-
phism σ of order ` | (p− 1); put k = Kσ. Suppose that there exists a finite set S of tame
primes of Ok such that the action of σ on Gab

S is fixed point free. Fix s ∈ Z>0.
Let T be a finite set of prime ideals of Ok that totally split in K(m(`))

S /k and such that
|T | ≥ A + s|G |(|S||G |+ 1), where A = A(K(m(`))

S /K) (see remarks 6.11 and 6.14). Then
there exists s sets S1, · · · ,Ss, of ideal primes of Ok, all of positive density, such that for
Σ = S ∪ S ′ with S ′ = {p1, · · · , ps}, where pi ∈ Si, i = 1, · · · , s, one has:
(i) (GT

Σ)p,el 'G (GS)p,el⊕ (Fp)⊕
s;

(ii) there is no continuous Galois representation ρ : GT
Σ → Glm(Qp) which is fixed-point-

mixing modulo Frattini and Γσ is supported at S ′, where Γ is the image of ρ.

Proof. — The proof is a combination of the previous results. First, the extension
K(m(`))/k is a Galois extension. Put L0 = K(m(`))

S and G = Gal(L0/k). Consider the
Fp[G ]-module Fp ⊗OT

L0 and let Fp[G ]t ⊕N be its decomposition as Fp[G ]-modules where
N is of torsion (see §6.2.2). Thanks to Theorem 6.7, as T is sufficiently large, one gets
t ≥ s|G |(|S||G |+ 1).
Let us conserve the notations of §7.1. Let F(S) be the sub-Fp[G ]-module of Gal(FT/L′)
generated by the Frobenius of the prime ideals of S (see §7.1.3).

Lemma 9.3. — Suppose that t ≥ s|G |(|S||G | + 1). Then there exists s|G | T -units
εig ∈ OT

L0, g ∈ G , i = 1, · · · , s, such that
(i) for every i = 1, · · · , s, the Fp[G ]-module

∑
g∈G

Fp[G ]εig is free of rank |G |, with basis

{εig, g ∈ G };
(ii) the Fp[G ]-modules

∑
g∈G

Fp[G ]εig are in direct factors:
s∑
i=1

∑
g∈G

Fp[G ]εig =
s⊕
i=1

(∑
g∈G

Fp[G ]εig
)
;
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(iii) following the notations of Section 7.1, for i = 1, · · · , s,

Θ
((∑

g∈G

Fp[G ]εig
)∗

(1)
)
∩ F(S) = {0}.

Proof. — Let us start with Fp ⊗ OT
L0 ' Fp[G ]t ⊕ N . By Kummer duality, Gal(FT/L′)

contains Fp[G ]t in direct factor, the free modules coming from the image of the dual of
T -units by Θ (see §7.2). As dpF(S) ≤ |S||G |, the Fp[G ]-module F(S) intersects at most
|S||G | modules each one isomorphic to Fp[G ]s|G |. Hence as t ≥ s|G |(|S||G | + 1), there
exists at least one module isomorphic to Fp[G ]s|G | that does not intersect F(S), in other
words, there exists s|G | free submodules Mi of Gal(FT/L′), i = 1, · · · , s|G |, all in direct
factors, such that F(S) ∩

(∑
i

Mi

)
= {0}. Then the T -units given by Θ−1(Mi) satisfy (i),

(ii) and (iii) of the Lemma.

Let us adapt the Proposition 7.14 in our context. For i = 1, · · · , s, let H i be the
free Fp[G ]-modules of basis {xig, g ∈ G }. Recall that these modules are obtained by
Kummer duality from the T -units of Lemma 9.3. Put also xi0 :=

∑
g∈G

(g − 1)xig ∈H ′. By

Chebotarev density Theorem, let Si be the set of prime ideals p of OK, such that the
(class of) Frobenius of p in FT/k corresponds to xi0: the Si is of positive density.
Then consider S ′ = {p1, · · · , ps} a set of prime ideals of Ok, with pi ∈ Si; put Σ = S∪S ′.
For i = 1, · · · , s, choose a prime ideal Pi|pi of OL0 above pi. Put Ui = {Pg

i , g ∈ G}.
Let us fix i ∈ {1, · · · , s}, and put

Si = S ∪ U1 ∪ · · · ∪ Ui−1 ∪ Ui+1 ∪ · · · ∪ Ur,
here, we drop Ui.

Lemma 9.4. — (i) Let R′/k be a Galois subextension of L0/k of Galois group G′.
Then as Fp[G′]-modules:

ITS (S ′,R′) '
s⊕
i=1

ITSi(Ui,R
′) '

(
Fp
)⊕s

.

(ii) At the level of K, one has:(
GT

Σ(K)
)p,el
'G

(
GT
S (K)

)p,el⊕(
Fp
)⊕s
'G

(
GS(K)

)p,el⊕(
Fp
)⊕s
·

Proof. — (i) First, take R′ = L0 and fix i. By Lemma 9.3, Hi ∩ F(Si) = {0}. The
proposition 7.14 applied to Ui and to Si allows us to get: ITSi(Ui,L0) ' ITSi(Ui,K) '
IT (Ui, k) ' Fp and ITSi(Ui,L0) ∩ ITUi(Si,L0) = {1}. Hence when i varies, the groups
ITSi(Ui,L0) are in direct factors in

(
GT

Σ(L0)
)p,el

.
Take now R′ in L0/k. As L0 is S ′-ramified, one has ITS (S ′,L0) � ITS (S ′,R′) � ITS (S ′, k)
and one concludes thanks to ITS (S ′,L0) ' ITS (S ′, k).
(ii) comes from the exact sequence of Fp[〈σ〉]-modules (which splits by semisimplicity):

1 −→
s⊕
i=1

ITSi(Ui,K) −→
(
GT

Σ(K)
)p,el
−→

(
GT
S (K)

)p,el
−→ 1·

and by the choice of T :
(
GT
S (K)

)p,el
'
(
GS(K)

)p,el
.
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Let us start with a σ-uniform extension L/K/k such that Gal(L/K) is a uniform quotient
of GT

Σ(K). Put Γ = Gal(L/K) and assume that d ≥ 1.

As (GT
Σ(K))p,el � Γp,el, the action of σ on Γp,el has at most s "fixed points". Moreover by

Boston [4] and [5], this action must have at least one non-trivial fixed point. Hence, here
as Γ is supposed to be non trivial, we get 1 ≤ r ≤ s, where r = dimFp(Γp,el)σ. Denote by
x1, · · · , xn ∈ Γ the element of Γ that respect the action of σ, with the choice: σ(xi) = xi,
for i = 1, · · · , r (see section 4.2).
By Lemma 4.6 and Proposition 4.12, one knows that Γσ is topologically generated by the
G-conjuguates of the xi, i = 1, · · · , r, where G := Γ/Γσ. It is the notion of fixed-point-
mixing modulo Frattini that will give us some information about the xi, i = 1, · · · , r.
For i = 1, · · · , s, and pi ∈ S ′, let yi be a generator of the inertia group Ipi of a ideal prime
pi in L0: Ipi = 〈yi〉.
It is clear that Ipi intersects non trivially Γσ. The fixed-point-mixing modulo Frattini
impose then

〈y1, · · · , ys〉Norm = Γσ·
In particular
(i) if we note by F the subfield of L fixed by Γσ, then the extension F/K is unramified

at S ′, F ⊂ KT
S and GT

S (K)� Gal(F/K);
(ii) the pro-p group Γσ is generated by the G-conjuguates of the yi, i = 1, · · · , s.

On the other hand, the action of σ on G = Γ/Γσ is fixed point free, hence G is nilpotent of
length at most n(`) (see remark 4.11). Consequently, we get: F ⊂ (KT

S )(m(`)) = K(m(`))
S =

L0 by the choice of T .
By Lemma 9.4, the Fp-vector space ITS (S ′,F) is of dimension s and the action of G :=
Gal(F/K) on it is trivial: indeed, ITS (S ′,F) 'G (Fp)⊕

s . But, by Proposition 8.1 and by
the condition above the ramification at the prime ideals pi ∈ S ′, ITS (S ′,F)� (Γσ)p,el and
then G acts trivially on (Γσ)p,el. At this point, one uses the condition fixed-point-mixing
modulo Frattini to obtain a contradiction: indeed in this case G should act non trivially
on (Γσ)p,el!

10. Applications

10.1. When σ is of order 2. — Theorem A gives a context where the condition about
the ramification is automatically satisfied. Lets us give a proof.
We still conserve the main notations of Theorem 9.2: let K/k be a quadratic extension;
put Gal(K/k) = 〈σ〉. Let S be a finite set of ideal primes of Ok such that p - |ClS(k)|.
Let S ′ = {p1, · · · , ps} be a finite set of prime ideals of Ok such that

(GΣ(K))p,el ' (GS(K))p,el⊕(Fp)⊕
s

,

where Σ = S ∪ S ′, with a slight abuse of notation. Let I(S ′) be the subgroup of Gab
Σ (K)

generated by the inertia groups of the primes in S ′. One then has 1 −→ I(S ′) −→
Gab

Σ (K) −→ Gab
S (K) −→ 1.
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Take a minimal set of generators {x1, · · · , xs, y1, · · · , yt} of Gab
Σ = Gab

Σ (K) as follows: the
elements x1, · · · , xs satisfy σ(xi) = x−1

i and the elements y1, · · · , yt satisfy σ(yi) = yi (see
for example [19], Theorem 2.3).

Lemma 10.1. — Under the conditions of this section, one has I(S ′) = 〈y1, · · · , yt〉.

Proof. — As I(S ′)
(
Gab

Σ

)p
/
(
Gab

Σ

)p
' ker

(
Gp,el

Σ → Gp,el
S

)
,

t = dp
[
I(S ′)

(
Gab

Σ

)p
/
(
Gab

Σ

)p]
≤ dpI(S ′) ≤ |S ′| = t,

hence, dpI(S ′) = |S ′|.
As σ acts by −1 on Gab

S , we get 〈y1, · · · , yt〉 ⊂ I(S ′). Suppose 〈y1, · · · , yt〉 ( I(S ′). Put
x ∈ I(S ′)\〈y1, · · · , yt〉. Then there exists y ∈ 〈y1, · · · , yt〉 such that xy ∈ 〈x1, · · · , xs〉
with xy 6= e. As Gab

Σ = 〈y1, · · · , yt〉 ⊕ 〈x1, · · · , xs〉, one gets dpI(S ′) ≥ dp〈y1, · · · , yt〉 + 1,
and so a contradiction.
Let L/K/k be a σ-uniform tower in KΣ/k. Put F := LΓσ .
Let us recall that Gal(F/K) is fixed point free under the action of σ of order 2: hence
F/K is an abelian subextension of Kab

Σ .

Lemma 10.2. — The extension F/K is S-ramified. Moreover, F = L ∩Kab
S .

Proof. — By Lemma 10.1, the involution σ acts trivially on I(S ′). As σ acts without non-
trivial fixed point fixed on G = Γ/Γσ and that Gab

Σ
θ
� G, one then gets θ(I(S ′)) = {1},

meaning exactly that F/K is S-ramified, i.e. F ⊂ Kab
S . Put F1 = L ∩ Kab

S . Obviously,
F ⊂ F1. As σ acts by−1 on ClS(K), σ acts by−1 on Gal(F1/F): indeed if not, Gal(Kab

S /F)
would have a fixed point (see the proof of Proposition 3.5). On the other hand, as F1/K
is abelian, one still has

(
Γabσ

)
G
� Gal(F1/F). But by Proposition 4.12, the involution σ

acts trivially on
(
Γabσ

)
G
, which implies that σ acts trivially on Gal(F1/F). To conclude:

σ acts at a time by −1 and by +1 on Gal(F1/F), consequently F1 = F.

Remark 10.3. — Lemma 10.2 shows that the inertia groups of the prime ideals p ∈ S0
are in Γσ.

Proposition 10.4. — Let us conserve the notations and the conditions of this section.
By Chebotarev density Theorem, choose a finite set T of prime ideals of Ok, disjoint from
S, such that:

– each prime ideal of T totally splits in Kab
S /K;

– ClTS (Kab
S ) is trivial.

Let ρ : GT
Σ → Glm(Qp) be a continuous representation with σ-uniform image Γ. Then

Γσ is supported at S ′, meaning the inertia groups of the prime ideals of S ′ generate the
group Γσ.

Proof. — The σ-uniform tower L/K/k is in KT
Σ/k and then in KΣ/k: one can apply

Lemma 10.2 to this situation. By Lemma 10.2 the inertia groups of p ∈ S ′ are in Γσ.
Denote by L1 the subfield of L fixed by these inertia groups: the extension L1/F is T -split
and S-ramified. Suppose that L1/F is not trivial. Then one can assume that L1/F is of
degree p. Then by Lemma 10.2, we get that L1Kab

S /Kab
S is T -split and S-ramified, cyclic

degree p extension. But by hypothesis ClTS (Kab
S ) is trivial, and then, by class field theory,

one obtains a contradiction.
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We can now say few words about the proofs of the results of §1 and §2.
– Theorem A can be deduced from Theorem 9.2 and from Proposition 10.4.
– Theorem of the subsection 1.2 comes from the fact that every involution σ on Sl12(Zp)
is of type tσ(Γ) = (1, b) and then is fixed-point-mixing modulo Frattini by Proposi-
tion 5.1. (Here T sufficiently large means also that ClT (KH)) is trivial.)

– Corollary 2.6 comes from the fact that the action of σ on Γ should be trivial. Thus
Im(ρ) comes from k by compositum and then it suffices to remark that dpClS(k) ≤
|S|. (Here, as previous, T sufficiently large means also that ClT (KH)) is trivial.)

– Corollary 2.7 can be deduced from Theorem A and Proposition 5.4.

10.2. Along a Zp-extension. — The context of the cyclotomic Zp-extension allows
one to take T as small as possible.
10.2.1. When ` = 2. — Take p > 2. Let K/k be a quadratic extension such that:
(i) K is totally real. Put r1 = [k : Q];
(ii) the p-class group along the Zp-cyclotomic extension of k is trivial;
(iii) the number field K satisfies the Greenberg’s conjecture.
For n ≥ 0, put Kn (resp. kn) for the nth steps of the Zp-cyclotomic extension K∞ of K
(resp. of k): [Kn : K] = [kn : k] = pn.
We are going to apply Theorem A to the σ-uniform extensions of Kn/kn.
Take n0 sufficiently large such that

– for all n ≥ n0, Cl(Kn+1) ' Cl(Kn), which is always possible by condition (iii);
– all prime ideals above p are totally ramified in k∞/kn0 .

Let us fix s ∈ Z>0.
Put C0 ' Cl(Kn) and C := Gal(Ln+1/kn) '

(
C0 × Z/pZ

)
o 〈σ〉. Let us apply the

strategy developped in part II in order to find free Fp[C]-modules in O×Ln/(O
×
Ln)p. Let us

write O×Ln/(O
×
Ln)p = Fp[C]tn ⊕ Nn, with Nn of torsion. Following Theorem 6.10, we get

tn ≥ r1p
n − (|C| − 1)dpC − 1. Hence for large n, we are guarantee that tn ≥ s|C|, and

then the method developed in the proof of Theorem 9.2 can apply with T = ∅ ! Hence,
there exists s set Si, i = 1, . . . , s of prime ideals of Okn , all of positive density, such that
for all set S = {p1, · · · , ps}, with pi ∈ Si, one gets:(

GS(Kn+1)
)p,el
'
(
GS(Kn)

)p,el
' C0/p

⊕ (
Fp
)⊕s
·

Consequently the groups (GS(Kn)p,el)n stabilize in two consecutive steps: by a classical
argument in Iwasawa theory (see for example [11], theorem 1), one obtains that for
n ≥ m, with m sufficiently large: GS(Kn)p,el ' C0/p

⊕ (
Fp
)⊕s

. Applying the strategy of
the proof of Theorem A, one obtains the following corollary:

Corollary 10.5 (Theorem C). — Under the conditions of this section, for sufficiently
large m ∈ Z>0, there exists s set Si, i = 1, · · · , s, of prime ideals of Okm, all of positive
density, such that for all set S = {p1, · · · , pr}, with pi ∈ Si, and for all n ≥ m, one has:

(i)
(
GS(Kn)

)p,el
' C0/p

⊕ (
Fp
)⊕s

;
(ii) the non existence of continuous representation ρ : GS(Kn) → Glm(Qp) with σ-

uniform image fixed-point-mixing modulo Frattini and Γσ supported at S.
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One can say more. Indeed, let us choose moreover a set T of prime ideals of km, such
that

– each ideal prime of T splits totally in K(1)
m+1/km;

– ClT (K(1)
m+1) is trivial.

Then, ClT (K(1)
n ) is trivial for all n ≥ m. Proposition 10.4 shows that the ramification will

be supported by the fixed points.

Corollary 10.6. — With the conditions and notations of this section, for m sufficiently
large, there exists s sets Si, i = 1, · · · , s, of prime ideals of Okm, all of positive density,
such that for all set S = {p1, · · · , pr}, with pi ∈ Si, and for all n ≥ m, one gets:

(i)
(
GT
S (Kn)

)p,el
' C0/p

⊕ (
Fp
)⊕s

;
(ii) the non existence of continuous representation ρ : GT

S (Kn) → Glm(Qp) with σ-
uniform image fixed-point-mixing modulo Frattini.

To conclude this section, let us give an example.
Take p = 3 and K = Q(

√
32009).

Let K∞ =
⋃
n

Kn be the Zp- cyclotomic extension of K. Put Gal(K/Q) = 〈σ〉. A com-

putation with Pari-GP [1] shows that for all n ≥ 1, Cl(Kn) ' Z/9Z × Z/3Z. Following
Theorem 6.7, remark 6.11 and Theorem 9.2, take n such that

r13n − (|C| − 1)d3C − 1 ≥ s|C|,
where |C| = 2 × 34, r1 = 2 and where s is the number of fixed points that we want to
introduce. Hence n ≥ n0 = dlog3(2 + s) + 4e holds. If moreover we take a set T of ideal
primes of Okn0

all totally splits in KH
n0+1/Qn0 and such that ClT (Kn0+1) is trivial, one

then gets:

Corollary 10.7. — Let K = Q(
√

32009) and let s ∈ Z>0. Take T as before. There
exists s sets Si, i = 1, · · · , s,of prime ideals of OQn0

, all of positive density, such that for
all set S = {p1, · · · , ps}, with pi ∈ Si, and for n ≥ log3(2 + s) + 4, one has:
(i) GT

S (Kn)p,el has s independant fixed points under the action of σ;
(ii) there exists no continuous representation ρ : GT

S (Kn) −→ Glm(Qp) with σ-uniform
image fixed-point-mixing modulo Frattini.

Remark 10.8. — If we start with a situation where the p-class group is cyclic along the
Zp-cyclotomic extension, then Cl(KH

n ) is trivial: and then one can take T = ∅. But in this
case, the group GS is of type (1, b), and one has seen in Proposition 4.30 (or Corollary
4.31) that this type is not compatible with the type of FAb uniform groups. And in this
case, the expected conclusion is obvious!

10.2.2. When ` is odd. — Let K/k be a cyclic extension of prime degree ` > 2. Assume
that ` | (p− 1). Suppose that
(i) the extension K/k is totally real;
(ii) the p-class group along the Zp-cyclotomic extension of k is trivial.
Let us take the notation of the beginning of section 8. One has seen that K(m) is the key
number field, where K(m)is the mth step of the Hilbert p-class field tower of K and where
m = log2(n(`) + 1).
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Thus by the Greenberg’s conjecture, for n0 � 0 and for n ≥ n0, on has [K(1)
n0 : Kn0 ] =

[K(1)
n : Kn0 ]. If moreover, one assumes the Greenberg’s conjecture for all the fields Kn,

there exists an integer n1 ≥ n0 such that n ≥ n1, [(Kn1)(1) : K(1)
n1 ] = [(K1

n)(1) : K(1)
n ]

and then [K(2)
n : Kn] = [K(2)

n1 : Kn1 ]. By following this process, one gets the existence of
nm ∈ Z>0 such that for all n ≥ nm, we get [K(m)

n : Kn] = [K(m)
nm : Knm ] when supposing

the Greenberg’s conjecture for the number fields Kni , i = 0, · · · ,m. One can then apply
the strategy of the section 10.2.1 to obtain:

Corollary 10.9. — Under the conditions of this section, in particular by assuming the
Greenberg’s conjecture for totally real number fields, for sufficiently large m ∈ Z>0, there
exists s sets Si, i = 1, · · · , s of prime ideals of Okm, all of positive density, such that for
all set S = {p1, · · · , pr}, with pi ∈ Si, and for all n ≥ m, one has:

(i)
(
GS(Kn)

)p,el
has s independant fixed points under the action of σ;

(ii) there is no continuous representation ρ : GS(Kn) → Glr(Qp) of σ-uniform image
fixed-point-mixing modulo Frattini and where Γσ is supported at S.
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