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Abstract. — For a finite abelian p-group A of rank d = dimA/pA, let MA := logp |A|1/d
be its (logarithmic) mean exponent. We study the behavior of the mean exponent of p-class
groups in pro-p towers L/K of number fields. Via a combination of results from analytic
and algebraic number theory, we construct infinite tamely ramified pro-p towers in which
the mean exponent of p-class groups remains bounded. Several explicit examples are given
with p = 2. Turning to group theory, we introduce an invariant M(G) attached to a finitely
generated pro-p group G; when G = Gal(L/K), where L is the Hilbert p-class field tower of
a number field K, M(G) measures the asymptotic behavior of the mean exponent of p-class
groups inside L/K. We compare and contrast the behavior of this invariant in analytic versus
non-analytic groups. We exploit the interplay of group-theoretical and number-theoretical
perspectives on this invariant and explore some open questions that arise as a result, which
may be of independent interest in group theory.

Contents

Some notation and basic notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Towers with bounded mean exponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Refined estimates. The Tsfasman-Vladut method. . . . . . . . . . . . . . . . . . . . 14

4. Linear growth of the p-class rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. Invariant factors in pro-p-groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6. Final remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2000 Mathematics Subject Classification. — 11R29, 11R37.
Key words and phrases. — Class field towers, ideal class groups, pro-p groups, p-adic analytic

groups, Brauer-Siegel Theorem.

Acknowledgements. The second author would like to thank UMass Amherst for its hospitality during
several visits, as well as the Région Franche-Comté for making his travel possible. He also thanks NTU
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A few hundred years after its definition, the ideal class group continues to be one of the
most mysterious objects in number theory. One early lesson, going back to Gauss, was
that it is advantageous to study the p-Sylow subgroup of the class group of one prime p
at a time. The variation of p-class groups in pro-p towers of number fields is perhaps the
area that has had the most success, thanks to the pioneering work of Iwasawa. Indeed,
his insights uncovered a very rich algebraic structure in the behavior of p-class groups
in layers of a Zp-extension. In particular, the growth of the generator rank of these p-
class groups is governed by the invariants µ, λ, ν which derive from the structure of the
associated Iwasawa module. These ideas have been extended to a much broader context
of extensions with more general p-adic analytic groups, including non-abelian ones (see,
for example, Harris [17], Venjakob [39], Coates-Schneider-Sujatha [3], Perbet [34], to
cite only a few authors).

In this article, we consider the variation of the invariant factors of p-class groups, focus-
ing in particular on a notion we call the “mean exponent” in towers of p-extensions of
number fields. A recurring theme is comparing and contrasting the tame case versus the
analytic case; indeed, the Fontaine-Mazur conjecture [7, Conjecture 5a] has influenced
and motivated the questions we explore here.

First, let’s define the average or mean exponent. Suppose a non-trivial finite p-group A
has elementary divisors pa1 , . . . , pad listed in decreasing order, in other words

A = Z/pa1 × . . .× Z/pad , a1 ≥ a2 ≥ . . . ≥ ad ≥ 1,

where d is the p-rank of A. We then define the (logarithmic) mean exponent of A to be

MA :=
a1 + a2 + · · ·+ ad

d
= logp |A|1/d =

logp |A|
d

,

where logp(a) = log(a)/ log(p) is the base-p logarithm. Thus, the mean exponent is a
normalized measure of the size of the group as compared to its rank. Note that for a
non-trivial p-group A, we always have 1 ≤ MA ≤ logp |A|, the minimum value occurring
in the case where A is an elementary abelian p-group and the maximum value occurring
in the case of cyclic A. Note also that exp(A) = pa1 is the exponent of A. The mean
exponent of the trivial group is defined to be 0.

For a number field K, we denote by A(K) its p-class group, and we put

M(K, p) := M(K) = MA(K)

to be the “mean exponent” of the p-class group of K.

Second, let us introduce towers with restricted ramification. Let K be a number field, p a
rational prime number, and S, T a disjoint pair of finite sets of places of K. Inside a fixed
algebraic closure of K, consider the compositum KT

S of all finite Galois extensions of K
of p-power degree unramified outside S and in which all the places of T split completely.
We call KT

S the maximal unramified-outside-S and T -split p-extension of K, and put
G T
S = G T

S (K, p) = Gal(KT
S/K) for its Galois group over K. If there are no places dividing
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p in S, which we abbreviate as (S, p) = 1 and call the tame case, the structure of the
groups G T

S is rather mysterious. In particular, it’s already difficult to determine in any
given case whether G T

S is finite or not. On the other hand, if S contains all the primes of
K dividing p (the wild case), then the knowledge of Zp-extensions of K, which give infinite
abelian quotients of G

∅
S , goes quite far in revealing the structure of the latter group. By

contrast, in the tame case, G T
S is FAb, meaning its subgroups of finite index have finite

abelianization, so in particular there are no surjections to Zp. This is a manifestation of
a broader philosophy of Fontaine and Mazur [7] that maintains that “geometric” p-adic
Galois representations with infinite image are always wildly ramified. The dichotomy of
the wild and tame cases is punctuated by the expectation that when (S, p) = 1, G T

S has
no infinite p-adic analytic quotients.

To illustrate the key ideas, let us fix p, and consider a number field K with infinite
Hilbert p-class field, i.e. G

∅
∅ (K) is infinite. Let us fix an infinite Galois extension L/K

with K ⊂ L ⊆ K∅∅ . We are primarily interested in estimating exp(A(Kn)), for (Kn)
a nested sequence inside L, but finding this difficult, we also study (M(Kn)), i.e., the
variation of the mean exponent of p-class groups in the tower L/K. In particular, for
each natural number n, we define

Mn(L/K) = min
[K′:K]=pn

M(K′),

where the minimum is taken over all extensions K′/K of degree pn with K′ ⊂ L. We then
put

M(L/K) = lim inf
n

Mn(L/K),

which we call the asymptotic mean exponent of the tower. This quantity is well-defined,
but could a priori be ∞.

Let’s note right away that these asymptotic invariants can be defined purely in a group-
theoretical context, as follows. Say G is an infinite finitely generated FAb pro-p group.
For each n, we put

Mn(G ) = min
[G :U ]=pn

MU ab

where the minimum is taken over the open subgroups of index pn. We then put

M(G ) = lim inf
n

Mn(G )

for the asymptotic mean exponent of G . It’s clear that if G = Gal(L/K), with L = K∅∅,
then M(G ) = M(L/K). Let’s also note that we immediately have the estimate 1 ≤ M(G )
but a general upper bound would seem to be elusive.

Some of our results in this paper give bounds for M(L/K) for certain kinds of tame
extensions L/K. In particular, we draw upon a relationship between the number of
primes that split in L/K and the asymptotic mean exponent of the tower. Thus for
finitely generated infinite FAb G which are realizable as the Galois group of the Hilbert
p-class tower of number fields, we can bound M(G ) from above. These estimates could
be of interest in relation to the following question: is every finitely generated FAb pro-p
group realizable as Gal(K∅∅/K) for some number field K? Note that Ozaki [33] has shown
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that for any finite p-group G , there exists a number field K such that G is isomorphic to
Gal(K∅∅/K)).

The following theorem summarizes some of the key results in this paper.

Theorem 0.1. — 1. Suppose S is a finite set of primes of a number field K with
(S, p) = 1 such that G = Gal(K∅S/K) is infinite. Then there exists a constant C > 0
such that for all open subgroups U ⊂ G , MU ab ≤ C[G : U ].

2. With K,S,G as above, suppose G is mild (for example this is the case if K,S satisfy
the condition of Labute [21, Theorem 1.6], and see also Schmidt [35]). Then for all
ε > 0, there exist a constant C ′ > 0 and a nested sequence of open subgroups Ui

forming an open neighborhood of G such that MU ab
i

≤ C ′[G : Ui]/(log[G : Ui])
2−ε.

3. There exist infinitely many pairwise disjoint number fields K with infinite p-class
field tower K∅∅/K but finite asymptotic mean exponent, i.e. M(Gal(K∅∅/K)) 6= ∞.

The first two parts of the theorem come relatively easily from standard techniques; they
are proved in Proposition 5.7 and Theorem 5.15, respectively. To illustrate the third part,
which is proved in §2.1, consider the following concrete arithmetic example. Namely, fix
p = 2 and let K be the following compositum of quadratic fields:

K = Q(
√
130356633908760178920,

√
−80285321329764931).

Let L = K∅∅. Then L/K is infinite and

M(L/K) ≤ 8.858.

The details of the construction are given below in §3, but here, let us explain what this
example means concretely. Namely, the assertion is that there exists a tower K = K1 ⊂
K2 ⊂ . . . inside L such that for all n, the 2-class group of Kn has mean exponent at most
8.858, so in particular, there is always at least one elementary divisor of size at most 28

all the way up the tower. We should note that the construction of the tower guarantees
that the rank of the 2-class groups tends to infinity, so the fact that the mean exponent
remains below 9 entails that the number of elementary divisors of size at most 28 becomes
arbitrarily large as we climb the tower.

We would like to contrast the third part of the theorem with the generic behavior of
the mean exponent of open neighborhoods in analytic pro-p groups. Namely, if G is a
uniform pro-p group of dimension d and U runs over the p-central series of G, we have

MU ab ≥ 1

d
log[G : U ],

hence it tends to infinity; see Corollary 5.5.

The principle behind the above example and others we construct is as follows. We use
genus theory to create towers in which the p-rank grows linearly with the degree; this
is achieved by first having a tower in which many primes split and then composing that
tower with a degree p Galois extension the same primes ramify. The linear growth of the
rank of the p-class group when combined with upper bounds on the class number coming
from the generalized Brauer-Siegel theorem of Tsfasman-Vladut gives us the desired upper
bound on M.
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In the more classical case of Iwasawa theory, i.e. in wild towers, there is an algebraic
theory of the invariants µ, λ, ν associated with the Iwasawa module, and having linear
growth in the rank is tantamount to having µ > 0. It is curious that in that context
also, the phenomenon of linear rank growth appears to be related to having a large set
of primes splitting in the tower (see Iwasawa [19]). In a forthcoming work, we will study
this relationship further.

The paper is organized as follows. In §1, we recall some background, including the
work of Tsfasman-Vladut extending the Brauer-Siegel Theorem and some basic results
from genus theory. In §2, we begin by giving a sketch of our main construction for
unramified towers, then enlarge the scope of our study by introducing class groups that
classify extensions with prescribed splitting and (tame) ramification. In §3, we work
out a number of examples in detail, demonstrating how the exact asymptotic formula
of Tsfasman-Vladut can be exploited to improve the bounds on the mean exponent. In
§4, we reflect on the relationship between linear growth for p-ranks of class groups and
the existence of many primes in the tower that split (almost) completely, together with
the implication of these considerations for bounding the asymptotic mean exponent in
infinite tame extensions. We turn in §5 from number theory to considerations of the
asymptotic mean exponent for pro-p groups in general. Finally, in §6, we consider a
number of questions for further study in group theory, as well as in number theory, that
are raised by the considerations of this paper.

Some notation and basic notions

We fix a prime number p. Let K be a number field of degree [K : Q]. Denote by:

• (r1, r2) the signature of K, where r1 is the number of real embeddings of K and where
r2 is the number of pairs of conjugate complex embeddings; thus [K : Q] = r1+2r2;

• disc(K) the discriminant of K (see [23, chapter III], [31, Chapter I]);
• RdK := |disc(K)|1/[K:Q] the root discriminant of K;

• g = gK = log
√

|disc(K)| the genus of K;
• RegK the regulator of K (see [23, Chapter V], [31, Chapter I]);
• Cl(K) the Class group of K;
• hK = |Cl(K)| the Class number of K;
• A(K) the p-Class group of K: it is the p-Sylow of Cl(K);
• δK = 1 if K contains the p-roots of the unity, 0 otherwise.

Let us fix now S and T two disjoint finite sets of places of K.

• Let KT
S be the maximal unramified outside S and T -split p-extension of K, with the

convention that for p = 2 all real places stay real (see for example [12, Appendix]
or [25]). Put G T

S = Gal(KT
S/K).

• It is well-known that the pro-p-group G T
S is finitely presented (see for example [20]

or [12, Appendix]): the quantities

d(G T
S ) = dimFp

H1(G T
S ,Fp) = dpH

1(G T
S ,Fp)

and
r(G T

S ) = dimFp
H2(G T

S ,Fp) = dpH
2(G T

S ,Fp)
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are finite.
• Put AT

S := G T
S

ab
the maximal abelian quotient of G T

S , which corresponds by Class
Field Theory to the maximal abelian S-ramified (i.e. unramified outside S) and
T -split extension of K.

• For S = T = ∅, G T
S corresponds to the Galois group of the Hilbert p-Class Field

Tower of K and A = A(K) to its p-Class group.
• If S is prime to p, the pro-p-group G T

S is FAb: every open subgroups of G T
S has finite

abelianization (see for example [12, Chapter III]).

We introduce now some basic notations concerning towers of number fields (see [37]).

• A sequence (Kn), n ∈ N ∪ {0}, of number fields, where K0 = K, is called a tower if
for all n, Kn ( Kn+1 so in particular [Kn : K] → ∞ with n;

• Let L/K be an infinite extension of a number field K and let (Kn) be a tower in L/K

with limit L, i.e. each Kn is a finite extension of K contained in L and
⋃

n

Kn = L;

• “Assuming GRH in L/K” means that the Generalized Riemann Hypothesis holds
along the tower (see [2]).

Then put:

• gn = gKn
= log(

√

|disc(Kn)|);
• hn = |Cl(Kn)| the class number of Kn;
• Regn the regulator of Kn;

• B(L/K) = lim
n

log(Regnhn)

gn
.

• We denote by γ = 0.5772 · · · the Euler constant and by e = exp(1) = 2.7182 · · · .

• For material for Iwasawa Theory see [40], for mild pro-p-groups see [21], [8], for analytic
pro-p-groups see [4].

1. Background

1.1. Brauer-Siegel and Tsfasman-Vladut Theorems. — We recall first some
results due to Tsfasman and Vladut [37] generalizing the Theorem of Brauer-Siegel.
Throughout this work, we will use the Tsfasman-Valdut context of asymptotically exact
extensions.
Let L/K be an infinite extension of a number field K and let (Kn) be a tower in L/K with

limit L:
⋃

n

Kn = L.

For every prime number ℓ and power q := ℓm of ℓ, let us consider the quantity

φq = lim
n

Nn(q)

gn
,

where Nn(q) = #{prime ideal q ⊂ OKn
, #OKn

/q = q}. We also put

φR = lim
n

r1(Kn)

gn
, φC = lim

n

r2(Kn)

gn
.
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As the sequence (Kn) is a tower, all the limits exist and depend only on L/K. In the
terminology of [37], the sequence (Kn) is said to be asymptotically exact. It is called
asymptotically good if φq > 0 for some q, where q is either a prime power or belongs to
{R,C}. In this paper, we will mostly be interested in examples where φC > 0. Deeply
ramified wild extensions (such as Zp-extensions) are asymptotically bad. By contrast,
assuming G

∅
S (K, p) is infinite for some finite S with (S, p) = 1, any tower inside K∅S/K is

asymptotically good. More generally, even if (S, p) 6= 1 but (Kn) is a tower in which the
Nth higher ramification groups all vanish for some fixed N , then the tower is asymptot-
ically good (see [16]).

In [37], Tsfasman and Vladut studied the behavior of the quantity log(Regn ·hn)/gn along
a tower (Kn) with limit L/K. They conjecture that the quantity

B(L/K) = lim
n

log(Regnhn)

gn

is well-defined and prove the following theorem.

Theorem 1.1 (Tsfasman-Vladut, [37]). — 1. Assuming GRH, the limit B(L/K)
exists and depends only L/K, not on the choice of tower (Kn) with limit L. Moreover
one has the equality:

B(L/K) = 1 +
∑

q

φq log
q

q − 1
− φR log 2− φC log 2π.

Without assuming GRH, one has the same conclusion if the tower of number fields
(Kn) is Galois relative to K.

2. Assuming GRH, B(L/K) ≤ 1.0939 for all L/K. If K is totally imaginary, then
B(L/K) ≤ 1.0765. Without assuming GRH, one has B(L/K) ≤ 1.1589.

1.2. On the p-S-T towers. — Comprehensive references for the study of extensions
with restricted ramification include Koch [20], Gras [12] and Neukirch-Schmidt-Wingberg
[32].We give only a quick sketch of some well-known facts, and refer the reader to these
books which contain much more background and detail.

Let K be a number field and let S and T be two finite sets of places of K with S ∩T = ∅.
We assume that (S, p) = 1. We recall that the pro-p-group G T

S is FAb and that the p-rank
dpG

T
S of G T

S can be computed thanks to Class Field Theory. In particular, one has (see
e.g. [12], Chapter I §4, Theorem 4.6):

Proposition 1.2. — With notation as above, we have

dpG
T
S = dpA

T
S ≥ |S| −

(

r1(K) + r2(K) + |T | − δK
)

.

A priori, the pro-p-group G T
S may be finite or not. A criterion for its infinitude can be

obtained as a consequence of the Theorem of Golod-Shafarevich; the following is their
result, in the improved version due to Gaschütz and Vinberg.

Theorem 1.3 (Golod-Shafarevich). — If a non-trivial pro-p-group G is finite then

its generator and relation ranks satisfy the following inequality: r(G ) ≥ d(G )2

4
.

The following classical theorem of Shafarevich on the Euler characteristic of G T
S is of

fundamental importance in this theory (see for example [12]):
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Proposition 1.4. — Assuming as above that (S, p) = 1, we have

0 ≤ r(G T
S )− d(G T

S ) ≤ r1 + r2 − 1 + δS + |T |,
where δS = 1 if K contains the p-roots of the unity and S is empty, 0 otherwise.

These two last propositions together imply that if S is large in comparison to the size
of T , then G T

S is infinite, giving rise to the so-called Golod-Shafarevich criterion. This
criterion can be made effective by using genus theory (cf. [25] or [12], Chapter IV) to
construct number fields with class group of large p-rank. The following is a standard
result from genus theory (cf. [12], Chapter IV §4, Example after Corollary 4.5.1).

Theorem 1.5. — Let K/k be a cyclic extension of degree p. Then

dpA(K) ≥ ρ− 1−
(

r1(k) + r2(k)− 1 + δk
)

,

where δk = 1 if k contains the p-roots of the unity, 0 otherwise, and where ρ is the number
of ramified places of k in K/k (eventually archimedean places).

It is possible to obtain a T -split version of Genus Theory and then one can show [26]:

Theorem 1.6. — Let K/k be a cyclic extension of degree p. Assume that

ρ+ iT ≥ 3 + r1(k) + r2(k) + |T (k)| − 1 + δk + 2
√

r1(K) + r2(K) + |T (K)|+ δK

where ρ is the number of places ramified in K/k (eventually the archimedean places) and
where iT is the number of places of T inert in K/k. Then G T := G T

∅ is infinite.

Corollary 1.7. — Let K/Q be a real quadratic field and let T be a finite set of odd
primes of Q. Put Tdec = {ℓ ∈ T, ℓ splits in K/Q}. If

ρ ≥ 4 + |Tdec|+ 2
√

3 + |T |,
where ρ is the number of primes not in T that are ramified in K/Q, then the group G T

is infinite.

Proof. — We simply remark that a prime of T which is not split in K/Q is inert or
ramified and then apply Theorem 1.6.

2. Towers with bounded mean exponent

2.1. The Principal Construction. — In this subsection, we sketch the key idea for
the construction of towers with p-class groups of bounded mean exponent, in the simpler
case of unramified extensions, and in particular, we prove Part 3 of Theorem 0.1. In later
subsections, we will explore the mean exponent for more general notions of class groups.

We will need the following Lemma of Brauer.

Lemma 2.1. — There is an absolute constant C0 > 0 such that for all number fields K,
log(hK) ≤ C0 log |disc(K)|.
Proof. — By Lemma 2 in Chapter 16 of Lang [23]), there is an absolute positive constant
C such that for all number fields K, log(hKRegK) ≤ C log |disc(K)|. We can essentially
suppress the contribution of the regulator thanks to Friedman’s result [9] that for all
number fields K we have RegK > 0.1. Thus, by replacing C by a larger constant C0, we
have log(hK) ≤ C0 log |disc(K)|.
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Proposition 2.2. — Suppose k is a number field and T is a finite set of primes such
that kT∅ /k is infinite. Suppose t0 := |T | − (r1(k) + r2(k) + 1) > 0, and that k admits a
cyclic degree p extension K in which all the primes in T ramify. Then the Hilbert p-class
field tower of K is infinite with bounded asymptotic mean exponent

M(Gal(K∅∅/K)) <
C0

t0
logp |disc(K)|,

where C0 is the constant appearing in Lemma 2.1.

Proof. — Consider a tower (kn) inside k
T
∅ /k and let Kn = Kkn. To simplify the notation,

let dn = d(A(Kn)) be the p-rank of the class group of Kn. By Theorem 1.5 applied to
Kn/kn, we have

(1) dn ≥ |T |[kn : k]− (r1(kn) + r2(kn) + 1) ≥ t0[Kn : K].

By the definition of the mean exponent M(Kn), we have

dnM(Kn) = logp |A(Kn)| ≤ logp hn

where hn is the class number of Kn. Now, if we apply Lemma 2.1, we have

(2) dnM(Kn) ≤ logp hn ≤ C0 logp |disc(Kn)|.
But since Kn/K is unramified, logp |disc(Kn)| = [Kn : K] logp |disc(K)|. Putting the
inequalities (1) and (2) together, we conclude that

t0[Kn : K]M(Kn) ≤ C0[Kn : K] logp |disc(K)|,
hence M(Kn) is bounded from above by C0 logp |disc(K)|/t0. We conclude that

M(K∅∅/K) ≤ C0

t0
logp |disc(K)|.

Proof of Theorem 0.1.3. — Suppose {ℓ1, ℓ2, . . . , ℓr} is a large set of primes congruent to
1 mod p. Let k be a cyclic degree p extension of Q in which ℓ1, . . . , ℓr ramify. Consider
primes q1 < q2 which split completely in k(ζp)/Q if p is odd and in k(ζ4)/Q if p = 2. Let
k′ be a cyclic degree p extension of Q in which q1 and q2 ramify. Let T be the union of
the primes of k lying over q1 and those lying over q2. As specified in Theorem 1.6, if r is
sufficiently large, kT∅ /k is infinite. Now we let K = kk′. This puts us in the situation of
Proposition 2.2, so gives the desired outcome.

2.2. On the mean exponent for T -class groups mod S. — In this section, we will
expand our notion of class group in two directions: we will look at (p-parts of) ray class
groups of tame conductor (i.e. a conductor which is a finite product of distinct prime
ideals co-prime to p), and with the underlying ring being the T -integers.

Definition 2.3. — Let T and S be two disjoint finite sets of places of K such that

(S, p) = 1. The mean MT
S (K) of the invariant factors of the abelian group AT

S := G T
S

ab
is

defined by

MT
S (K) := MAT

S
=

a1 + · · ·+ ad
d

= logp |AT
S |1/d,

where d = dpG
T
S = dpA

T
S and AT

S ≃ Z/pa1Z×· · ·×Z/padZ with: 1 ≤ a1 ≤ · · · ≤ ad. Note
that MT

S (K) = 0 if |AT
S | = 1.
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Remark 2.4. — Note that MT
S is well-defined because, thanks to the choice of S being

away from p, the group G T
S

ab
is finite. Clearly, when AT

S is not trivial, we haveMT
S (K) ≥ 1.

Example 2.5 (Iwasawa Theory context). — (For material for Iwasawa theory see
for example [40].) Let L = L/K be a Zp-extension. Let Kn be the unique subfield of L

of degree pn over K. Denote by XT
S the projective limit of the p-group AT

S (Kn) along L .
Then XT

S is a Zp[[T ]]-module of finite rank and there exist invariants µ, λ ≥ 0 such that
for n ≫ 0,

logp |AT
S(Kn)| = µpn + λn+ ν,

with ν ∈ Z. Moreover,

dpA
T
S (Kn) = spn + λ + c,

where c ≥ 0 and where s is the Fp[[T ]]-rank of the module Fp ⊗ XT
S .

Proposition 2.6. — Along a Zp-extension L , one has

MT
S (Kn) ∼n→∞







δ logp[Kn : K] if µ = 0 and λ 6= 0
µ/s if µ 6= 0
ν/c if µ = λ = 0

where δ = λ/(λ+ c) satisifies 0 < δ ≤ 1.

Proof. — It is a consequence of the structure theorem of Iwasawa Theory and the fact
that µ = 0 if and only if s = 0.

Remark 2.7. — Note when µ = 0 and λ 6= 0, MT
S (Kn) is unbounded. This will be in

contrast to the examples of section 3.

From now on, we want to study the quantity M(L ) in some tower L when the ramifi-
cation is tame. First, some definitions.

Definition 2.8. — Let L := L/K be an (infinite) extension and let T and S be two
disjoint finite sets of places of K with (S, p) = 1. Put

M(L , S, T ) := lim sup
n

MT
S,n,

and

M(L , S, T ) := lim inf
n

MT
S,n,

where

MT
S,n = min

Kn

MT
S (Kn),

the minimum being taken over all subfields Kn in L of degree pn over K. When S =
T = ∅, we have M(L , ∅, ∅) = M(L ), where M(L ) was defined in the Introduction. We
also write M(L ) := M(L , ∅, ∅).

Remark 2.9. — We have lim supn min a1(Kn) ≤ M(L ) and lim infnmin a1(Kn) ≤
M(L ).

Definition 2.10. — A tower (Kn) is said to be exhaustive in L if:

(i)
⋃

Kn = L ,
(ii) for all n, [Kn+1 : Kn] = p.

10



Proposition 2.11. — For a subtower (Kn) of L , M(L , S, T ) ≤ lim infn MT
S (Kn). If

moreover, the subtower (Kn) is exhaustive in L then M(L , S, T ) ≤ lim supnM
T
S (Kn).

Proof. — Follows easily from the definitions.

2.3. Bounds for mean exponents in tamely ramified towers. —

Definition 2.12. — For a finite set S of prime ideals of K satisfying (S, p) = 1, we put

disc(K, S) := |disc(K)|
∏

p∈S

N(p).

A local computation shows the following:

Proposition 2.13. — If S is a finite set of prime ideals of K satisfying (S, p) = 1, the
root discriminant remains bounded inside K∅S/K; in other words, K∅S/K is asymptotically
good. Indeed, for a tower (Kn) in K∅S/K, we have

log |disc(Kn)| ≤ [Kn : K] log disc(K, S).

Proof. — See for example Lemma 5 of [15].

Definition 2.14. — For a prime p of K not dividing p, let a(p) := vp(N(p)− 1) be the
p-valuation of N(p)− 1, where N(p) is the absolute norm of p.

Lemma 2.15. — Let L/K be a finite Galois p-extension and let S be a finite set of
places of K prime to p.
(i) If p > 2, then

|AT
S (L)| ≤ |A(L)|

(

∏

p∈S

pa(p)

)[L:K]

.

(ii) For p = 2, one has

|AT
S (L)| ≤ |A(L)|

(

∏

p∈S

pa
∗(p)

)[L:K]

,

where a∗(p) = a(p) if N(p) ≡ 1 mod 4 (i.e. if a(p) > 1), otherwise N(p) = 1 + 2n, where
n is odd and then a∗(p) = v2(1 + n) + 1.

Proof. — One has to give an upper bound of the tame part of the inertia group of a
place P|p in an abelian extension of L. We recall that this inertia group is a quotient of
the multiplicative group of the finite field FP of order N(P). By multiplicativity one can
assume that L/K is a cyclic degree p-extension. When FP = Fp, that means that p is split

or is ramified in L/K, then
∏

P|p

pa(P) divides ppa(p) (with equality if p splits). Otherwise,

[FP : Fp] = p and then one note that if p is odd (or when p = 2 and N(p) ≡ 1 mod 4)
then a(P) = a(p) + 1. Indeep, if Fp = Fq, then FP = Fqp. Let us write q = 1+ pkn, with
(n, p) = 1. Then F×qp is cyclic of order

qp − 1 = (q − 1)(qp−1 + · · ·+ q + 1)
= pk+1n

(

1 + npk−1 + · · ·+ n(p− 1)pk−1 + pkA
)

= pk+1n
(

1 + 1
2
n(p− 1)pk + pkA

)

where A ∈ Z, and then vp(q
p − 1) = pk+1 for p odd (and for p = 2 if k > 1).

11



When p = 2 with N(p) = 1 + 2n, n odd, one has a(P) = v2(1 + n) + 1. We leave the
remaining details to the reader.

Definition 2.16. — For p > 2, put

a(S) =
∑

p∈S

a(p).

For p = 2, put

a(S) =
∑

p∈S

a∗(p).

Remark 2.17. — For p = 2 observe that if the place p splits completely in L/K then
the “local factor” a∗(p) can be taken a∗(p) = a(p).

Proposition 2.18. — Let S be a finite set of places of K with (S, p) = 1 such that
K∅S/K is infinite. Let (Kn) := L be a tower in K∅S/K. Let T and Σ be two other sets
of places of K; we assume that (Σ, p) = 1 but the cases Σ = ∅ and S = Σ are allowed.
Recall that hn denotes the class number of Kn, and that gn = log |disc(Kn)|1/2 denotes its
genus. Let dn = d(AT

Σ(Kn)) be the p-rank of AT
Σ(Kn). Then

1. We have

MAT
Σ(Kn) ≤

[Kn : K]

dn

(

logp disc(K,S)1/2 · log(hn)

gn
+ a(Σ)

)

.

2. With C0 denoting the constant from Lemma 2.1, we have

MAT
Σ(Kn) ≤

[Kn : K]

dn

(

C0 logp disc(K,S) + a(Σ)
)

.

If, in addition, there is an ε > 0 such that dn ≥ ε[Kn : K] for all n, then MAT
Σ(Kn) is

bounded as n → ∞.

Proof. — Recall that by Proposition 2.13, the genus gn = log |disc(Kn)|1/2 of Kn satisfies

(3) gn ≤ [Kn : K] log disc(K, S)1/2.

Thanks to Lemma 2.15, we have

logp |AT
Σ(Kn)| ≤ logp |A(Kn)|+ [Kn : K]a(Σ)

≤ logp hn + [Kn : K]a(Σ)

≤ gn
logp(hn)

gn
+ [Kn : K]a(Σ).

Now we apply (3) to the right hand side to find

logp |AT
Σ(Kn)| ≤ [Kn : K]

(

log disc(K,S)1/2

log p
· log(hn)

gn
+ a(Σ)

)

.

It remains only to divide both sides by dn to obtain the desired inequality. For the second
claim, we merely apply the bound from Lemma 2.1 to the bound from the first claim.

Before stating the key result of this section, we make a couple of definitions.
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Definition 2.19. — In a tower (Kn), and fixing auxiliary finite sets Σ and T of places
of K, one says that the p-rank dn of AT

Σ(Kn) grows ε-linearly with respect to the degree
(for some ε > 0) if for n ≫ 0

dn ≥ ε[Kn : K].

Definition 2.20. — Given a real number A, a number field K of signature (r1, r2) and
a finite set S of places of K coprime to p, let us define

α(A,K, S) = A log
√

disc(K, S)− r1
2
(γ + 1 + log π)− r2(γ + log 2).

Theorem 2.21. — We maintain all the hypotheses and notation of Proposition 2.18.
We assume that there exists ε > 0 such that dn ≥ ε[Kn : K] for all n. If the conditions of
Theorem 1.1 apply to (Kn), then

lim sup
n

MAT
Σ(Kn) ≤

1

ε

(

α(B(L ),K, S)

log p
+ a(Σ)

)

.

Consequently,

M(L ,Σ, T ) ≤ 1

ε

(

α(B(L ),K, S)

log p
+ a(Σ)

)

.

If moreover the tower (Kn) is exhaustive in L , then one can replace M by M.

Proof. — We begin with the inequality of Proposition 2.18 but introduce the contribution
of the regulator, as follows.

MAT
Σ(Kn) ≤ [Kn : K]

dn

(

log disc(K,S)1/2

log p

(

log(hnRegn)

gn
− log(Regn)

gn

)

+ a(Σ)

)

.

By hypothesis, we have [Kn : K]/dn ≤ 1/ε. By Theorem 1.1, log(hnRegn)/gn tends to
B(L ). The last ingredient is a theorem of Zimmert [41] (we use the enhanced version
proved by Tsfasman-Vladut [37][Theorem 7.4]):

lim inf
n

log(Regn)/gn ≥ (log
√
πe+ γ/2)φR + (log 2 + γ)φC.

Recalling the definition of φR, φC, and noting that ri(Kn) = [Kn : K]ri(K)] for i = 1, 2,
we find, after applying Proposition 2.13, that

φR ≥ r1(K)

log
√

disc(K, S)
, φC ≥ r2(K)

log
√

disc(K, S)
.

Putting all of this together and taking lim supn MAT
Σ(Kn), we obtain the bound sought.

Since it will be the form in which we will apply it most frequently, we will state the
following immediate corollary of the theorem.

Corollary 2.22. — Suppose in the theorem, we have S = Σ = T = ∅. Then, assuming
the conditions of Theorem 1.1 apply to a tower L inside K∅∅/K, we have

M(G ∅∅ ) ≤ M(L , ∅, ∅) ≤ 1

ε log(p)

(

B(L )

2
log |disc(K)| − r1

2
(γ + 1 + log π)− r2(γ + log 2)

)

.

Remark 2.23. — The comparison of the above Corollary to Proposition 2.2 illustrates
how the Tsfasman-Vladut theorem allows us to give an improved upper bound for the
mean exponent.
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3. Refined estimates. The Tsfasman-Vladut method

We want to illustrate the previous section with a few examples where we have optimized
the quantity B(L/K) by employing the techniques of Tsfasman and Vladut [37].

3.1. Tsfasman-Vladut Machinery. — Let us fix an asymptotically exact extension
L := L/K. Estimating the constant B(L/K) given by Theorem 1.1 is an interesting
problem, involving certain kinds of optimization. Indeed the quantity for which we would
like to have a tight upper bound is the sum

∑

q

bqφq − b0φR − b1φC

satisfying the three following conditions:

(i) φq > 0 ;
(ii) ∀ℓ, ∑mmφℓm ≤ φR + 2φC,
(iii)

∑

q aqφq + a0φR + a1φC ≤ 1,

where

bq = log
q

q − 1
, aq =

log q√
q − 1

,

a0 = log 2
√
2π + π/4 + γ/2, a1 = log(8π) + γ,

b0 = log 2, b1 = log 2π.

One now replaces each φq by a variables xq and the problem becomes a question of linear
optimization. For convenience, we put x0 = φR and x1 = φC.

One studies the quantity
∑

q bqxq − b0x0 − b1x1 when x0 and x1 are fixed (i.e. when

for example one has a totally real tower or a totally complex tower). Similarly, one can
exploit knowledge of any finite place that is totally split in L . One can also use some
information coming from the base field K: typically if the base field has no place of norm
ℓ, then xℓ would be fixed and equals to 0.

Denote by Σ = {q1, · · · , qr} a set of powers of prime numbers for which one fixes xqi . We
want to give an upper bound as small as possible of the quantity

∑

q /∈Σ

bqxq,

with the conditions

(i)′ xq > 0, (ii)′
∑

m

mxqm ≤ x0 + 2x1, (iii)′
∑

q /∈Σ

aqxq ≤ 1−
∑

q∈Σ

aqxq.

As explained in [37], there are two reductions: first, one can assume that xℓ∗ attains the
maximum for condition (ii)′, where ℓ∗ is the smallest power of ℓ for which xℓ∗ 6= 0; try to
optimize inequality (iii)′ for the smallest powers ℓ∗.
Now let ℓ∗0 the smallest power such that

∑

ℓ∗<ℓ∗0

(x0 + 2x1 − εℓ∗)aℓ∗ ≤ 1− (a0x0 + a1x1 +
∑

q∈Σ

aqxq),

where εℓ∗ ≤ x0 + 2x1 is a constraint of ℓ related to the base field.
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Let α ∈ [0, 1) such that

α(x0 + 2x1 − εℓ∗0)aℓ∗0 = 1− a0x0 − a1x1 −
∑

q∈Σ

aqxq −
∑

ℓ∗<ℓ∗0

(x0 + 2x1 − εℓ∗)aℓ∗ .

Proposition 3.1. — One has:
∑

q

bqφq ≤
∑

q∈Σ

bqxq +
∑

ℓ∗<ℓ∗0

(x0 + 2x1 − εℓ∗)bℓ∗ + α(x0 + 2x1 − εℓ∗0)bℓ∗0 .

3.2. Strategy for Construction of Examples. — Below we will study some exam-
ples built with the following strategy. First p = 2. Let k/Q be a real quadratic field.
Suppose that for the set T of places of Q, the 2-tower kT∅ /k is infinite (for doing this, we

apply Corollary 1.7). Consider then K := k(
√
−D), where D =

∏

p∈T p; put L := KkT∅ .

Take an exhaustive tower (kn)n of kT∅ /k, then Kn := knK is an exhaustive tower of L .
Moreover, (Kn) is a subtower of KT

∅ . And then, by Corollary 2.22 one obtains bounds for

M(L ) and M(K∅∅/K).

3.3. Examples. — In all of the examples below, we fix p = 2, since in this case, we
can employ ramification at infinity in conjunction with the genus theory bounds.

Example 3.2. — Let k = Q(
√
8 · 5 · 7 · 11 · 13 · 17 · 19 · 23). Thanks to Corollary 1.7,

the number field k has an infinite 2-extension kT /k (S = ∅) where T = {ℓ9} is the set
containing the only place above 3 (of norm 9). Put K = k(

√
−3). Denote by (kn) a

tower of kT ; put Kn = Kkn and L =
⋃

n

Kn and L/K := L . Then by Genus Theory (cf

Theorem 1.5) along kT /k, one obtains that

dn = d2A(Kn) ≥ [Kn : K]− 1.

If we apply Corollary 2.22, we find

M(K∅∅/K) ≤ M(L ) ≤ 1

22 · log 2
(

B log
√

|disc(K)| − (γ + log 2)
)

≈ 30.683 · · ·

where here one has taken B ≈ 1.0938. But we can do better by applying the refined results
of Tsfasman-Vladut. The base field K is of degree 4 over Q. The tower we consider
is totally complex and by construction the prime ℓ∗ = 9 (over 3 with norm 9) splits
completely in the considered tower. Here gK = log(

√
8 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23). In

order of increasing size of the norm, one has ideals of norm: 4, 7, 7, 9, 13, 13, 19, 19, 25,
31, 37, 43, 43, 43, 43 etc.

One fixes the following conditions x0 = 0, x1 = r2/g = 2/g, x2 = 0, x3 = 0, x5 = 0,
x9 = 1/g = x1/2. One considers Σ = {9}. Moreover x4 ≤ 1/g = x1/2, ε2∗ = x1 and
x25 ≤ 1/g. One has

g − 2(γ + log(8π))− log 9√
9− 1

− 2

(

log 7√
7− 1

+
log 13√
13− 1

+
log 19√
19− 1

)

−
(

log 4√
4− 1

+
log 25√
25− 1

)

− 4
log 31√
31− 1

<
log 37√
37− 1

,
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and then ℓ∗0 = 37. One obtains

B(L/K) ≤ 1− r2
g
log 2π +

1

g
(log(4/3) + log(9/8) + log(25/24)

+2 log(7/6) + 2 log(13/12) + 2 log(19/18) + 4 log(31/30) + 4α log(37/36)) ,

where

4α
log 43√
43− 1

= g − 2(log 8π + γ)− log 9

2
− log 4− log 25√

25− 1

−2

(

log 7√
7− 1

+
log 13√
13− 1

+
log 19√
19− 1

+ 2
log 31√
31− 1

)

.

and then B(L/K) ≈ 0.878 · · · , and
M(K∅∅/K) ≤ M(L ) ≤ 24.100.

Example 3.3. — Let k be the real quadratic field of discriminant D where D is the the
product of the elements in the set

U = {47, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151}.
Let Tin = {3, 7, 29, 31, 37, 41, 43, 53}, Tdec = {2, 5, 11, 13, 17, 19, 23}; put T = Tin ∪ Tdec;
|T | = 22. The places of Tin are inert in k/Q and the places of Tdec are totally decomposed
in k/Q. One uses Corollary 1.7: the number field k has an infinite T -split 2-tower kT/k.
Consider now the number field K = k(

√
−D), where D =

∏

ℓ∈T ℓ and put L = KkT .
Then for all number fields Kn along L/K, one has

d2A(Kn) ≥ 22[Kn : K]− 1.

Then

M(Kn) ≤
1

22 log 2
·
(

B log
√

|dK| − (γ + log 2)
)

≈ 9.662 · · ·

We now use the stategy of Tsfasman and Vladut to optimize B(L/K). Each place of T
splits totally in L/K: the associated parameters φℓ∗ are then fixed. More precisely, for
every ℓ ∈ Tin, we have φℓ = 0, φℓ2 = 1/g and φℓi = 0 for i > 2; for ℓ ∈ Tdec, one fixes
φℓ = 2/g and φℓi = 0 for i > 1. Moreover for ℓ ≤ 150, φℓ∗ ≤ 2/g. In fact one may be more
precise: only the primes of R = {47, 49, 61, 103, 113, 127, 131, 139} split (and ramify) the
others are inert (with 672 the smallest norm). One remarks that the sum

A = g − 2(γ + log 8π)− 2
∑

ℓ∈Tdec

log ℓ√
ℓ− 1

−
∑

ℓ∈Tin

log ℓ2

ℓ− 1
− 2

∑

ℓ∈R

log ℓ√
ℓ− 1

≈ 103.774

is smaller than 4
∗
∑

ℓ≤672

log ℓ√
ℓ− 1

where the last sum is taken over the splitting places in K/Q

(i.e. 127 such places). One finds ℓ∗0 = 3877 and to finish

A− 4

∗
∑

153≤ℓ<3877

log ℓ√
ℓ− 1

≈ 0.528.

Here α ≈ 0.980
After making the computation of the default, one obtains

∑

q

bqφq ≤ 3.348
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and then B(L/K) ≤ 1.01421 · · · and

M(K∅∅/K) ≤ M(L ) ≤ 1

log 2
6.306 · · · ≈ 9.098 · · ·

Example 3.4. — Let

k = Q(
√
8 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53).

Let Tin = {71, 79, 83, 97, 101} et Tdec = {59, 61, 67, 73}; T = Tin ∪ Tdec; |T | = 13. Put
K = k(

√
−59 · 61 · 67 · 71 · 73 · 79 · 83 · 97 · 101). The number field k has an infinite 2-

tower kT ; put L = KkT . Along the extension L/K, one has

d2A(Kn) ≥ 13[Kn : K]− 1.

By looking at the primes ℓ ≤ 100, one sees that

x2 = x3 = x7 = x19 = x29 = x31 = x41 = x47 = x53 = 0.

Here ℓ∗0 = 1249 and so there are 47 primes that are splitting in K/Q and with norm less
than ℓ∗0. One find α ≈ 1.020,

∑

q

bqφq ≤ 2.192 · · ·

and B(L/K) ≤ 0.951 · · · To conclude,

M(K∅∅/K) ≤ M(L ) ≤ 1

log 2
6.139 · · · ≈ 8.857 · · ·

Example 3.5. — Take p = 2. Let k = Q(
√
2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 41 · 43).

Put Tdec = {59, 61} and Tin = {37, 47, 53, 67, 89}; |T | = 9. Let us consider
K = k(

√
−37 · 47 · 53 · 59 · 61 · 67 · 89). Along the extension L/K, one has

d2A(Kn) ≥ 9[Kn : K]− 1.

Here

x2 = x3 = x7 = x13 = x31 = x37 = x47 = 0,

ℓ∗0 = 647 and α ≈ 0.072. Then
∑

q bqφq ≤ 1.993 · · · , B(L/K) ≤ 0.9733 · · · and

M(K∅∅/K) ≤ M(L ) ≤ 9.657 · · · .

Example 3.6. — Take p = 2. Let

k = Q(
√
8 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73).

Put Tdec = {79, 83, 89, 97, 107, 109, 137}, Tin = {101, 103, 113, 127, 131, 149, 157, 173}. Let
D be the product of the elements in Tdec and Tin and let K = k(

√
D). Here d2A(Kn) ≥

20[Kn : K]− 1. Finally, for this example, ℓ∗0 = 1069, B(L ) ≤ 1.013 · · · and thus

M(K∅∅/K) ≤ M(L ) ≤ 10.022 · · ·
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4. Linear growth of the p-class rank

4.1. The mean M and a question of Ihara. — The examples of the previous section
show how primes that split completely can be used to produce towers with linear growth
for the p-rank of the class group, which then places constraints on the asymptotic mean
M. In particular, with the help of Proposition 1.2, we have the following result.

Proposition 4.1. — Let S and T be two sets of places of K, (S, p) = 1. For all subfields
Kn of KT

S , one has

dpAT (Kn) ≥ [Kn : K]
(

|T | − (r1(K) + r2(K))
)

.

Note that by the Golod-Shafarevich criterion (see Theorem 1.3 and Proposition 1.4),
KT

S/K is infinite once |S| is large as compared to |T |, and in this case

M(KT
S/K, T, ∅) ≤ 1

|T | − (r1(K) + r2(K))

(

α(B(KT
S/K),K, S)

log p
+ a(T )

)

,

where a(T ) is given in Definition 2.14 and 2.16.

Proof. — It is an application of Theorem 2.21 with ε = |T | − (r1(K) + r2(K)).

At this point, let us recall a question of Ihara [18]:

Question 4.2. — What can one say about the number of primes that decompose com-
pletely in an infinite unramified Galois extension?

The importance of the above question for the invariant M is illustrated in the following
Corollary.

Corollary 4.3. — Suppose that in the pro-p-extension KS/K, with (S, p) = 1, the set
T of places that split completely in this tower is infinite. Then for all ε > 0, by taking
large T ⊂ T , one obtains

1 ≤ M(KS/K, T, ∅) ≤ a(T )

|T | + ε.

If moreover the set T contains infinitely many primes p with a(p) = 1 then, by choosing
T to consist only of such primes, we can arrange M(KS/K, T, ∅) to be as close to 1 as
desired.

4.2. Ershov’s trick. — Thanks to a result of Schmidt [35], the phenomenon of Propo-
sition 4.1 which we derived from number theory considerations, can be obtained via a
clever idea due to Ershov [5] using pro-p-group presentations.

Let K be a number field and S0 a finite set of places of K, (S0, p) = 1. We assume that
δK = 0 and that AK is trivial. By [35], one can choose a finite set Σ of places of K such
that

(i) (Σ, p) = 1, S0 ⊂ Σ;

(ii) The natural map H2(GΣ,Fp)
∼−→
⊕

v∈Σ

H2(Gv,Fp) is an isomorphism;

(iii) the pro-p-group GΣ is of cohomological dimension 2 and

χ(GΣ) := 1− dpH
1(GΣ,Fp) + dpH

2(GΣ,Fp) = r1(K) + r2(K).
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Put d = dpGΣ and k = |Σ|. As AK is trivial, d ≤ k.
By (ii) the relations of GΣ are all local. In fact, by following the proof of Theorem 6.1
of [35], one can show that there exists a subset S ⊆ Σ containing S0 with the following
property. Letting T = Σ − S and t = |T |, there exists a basis of generators (xi) of GΣ

such that for i = 1, · · · , t, every element xi is a generator of the inertia group in KΣ/K of
one place of T . (The set S allows us to kill a certain Shafarevich group.) The quantities
t and d can be as large as we want.

Hence the group GΣ can be described by generators and relations as

〈x1, · · · , xd | [x1, F1] = xpλ1

1 , · · · , [xt, Ft] = xpλt

t , rt+1, · · · , rk〉,

where the elements Fi are lifts of the Frobenius of the places vi ∈ S, and λi belongs to
Zp (for p = 2, λi ∈ 2Z2) and where we recall that k = dpH

2(GΣ,Fp) = |Σ|. Note that the
relations [xi, Fi]x

pλi

i , i = 1, . . . , t are the local conditions.

Then take a minimal presentation of G := GΣ as follows:

1 −→ R −→ F −→ G −→ 1,

where R is the normal subgroup of F generated by the relations

〈[x1, F1] = xpλ1
1 , · · · , [xt, Ft] = xpλt

t , rt+1, · · · , rk〉.

Let H be the normal subgroup of F generated by the elements x1, · · · , xt, F1, · · · , Ft. By
maximality, the subgroup H R corresponds to G T

S . Put Γ = G T
S .

Let now Γi be an open subgroup of Γ and let Fi be the normal subgroup of F containing
H R and satisfying F/Fi ≃ Γ/Γi ≃ G /Gi, where Gi corresponds to Fi/R. Now by
Schreier’s formula one has

dpFi − 1 = [F : Fi](dpG − 1),

by recalling that dpG = dpF. One then has the exact sequence

1 −→ Fp
i [Fi,Fi]R/Fp

i [Fi,Fi] −→ Fi/F
p
i [Fi,Fi] −→ Fi/F

p
i [Fi,Fi]R −→ 1,

where Fi/R ≃ Gi. Now, by construction, as Fi contains H , the first generators of R are
in Fp

i [Fi,Fi]. One see very quicky that the quotient Fp
i [Fi,Fi]R/Fp

i [Fi,Fi] is topologically
generated by the elements of the form yzy−1, where y is a representative of a class of
F/Fi and z ∈ {rt+1, · · · , rk}: indeed R ⊂ Fi. Thus

dp(Gi) ≥ [G : Gi](d− 1− k + t) + 1,

and as 1− d+ k = χ(GΣ) = r1(K) + r2(K), one obtains

dp(Gi)

[G : Gi]
≥ t−

(

r1(K) + r2(K)
)

.

Here Gi = GΣ(Ki), where Ki is the fixed field of Gi inside the tower KΣ/K.
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4.3. On Schreier’s bound. — Recall again the principle behind the construction of
the examples of the section 3. Take p = 2. Let k be a real quadratic field having an
infinite 2-extension kT /k. Put t = |T | − (r1 + r2). Let K/k be an imaginary quadratic
extension in which all places of T are ramified. Let (kn) be an exhaustive tower in kT/k
and consider the tower (Kkn) of K, which is evidently inside KT/K. By Genus Theory
applied to each quadratic extension Kn/kn, dpA(Kn) ≥ [Kn : K]t− 1. In [14], it has been
proven that in fact

dpA(Kn) ≥ [Kn : K]t+ 1.

At this level, we recall that Genus Theory allows us a lower bound of the p-rank of a
subgroup of A(Kn) without taking into account the contribution of A(kn) i.e.

dpA(Kn) ≥ [Kn : K]t− 1 + αn,

with αn ≤ dpA(kn) measuring the added contribution to the rank coming from the
injection of A(kn) into A(Kn) (see [25]).

In the other direction, thanks to Schreier’s inequality, one has

dpA(Kn) ≤ (dpA(K)− 1)[Kn : K] + 1,

and then
t [Kn : K] ≤ dpA(Kn)− 1 ≤ (dpA(K)− 1)[Kn : K],

which naturally raises the following question raised in [14].

Question 4.4. — Is it possible to create an example as above having an optimal inequal-
ity, i.e. such that dpA(K)− 1 = t ?

In [14], it was shown that a sequence of examples with the ratio (dpA(K)− 1)/t tending
to 1 can be created. In the remainder of this section, we will make an attempt to find
examples with small (dpA(K)− 1)− t by considering some ray class groups.

We take p = 2. To recall a Theorem due to Gras-Munnier (see [12], section I.4 or chapter

VI or [13]), we fix the notation. Let F′ := F(
√
E,

√
A) be the governing field of a number

field F , where E is the group of units of F, where A = {a1, · · · , ad}, Ai
2 = aiOF, (Ai)i

being a system of generators of A(F)[2].

Theorem 4.5 (Gras-Munnier). — Let T = {p1, · · · , pt} be a set of places of K, with
Npi ≡ 1 mod p. There exists an extension L/F cyclic of degree 2, exactly and totally
ramified at T if and only if, for i = 1, · · · , t, there exists ai ∈ F×p , such that

t
∏

i=1

(

F′/F

Pi

)ai

= 1 ∈ Gal(F′/F),

where Pi is an ideal of L above pi.

Now, take ℓ to be a prime with ℓ ≡ 1 mod 32. Let F be the totally real subfield of Q(ζℓ)
of degree 16 over Q. Let {−1, ε1, · · · , εr} be a basis of E/E2. Note that the extension
F′/Q is a Galois extension and contains F (here F′ is the governing field defined above).
By the Chebotarev Density Theorem, we can find an odd prime q that splits completely
in F′/Q. Now by Theorem 4.5, for all primes qi of F above q, there exists a cylic 2-
extension exactly {qi}-ramified. We conclude that the 2-rank of the 2-class group AS(K)
is at least 16, where S is the set of places of K above q. Moreover by the condition
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above q, one has that −1 is a square in Qq, that means that q ≡ 1 mod 4. Now, again
by applying Chebotarev Density Theorem take p1 that splits completely in the extension
Fab
S (

√
−1)/Q as well as another prime p2 that splits completely in FS/Q but which is

inert in Q(
√
−1)/Q.

Let T be the set of places of F above {p1, p2}. Then the 2-rank of GS := Gal(FS/F) and
the 2-rank of G T

S := Gal(FT
S/F) are the same and are at least 16. Now, r(G T

S ) ≤ 48 (see
Proposition 1.4) and, by the Theorem of Golod-Shafarevich (see Theorem 1.1) the tower
FT
S/F is infinite and then the tower QT

Σ/Q is infinite too, where Σ = {q, ℓ}.

Put K = Q(
√−p1p2). The primes ℓ and q are split in K/Q. As p2 ≡ 3 mod 4, one has

d2AK = 1 and the 2-rank of the ray class group of K with modulus qℓ is at most 5.
Now consider the compositum L := QT

ΣK. Thanks to Schreier’s inequality and to Genus
Theory, one has for all number fields Kn in L/K:

2[Kn : K] ≤ d2AΣ(Kn)− 1 ≤ 4[Kn : K].

By assuming a hypothesis, we can improve the above estimate. Indeed, the 2-group
G := Gal(F/Q) acts on the elementary abelian 2-group H := Gal(F′/F). Hence there
exists a subgroup H0 of H of order 2 on which G acts trivially.

For the remainder of this section, suppose that H0 can be chosen such that H0 *
Gal(F′/F(

√
−1)).

By the Chebotarev Density Theorem, take an odd prime q such that its Frobenius in
Gal(F′/Q) is a generator of H0.

Lemma 4.6. — Let qi 6= qj be two primes of F above q. Then

(

F′/F

qi

)

=

(

F′/F

qj

)

.

Proof. — The primes qi and qj are conjugate: there exists g ∈ G such that qj = q
g
i . We

are done thanks to the property of the Artin Symbol:

(

F′/F

q
g
i

)

= g ·
(

F′/F

qi

)

· g−1 and

the fact that G acts trivially on H0.

Now by Theorem 4.5, for all pairs of primes qi 6= qj of F above q, there exists a cylic
2-extension exactly {qi, qj}-ramified. Then, this implies that the 2-rank of the 2-class
group AS(K) is at least 15, where S is the set of places of K above q. Moreover by the
condition above q, one has that −1 is not a square in Qq, that means that q ≡ 3 mod 4.
We now put K = Q(

√−p1p2) and proceed exactly as before; the 2-rank of the ray class
group of K with modulus qℓ is at most 4 if q is inert in K/Q or 5 if q splits.

Lemma 4.7. — Here, d2AΣ(K) ≤ 4.

Proof. — One has only to look at the case where q splits in K/Q. Let α ∈ K be the
square of the unique non-trivial class C of AK: C

2 = (α). Consider the morphism

θ : 〈−1, α〉 7→ F×l1
F×2l1

× F×l2
F×2l2

× F×q1
F×2q1

× F×q2
F×2q2

,
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where li and qi are the primes of K above qℓ and where Fqi (resp. Fli) is the residue
field of qi (resp. of li). Then one has the formula (see [26] or see [12]): d2AK,Σ =
d2AK + |Σ| − d2Im(θ). Now as q ≡ −1 mod 4, the image of θ is at least of order 2 and
then we have down.

Now consider the compositum L := QT
ΣK. Thanks to Schreier’s inequality and to Genus

Theory, one has for all number fields Kn in L/K:

2[Kn : K] ≤ d2AΣ(Kn)− 1 ≤ 3[Kn : K].

5. Invariant factors in pro-p-groups

For this section the main reference is [4].

We begin with a straightforward observation.

Proposition 5.1. — Let G be a torsion-free FAb pro-p-group. Let (U ) be a basis of
open subgroups of G . Then the sequence of the exponents e(U ab) of U ab is not bounded.

Proof. — Suppose that there exists an integer k such that for all open subgroups U ,
e(U ab) ≤ k. Take 1 6= x ∈ G . Then 〈xk〉U ⊂ [U ,U ], that means

〈xk〉 =
⋂

U

〈xk〉U ⊂
⋂

U

[U ,U ] = {1}.

In other words, xk = 1 and, as G is torsion-free, x = 1. Contradiction.

Our work in the previous sections on exponents of p-class groups leads us now to defining
the following invariant for finitely generated FAb pro-p groups.

Definition 5.2. — Let G be a FAb pro-p-group of finite type. For any open subgroup
U of G , since U ab is finite, MU ab is well-defined. For n ≥ 1, we put

Mn(G ) := min
[G :U ]=pn

MU ab

and then define the asymptotic mean exponent of G to be

M(G ) := lim inf
n

Mn(G ).

In the remainder of this section, we will show how to estimate the asymptotic mean
exponent in two special cases.

5.1. In analytic pro-p-groups. — As noted by Gärtner in [11], the exponents of open
subgroups of an infinite p-adic analytic pro-p-group tend to infinity. To be more precise,
let G be an analytic pro-p-group of dimension d. Then G has an open uniform subgroup
U (of rank d). Put U1 = U and consider for i ≥ 1, Ui+1 = U

p
i [Ui,U ] the p-central

descending series of U . (For p = 2, take Ui+1 = U 4
i [Ui,U ].)

Definition 5.3. — A pro-p-group U is uniform if

(i) U /U p is abelian and
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(ii) for all i ≥ 1, the map

Ui/Ui+1 −→ Ui+1/Ui+2

x 7→ xp

is an isomorphism.

Proposition 5.4. — Let p be an odd prime, and U a uniform pro-p-group. Then for
each n, U ab

n has rank d and maps onto (Z/pnZ)d.

Proof. — Take n > 1. Let x ∈ Un be an element of a minimal family of generators of
Un: the element x is not trivial in the quotient Un/U

p
n [Un,U ]. As U is uniform, one

has U p
n [Un,U ] = Un+1 and then x is not trivial in Un/Un+1. Suppose now that the

order pk of x in Un/Un+1 is smaller than pn−1, i.e. xpk ∈ [Un,U ] with k < n. Then

as [Un,U ] ⊂ U2n, one has xpk ∈ U2n. But as U is uniform, for all m the following
isomorphism holds:

Un/Un+1
x 7→xpm

−→ Un+m/Un+m+1.

The integer k being supposed smaller than n, we find xpn−1
= 1 in U2n−1/U2n and then

x = 1 in Un/Un+1. Contradiction. Hence every element of a generator basis of Un is of
order at least pn.

Corollary 5.5. — Let G be a uniform analytic pro-p-group of dimension d. Consider
the sequence MG ab

n
of mean exponents for the abelianizations of terms of the p-central

series. We have

MG ab
n

≥ n =
1

d
logp[G : Gn].

Proof. — Follows immediately from the previous Proposition.

Remark 5.6 ([4], Chapter 13). — Let us replace Zp by the complete local regular
Noetherien ring R = Zp[[T1, · · · , Tk]] with residue field Fp and dimension k + 1; here

m = (p, T1, · · · , Tk) is the maximal ideal of R. Let Grad(R) =
⊕

i≥0

mi/mi+1 be the graded

algebra; put ci = dimFp
mi/mi+1. Following the terminology of [4], consider G an R

standard and perfect group of dimension d. For example Sl1n(R) := ker (Sln(R) → Sln(Fp))
is such a group for p > 2. In particular, G = md as an analytic variety on which there
is a formal group law F . Let us consider the filtration of G : Gn ≃ (mn)d, n ≥ 1. Then,
for all integers m,n ≥ 1, [Gm,Gn] = Gm+n (G is perfect) and there is an isomorphism

of groups G ab
n ≃ (mn/m2n)

d
, where the formal law on the quotient mn/m2n becomes the

addition. As the quotients mi/mi+1 are p-elementary, one has

vp([G : Gn]) = logp[R : mn] = c1 + c2 + · · ·+ cn−1.

By using the Hilbert-Samuel-Serre polynomial H = CXk+1+ · · · of Grad(R), C > 0 (i.e.
deg(H) = k + 1), we have

vp([G : Gn]) ∼n dH(n− 1) ∼n Cdnk+1,

and

vp(|G ab
n |) = vp([Gn : G2n]) ∼n d (H(2n− 1)−H(n− 1)) ∼n cd(k + 1)nk+1(2k+1 − 1).
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(For material for the Hilbert-Samuel-Serre polynomial see for example [28].) To finish,
we want to bound the p-rank dpGn of Gn: dpGn = d · dp(mn/(pmn +m2n)). First we have
the following exact sequence:

0 −→ (pn−1m+ · · ·+ pmn−1)/pmn −→ mn/(pmn +m2n) −→ mn/m2n −→ 0,

where m is the maximal ideal of Fp[[T1, · · · , Tk]]. Now the natural homomorphism:

m/m2 × · · · ×mn−1/mn → pn−1m+ · · ·+ pmn−1 mod pmn

(x1, · · · , xn−1) 7→ pn−1x1 + · · · pxn−1 mod pmn

allows us to obtain

dpGn ≤ a1 + · · ·+ a2n−1,

where ai = dpm
i−1/mi. The local ring Fp[[T1, · · · , Tk]] is of dimension k, and then, if

H = C ′Xk+ · · · is the Hilbert-Samuel of the graded algebra Fp[[T1, · · · , Tk]] with C ′ > 0,
we have for n ≫ 0:

dpGn ≪ nk.

Finally, one obtains

MG ab
n

≫ n ≫
(

logp[G : Gn]
)1/(k+1)

.

5.2. Bounding M(G T
S ) for tame S. — First, thanks to Proposition 2.18, for the

Galois group G = G T
S of a tame tower KT

S/K, we have

M(G ) ≤ c(K, S, T ) lim sup
U

[G : U ]

d(U )
,

where c(K, S, T ) is a quantity that depends only on K, S, T . So, we must consider the
rate of growth of the generator rank of open subgroups of G with respect to their index.
Recall that the rank gradient of G (see, for example [5]) is defined to be

ρ(G ) = lim inf
H

d(H )− 1

[G : H ]
,

where the infimum is taken over all open subgroups H ⊂ G . Note that when U ⊂ V ,

Schreier’s formula gives the inequality
d(U )− 1

[G : U ]
≤ d(V )− 1

[G : V ]
showing that the sequence

[G : Ui]/d(Ui) is increasing for a nested sequence (Ui) of open subgroups. For groups
with positive rank gradient ε, the p-rank of open subgroups grows ε-lineraly with the
index (compare definition 2.19).

In the general case, lacking any knowledge on the behavior of d(U ), we nonetheless have
the following result (Part 1 of Theorem 0.1).

Proposition 5.7. — Suppose S is a finite set of primes of a number field K with (S, p) =
1. Let G = G T

S . There is a constant C > 0, such that for any open subgroup U of G , we
have MU ab ≤ C[G : U ].

Proof. — We simply apply Proposition 2.18, merely noting that d(U ) ≥ 1.

Question 5.8. — Is the conclusion of Proposition 5.7 true for every FAb pro-p-group
of finite type?
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In the main result of this section, for certain special subgroups U of G , we give lower
bounds for d(U ), which allows us to estimate MU ab . The main references are §11 and
§12 of [4].

First of all, a key result is a Theorem of Jennings which asserts that for any group G

there exists a connection between the enveloping algebra associated to a certain graduated
algebra Grad(G ) of G and the restricted enveloping algebra of Fp[G ] graded by the powers
of the augmentation ideal I. Here, Grad(G ) := ⊕i≥0Di/Di+1, where Di = (1 + I i) ∩ G ;
put bi := dpDi/Di+1. The filtration (Dn) is called the Zassenhaus filtration of G ; this
filtration satisfies these mains properties:

D1 = G , Dn = Dp
n∗

∏

i+j=n

[Di, Dj], Dp
n ⊂ Dnp, and [Dn, Dm] ⊂ Dn+m,

where n∗ = ⌈n/p⌉. Hence, Di/Di+1 ≃ (Z/pZ)bi .

The relationship between these two associative algebras gives a link between the bi and

the cj := dpI
j/Ij+1. More precisely, if U(T ) :=

∑

n≥0

cnT
n is the Hilbert Poincaré series of

the graded algebra Fp[[G ]] then

U(T ) =
∏

i≥1

(

T pi − 1

T i − 1

)bi

.

In particular, when G is analytic, the p-rank of its open subgroups is bounded and then,
the integers bi should often vanish. In fact, one has the spectacular result that bi = 0
for a single integer i if and only if the pro-p-group is analytic. The following beautiful
lemma is a consequence of all of this:

Lemma 5.9. — Suppose ε > 0. If G is not analytic, then there exist infinitely many n
such that

dpD2n ≥ (1− ε) logp[G : D2n ],

where D2n runs in the Zassenhaus filtration (Dk) of G .

Proof. — It is the lemma 11.8 of [4].

Definition 5.10. — A finitely generated pro-p group G is said to be of Golod-
Shafarevich type if all the relations are of degree 2 and d2 ≥ 4r where d, r are the
generator rank and relation rank of G , respectively, cf. Theorem 1.3.

Remark 5.11. — A pro-p-group of Golod-Shafarevich type with relation rank r > 1 is
not analytic, cf. [24] and [36]. If a pro-p group is mild with respect to the Zassenhaus
filtration, and all its relations are of degree 2, then it is of Golod-Shafarevich type (and
of cohomological dimension 2) – see [21].

Proposition 5.12. — Suppose that the conditions of Theorem 1.6 hold for a number
field K, so that G = G T

∅ is infinite. Then there exists a constant C and infinitely many
n such that,

MDab
2n

≤ C
[G : D2n ]

logp[G : D2n ]
,

where D2n runs in the Zassenhaus filtration (Dk) of G .
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Proof. — The conditions of Theorem 1.6 entail that G is of Golod-Shafarevich type,
hence is not analytic. The desired conclusion is therefore a consequence of Lemma 5.9
and Proposition 2.18.

To finish, let us improve the lower bound of Lemma 5.9. To simplify, assume that p > 2.
Let

1 −→ R −→ F −→ G −→ 1,

be a minimal presentation of G : the pro-p-group F is free and generated by d elements
x1, · · · , xd. We assume that G is finitely presented: the dimension over Fp of H2(G ,Fp)
is finite. Let ρ1, · · · , ρr ∈ F be a system of generators of R/Rp[F,R]. For i = 1, · · · , r,
let ai be the degree of ρi following the Zassenhaus filtration of F .

Definition 5.13. — For two formal series with real coefficients, we say that
∑

n αnT
n ≥

∑

n α
′
nT

n if for all n, αn ≥ α′n.

Proposition 5.14. — Let G be a finitely presented pro-p-group. Let U(t) be the Hilbert
Poincaré series of the graded algebra Fp[[G ]]. Then

U(T ) ≥ 1

1− dT +
∑r

i=1 T
ai
,

with equality if G is of cohomological dimension at most 2.

Proof. — The proof is essentialy a result of Brumer [1]. First let us consider the natural
short exact sequence

0 −→ I(G ) −→ Fp[[G ]] −→ Fp −→ 0,

where I(G ) is the augmentation ideal of the complete algebra Fp[[G ]]. The topological
generators of G are in I(G ) and therefore all of degree 1. For a minimal presentation

1 −→ R −→ F −→ G −→ 1,

of G , Brumer (see (5.2.1) in [1]), shows that there is a short exact sequence

0 −→ R/Rp[R,R]
f−→ I(F )/I(F )I(R)

g−→ I(G ) −→ 0,

where f(r) = r − 1 mod I(F )I(R). Now, the quotient I(F )/I(F )I(R) is a free Fp[[G ]]-
module on the generators x1−1, · · · , xd−1 and then we have the relation on the Hilbert
Poincaré series:

P (T )− dTU(T ) + U(T )− 1 = 0,

where P (T ) is the series of R/Rp[R,R] and where U(T ) is the series of Fp[[G ]]. As

Fp[[G ]] · ρ1 ⊕ · · · ⊕ Fp[[G ]] · ρr
ϕ
։ R/Rp[R,R], and that the elements ρi are of degree ai,

one has

P (T ) ≤
(

r
∑

i=1

T ai

)

U(T ).

Now, the equality comes from the fact that the pro-p-group G is of cohomological di-
mension at most 2 if and only if the map ϕ is an isomorphism (see Proposition 5.3 in
[1]).
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Theorem 5.15. — Let L/K be a tamely ramified pro-p-extension with Galois group G .
Suppose that G is of Golod-Shafarevich type and of cohomological dimension 2. Then for
every ε > 0, there exists a constant C and infinitely many n such that

MDab
2n

≤ C
[G : D2n ]

(logp[G : D2n ])2−ε
,

where D2n runs in the Zassenhaus filtration (Dk) of G .

Remark 5.16. — In the inequality of the previous Theorem, the constant depends on
ε and on the set of primes ramifying in L/K. We note that Labute (Theorem 1.6 of
[21]) was the first to give a sufficient condition for mildness of G T

S ; thanks to the work
of Schmidt [35], for any K, by choosing S large enough, one can arrange that the group
G T
S is of cohomological dimension 2 and mild, hence meets the conditions of the Theorem

5.15. (See also the work of Labute [21], Labute and Mináč [22], Forré [8], Gärtner [10],
Vogel [38], etc.) We wish to highlight the fact that the preceding Theorem combines
together some results from analytic number theory (Brauer-Siegel), arithmetic (the results
of Schmidt and the fact that the root discriminant is bounded) and group theory! In fact,
better bounds for the growth of p-rank of open subgroups of Golod-Shafarevich pro-p
groups can be found in the literature [5], [6], but the interest of Theorem 5.15 is the
arithmetic flavor of the proof.

Proof. — We want to give a lower bound of dpD2n . First, As [D2n , D2n ] ⊂ D2n+1 , we
should have in mind the fact that dpD2n ≥ dpD2n/D2n+1.
Now by hypothesis

∏

i≥1

(

T pi − 1

T i − 1

)bi

=
1

1− dT + rT 2
=

1

(1− αT )(1− βT )
,

with α ≥ β, α ≥ 2 and β > 1. Indeed, as G ab is finite, r ≥ d.
By taking logarithms, one obtains:

∑

i≥1

bi
∑

k≥1

1

k

(

T ki − T pki
)

=
∑

i≥1

1

i
(αi + βi)T i.

Take m with (m, p) = 1. Then by looking the coefficients at Tm:

αm + βm =
∑

i|m

ibi.

This equality at m = 2n and at m = 2n−1 allows us to give:

b2n = 2−n
(

α2n −
√
α2n + β2n −

√

β2n
)

and then there is a constant C > 1 such that for all large enough n, we have:

b2n ≥ C
α2n

2n
.

Let us conserve the notation of [4] and put in = logp[G : D2n ]. As dpD2n ≥ dpD2n/D2n+1 =
logp |D2n/D2n+1 | one has the inequality

in+1 ≤ dn + in,
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where dn = dpD2n . Now, for n ≫ 0,

in+1 = logp[G : D2n+1 ] = logp[G : D2n ]+logp[D2n : D2n+1]+logp[D2n+1 : D2n+1 ] ≥ b2n ≥ C
α2n

2n
.

Let n0 be an integer. Suppose that for all n ≥ n0, dn ≤ i2−εn . Then, in+1 ≤ 2i2−εn and by
induction

in+1 ≤ 21+(2−ε)+···+(2−ε)n−n0
i(2−ε)

n+1−n0

n0
.

Hence for n ≫ n0,

C
α2n

2n
≤ in+1 ≤ 2

(2−ε)n+1−n0−1
1−ε i(2−ε)

n+1−n0

n0

which is a contradiction for large n.
Hence, there exist infinitely many n such that dpD2n ≥ (logp[G : D2n ])

2−ε and if G is the

Galois group of a tamely ramified tower, MDab
2n

≪ [G : D2n ]

(logp[G : D2n ])2−ε
.

Remark 5.17. — Calculations of the above type with Poincaré series can be found, for
example, in [29] and [30].

6. Final remarks

6.1. On a question of structure. — We have been looking for towers in which the
p-rank of class groups has linear growth. In the Iwasawa context, abelian as well as non-
abelian (for the latter see for example [34]), there is an underlying algebraic structure
thanks to which the linear growth of the rank corresponds exactly to having positive
µ-invariant. Can we detect any evidence of a similar algebraic structure in the tame
case?

In this paper we produce our examples as follows. First, we consider an infinite extension
kTS/k with T non-trivial, and then take its compositum with a finite p-extension K/k
inside kT . In this manner, one obtains a subextension L := KkTS of k∅{S∪T}. It is in

the extension L/K that we can force linear growth of the p-class groups (An)n. Put
G = Gal(kTS/k) ≃ Gal(L/K). By a result of Schmidt [35], by choosing S large enough, one
can assume that the group G is of cohomological dimension 2 and mild. Let Λ := Fp[[G ]]
be the Iwasawa algebra associated to G . As G is mild, the ring Λ is without zero divisor,
but note that it’s probably not Noetherian. Let X := lim

←n

An be the projective limit of

the studied arithmetic object An. The limit X is a finitely generated Λ-module ([27]).

Question 6.1. — Is the linear growth of An produced by this method related to a natural
algebraic structure of “Iwasawa module” X ?

6.2. How small can the mean exponent be in tame towers?— We have shown
that there exist asymptotically good infinite towers in which the mean exponent is
bounded above. On the one hand, it is natural to wonder:

Question 6.2. — Can we find asymptotically good pro-p towers L for which M(L ) is
arbitrarily close to 1?

On the other hand, our constructions are rather special, so we ask:
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Question 6.3. — Are there asymptotically good infinite pro-p towers in which the mean
exponent of p-class groups is not bounded?

As a start on Question 6.2, we note that in section 3, we have developed some examples
of the following type:

K = Q(
√
p1 · · · pt,

√−pt+1 · · · pt+s).

Here kT /k is infinite where k = Q(
√
p1 · · · pt) and T = {pt+1, · · · , pt+s}. These ex-

amples give s-linear growth for p-class groups where the base field K has genus g ≈
log(p1 · · · ptpt+1 · · · pt+s). Letting n = t + s, we note that as n becomes large, one has
g . pn, where pn is, in the optimal case, the nth prime number i.e. g ∼ n log(n). But on
the other side, to force the infinitude of kT/k, which we need, we must apply Corollary
1.7, which requires s ∼ n. Thus, the best we can expect via this method for bounding
M(K∅∅/K) is only M(K∅∅/K) . log(n).

Question 6.4. — What is the biquadratic field (following the above method) with the
smallest upper bound on the value of M(K∅∅/K)?

6.3. Concluding Summary. — In this paper, we have introduced the logarithmic
mean exponent of a finite abelian p-group as an invariant that balances the cardinality
of the group against its rank, and studied its behavior in the context of p-class groups
of number fields varying in towers with restricted ramification. By a mixture of results
from algebraic and analytic number theory, we have constructed tame towers for which
the mean exponent is bounded, and shown that, by contrast, the mean exponent for some
open subgroups of p-adic analytic groups tend to infinity. We hope that further study of
the mean exponent will shed light on properties that distinguish Galois groups of tame
versus wild extensions.
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[27] C. Maire, Sur la structure galoisienne de certaines pro-p-extensions de corps de nombres,
Math. Z. 267 (2011), no. 3-4, 887-913.

[28] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics
8, Cambridge University Press, 1989.

[29] M. McLeman, A Golod-Shafarevich equality and p-tower groups, J. Number Theory 129

(2009), no. 11, 2808, 2819.
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