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Abstra
t. The study of the maxmimal p-extension of a global �eld k unram-

i�ed everywhere and totally split at a �nite set S of pla
es of k has at least

two important appli
ations: it gives information on the asymptoti
 behavior of

dis
riminants versus degree in the number �eld 
ase (as measured by the Mar-

tinet 
onstant �(t)), and on the relationship between genus and the number of

pla
es of degree one (for large genus) in the fun
tion �eld 
ase (as measured by

the Ihara 
onstant A(q)). We survey re
ent work on the 
onstru
tion of towers

of global �elds whi
h are optimal for the study of these phenomena, in
lud-

ing the best known examples in both settings; these 
ontain, among others,

an in�nite unrami�ed tower of totally 
omplex number �elds with small root

dis
riminant improving Martinet's re
ord. We show that allowing wild rami-

�
ation to limited depth does lead to asymptoti
ally good towers. However,

we demonstrate also that the investigation of the in�nitude of these towers

involves diÆ
ulties absent in the tame 
ase.

1. Introdu
tion and definitions

An in�nite tower of global �elds K

0

� K

1

� K

2

� � � is \asymptoti
ally good" if

the relationship between 
ertain of its layers' invariants is in some sense optimal.

The pre
ise 
ondition is: (1) for number �elds, that rd

K

i

= jdis
K

i

j

1=[K

i

:Q℄

remain

bounded from above, and (2) for fun
tion �elds with �xed �nite 
onstant �eld F

q

,

that N

K

i

=g

K

i

remain bounded away from 0, where g

K

; N

K

are respe
tively, the

genus, and the number of pla
es of degree 1 of K.

The relationship between these invariants ( dis


K

vs. [K : Q℄, and g

K

vs. N

K

)

are governed by important general bounds (Stark-Odlyzko for number �elds and

Hasse-Weil for fun
tion �elds). The interest of asymptoti
ally good towers is that

they measure the sharpness of the leading terms of these bounds.

In the number �eld 
ase, 
urrently the only method for 
onstru
ting asymp-

toti
ally good towers is that of p-
lass �eld towers, for a �xed prime p. The same

method works well for fun
tion �elds; however, at least when q is a square, there are

other ri
h sour
es of asymptoti
ally good towers as well: modular 
urve 
onstru
-

tions, 
ertain types of expli
it equations (whi
h potentially are always modular! 
f.

[4℄), and a new \rigid" 
onstru
tion of Frey, Kani, and V�olklein [6℄.

In this paper, we survey the p-
lass �eld tower 
onstru
tions. One �xes a prime

p and a �nite non-empty set S of pla
es of a base �eld K and studies the maximal

p-extension of K whi
h is everywhere unrami�ed and totally split at S. For these

appli
ations, it is also possible to allow a �nite number of pla
es to ramify, as long

as we 
an obtain a bound for the minimal number of relations of the Galois groups

whi
h appear. In x2 we re
all all of this; we give the best known examples for

totoally 
omplex and totally real number �elds (x3) and for fun
tion �elds over

�elds with 2; 3 and 5 elements (x4).
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2 F. HAJIR AND C. MAIRE

In x5 we 
onsider extensions where wild rami�
ation 
an o

ur but only to a

limited depth; we show �rst that these lead to asymptoti
ally good towers. We

state a Theorem (Theorem 5.5) whi
h shows that allowing wild rami�
ation leads

to 
ompli
ations in the study of the minimal number of relations of the resulting

Galois groups.

Finally in last part, we state some open problems whi
h 
ome up naturally in

the sear
h for asymptoti
ally good towers.

1.1. Martinet's 
onstant. For a number �eld k of degree n = r

1

+ 2r

2

over Q,

with signature (r

1

; r

2

), let t = t

k

:= r

1

=n be its \in�nity type," i.e. the proportion

of its embeddings into C whi
h fa
tor through R. We will write dis


k

, rd

k

for its

dis
riminant and root dis
riminant, respe
tively. Thanks to the work of Stark [33℄,

Odlyzko [22℄ [23℄, Poitou [25℄ and Serre [31℄, we have a very good lower bound for

rd

k

, an asymptoti
 version of whi
h reads: for a number �eld k of in�nity type t

and large enough degree,

rd

k

� A

t

B

1�t

; (1)

with A = 60; B = 22; under GRH, one may take A = 215; B = 44.

For �xed t 2 Q \ [0; 1℄, and integers n su
h that number �elds of degree n and

in�nity type t exist, we let �

n

(t) be the minimal root dis
riminant attained by

number �elds of degree n and in�nity type t and de�ne

�(t) = lim inf

n

�

n

(t):

For more details see [18℄ [10℄. From (1), we see that

�(t) � A

t

B

1�t

; t 2 Q \ [0; 1℄:

A nested sequen
e of distin
t number �elds K

0

� K

1

� � � � is asymptoti
ally good

if rd

K

j

is bounded from above. An asymptoti
ally good tower with �xed in�nity

type t and root dis
riminant bounded above by R gives an upper bound �(t) � R.

In x4, we will present the best 
urrent upper bounds for �(0) and �(1), namely (see

[11℄)

B � �(0) � 82:2; A � �(1) � 954:3:

1.2. Fun
tion �eld 
ase. We will �x a �nite �eld F

q

and ask how large the group

of rational points X(F

q

) of a smooth absolutely irredu
ible algebrai
 
urve X of

genus g over F

q


an be as g tends to in�nity. A
tually, to maintain notational


onsisten
y with number �elds, we will 
onsider the 
orresponding fun
tion �elds

K = F

q

(X) and 
ount the pla
es of degree 1. Let N

q

(g) be the maximum number of

degree 1 pla
es of a genus g fun
tion �eld with 
ontant �eld F

q

. By the 
elebrated

theorem of Hasse-Weil,

N

q

(g) � q + 1 + 2g

p

q:

Various improvements of this bound have been obtained in the last two de
ades.

To measure the asymptoti
ally optimal bound, Ihara and Serre have introdu
ed

A(q) = lim sup

g!1

N

q

(g)

g

:

In the 80's, Ihara [14℄ and, Tsfasman, Vladut and Zink [35℄ independently showed

by using modular 
urves that A(q) �

p

q � 1 if q is a square. Shortly thereafter,

Drinfeld and Vladut [3℄ proved that for all q,

A(q) �

p

q � 1;
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and so A(q) =

p

q�1 for square q. Using 
lass �eld towers, Serre showed that there

is an absolute 
onstant 
 > 0 su
h that A(q) > 
 log q for all q. Variations on Serre's

proof [32℄ 
an be found in Neiderreiter-Xing [21℄, and Li-Maharaj [17℄. Re
ently,

Elkies, Kres
h, Poonen, Wetherell, and Zieve [5℄ have shown that lim inf

g

N

q

(g) �

(

p

q � 1)=3 for square q and lim inf

g

N

q

(g)=g � 


0

log q for an absolute 
onstant




0

> 0 (all q). When q is not prime, it 
an be shown that the growth of A(q) is

faster than logarithmi
 (e.g. [21℄ and [17℄). The major outstanding problem here

is, then, to improve Serre's lower bound for A(q) when q is prime.

We will be 
ontented here with des
ribing what is known for three small prime

values of q, namely q = 2; 3 and 5. The best known bounds are: A(2) � 81=317 (see

[19℄), A(3) � 12=25 (see [1℄) and A(5) � 8=17 A(5) (see [2℄, [34℄): we will present

these examples in x4.

2. Tamely ramified situation

We �x a prime p and two �nite sets S and T of pla
es of k su
h that:

(1) In the fun
tion �eld 
ase, S is non-empty and 
ontains only degree 1 pla
es.

(2) In the number �eld 
ase, S 
ontains all in�nite pla
es S

1

of k.

(3) S \ T = ;

(4) for all pla
es p 2 T , p divides Np � 1, where Np is the absolute norm. In

the fun
tion �eld 
ase that means that p divides q

deg(p)

� 1 for p 2 T .

Now we de�ne k

S

T

to be the maximal p-extension (inside a �xed algebrai
 
losure)

of k unrami�ed ouside T in whi
h S splits 
ompletely. By our assumptions, the

rami�
ation in k

S

T

=k is tame; put G

S

T

= Gal(k

S

T

=k). One has to introdu
e two

quantities:

De�nition 2.1. Let G be a �nitely generated pro-p-group. Then

(1) d(G) is the minimal number of generators of G: d(G) = dim

F

p

H

1

(G; F

p

).

(2) r(G) is the minimal number of relations of G: r(G) = dim

F

p

H

2

(G; F

p

).

The deepest known fa
t about these groups was �rst established by Shafarevi
h

(see [15℄, or [2℄):

Theorem 2.2.

r(G

S

T

)� d(G

S

T

) � jSj � 1 + �

k;T

;

where �

k;T

= 1 when k 
ontains �

p

and T = ;, 0 otherwise.

Remark 2.3. One has the trivial inequalities: d(G

S

;

) + jT j � d(G

S

T

) � d(G

S

;

).

The famous Theorem of Golod-Shafarevi
h says that for a non-trival �nite p-

group G, r(G) > d(G)

2

=4). Thus,

Theorem 2.4. If

d(G

S

T

) � 2 + 2

q

jSj+ �

k;T

;

then G

S

T

is in�nite.

The last ingredient we need is a standard genus theory bound for the p- rank of

the S-
lass group in a degree p Galois extension.

Theorem 2.5. Suppose k=k

0

is a Galois extension of degree p. Let S

0

= S \ k

0

be

the set of pla
es of k

0

lying under the pla
es in S. Suppose r pla
es of k

0

ramify in

k. Then

d(G

S

;

) � r � jS

0

j � Æ

k

0

:

where Æ

k

0

= 1 when k

0


ontains �

p

, 0 otherwise.
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For this and more re�ned genus theory bounds, see e.g. [28℄, [29℄.

3. Number fields

A �rst observation is that the layers of an in�nite tamely rami�ed tower form

an asymptoti
ally good family, (i.e. they have bounded root dis
riminant) [10℄:

Theorem 3.1. Let k be a number �eld of degree n over Q of in�nity type t su
h

that G

S

T

is in�nite. Then

�(t) � rd

k

Y

p2T

�

N

k=Q

p

�

1=n

:

3.1. Martinet's example. The �rst idea was to 
onstru
t a number �eld k with

small root dis
riminant admitting an in�nite unrami�ed 2-extension (S = S

1

, T =

;). The layers of su
h a tower 
omprise a family with 
onstant root dis
riminant.

Sin
e 1978, the best su
h example known has been that of Martinet [18℄ : he proved

that the �eld Q(
os(2�=11);

p

2;

p

�23) with root dis
riminant 2

3=2

11

4=5

23

1=2

has

an in�nite unrami�ed 2-tower (T = ;, S = S

1

), and so

�(0) < 92:4:

3.2. An in�nite unrami�ed tower whi
h improves Martinet's re
ord. In

[10℄, we found that 
lass �eld towers over non-Galois base �elds seem to yield

asymptoti
ally good towers. We now apply that idea to give an unrami�ed tower

with root dis
riminant smaller than the previous example.

Let k

0

= Q(�) where � is a root of f = x

5

� 2x

4

+ 3x

3

� 3x

2

� x + 1. The

dis
riminant of f is �31391, a prime; thus, this is also the dis
riminant of k

0

,

and O

k

0

= Z[�℄. Sin
e dis


k

0

is negative, k

0

has signature (3; 1). Sin
e dis


k

0

is a

quadrati
 dis
riminant, it follows (see Kondo [16℄) that the Galois group of f is S

5

;

indeed, the Galois 
losure of k

0

is an unrami�ed A

5

-extension of Q(

p

�31391). We

will not need this fa
t, however.

The element � = �36�

4

+ 125�

3

� 221�

2

+ 182� � 80 2 O

k

0

is negative at all

three real pla
es of k

0

. Its minimal polynomial is g(y) = y

5

+ 223y

4

+ 18336y

3

+

10907521y

2

+ 930369979y + 18559139599. The O

k

0

-ideal it generates fa
tors into

nine prime ideals of O

k

0

: � = �

7

�

0

7

�

11

�

0

11

�

13

�

19

�

0

19

�

23

�

29

where �

r

generates an

ideal of norm r. We let k = k

0

(

p

�), a totally 
omplex �eld of degree 10. A de�ning

polynomial for k is g(y

2

). We note that � is 
ongruent to a square modulo 4O

k

;

expli
itly, � = �

2

� 4
 with � = �

4

+ � +1 and 
 = 11�

4

� 31�

3

+56�

2

� 45� +20.

Thus, k=k

0

is rami�ed at the three real pla
es and at the nine primes dividing �

and nowhere else. Thus, the root dis
riminant of k is rd

k

= 31391

1=5

(7

2

� 11

2

� 13 �

19

2

� 23 � 29)

1=10

= 84:375 � � � . By Theorem 2.5 (p = 2), the 2-rank of the ideal 
lass

group of k is at least 9+3�(3+1)�1 = 7. (This is 
on�rmed by a Pari 
al
ulation

whi
h gives Cl

k

= Z=3� (Z=2)

7

). By Theorem 2.4, k admits an in�nite everywhere

unrami�ed 2-tower sin
e 2 + 2

p

5 + 1 = 2 +

p

24 < 7. To our best knowledge, this

tower gives the least root dis
riminant for an unrami�ed tower whi
h is known to

be in�nite.

3.3. The best known bounds for �(0) and �(1). Tamely rami�ed towers and

asymmetri
 (non-Galois) 
onstru
tions of the base (su
h as the one presented above)

were two ideas introdu
ed in [10℄ for improving Martinet's 
onstant. We brie
y

present the best known 
urrent estimates for �(0) and �(1) (see [11℄ for details).
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3.3.1. Totally 
omplex situtation. The totally imaginary �eld k = Q(�) where � is

a root of

x

12

+339x

10

� 19752x

8

� 2188735x

6

+284236829x

4

+4401349506x

2

+15622982921

has dis
riminant 7 � 13 � 19

2

� 23

4

� 29 � 31 � 35509

2

; it admits an in�nite 2-extension

rami�ed at a prime p

9

with absolute norm 9 and unrami�ed everywhere else. Thus

�(0) � rd

k

� 9

1=12

< 82:2.

3.3.2. Totally real situation. The totally real �eld k = Q(�) where � is a root of

x

12

� 56966x

10

+ 959048181x

8

� 5946482981439x

6

+ 14419821937918124x

4

�12705425979835529941x

2

+ 3527053069602078368989

has dis
riminant 7

1

0 � 13

7

� 29

4

� 41

4

� 97 � 113

2

; it admits an in�nite 2-extension

rami�ed at a prime p

13

with absolute norm 13 and unrami�ed elsewhere. Thus

�(1) � rd

k

� 13

1=12

< 954:3.

4. Fun
tion fields

As in the number �eld 
ase, a tamely rami�ed p-extension of fun
tion �elds is

asymptoti
ally good, meaning N

K

=g

K

is bounded from below for the layers K of

the p-extension. (This was used in [2℄ to give improved lower bounds for A(3) and

A(5).) To be pre
ise, [2℄:

Theorem 4.1. Fix a prime p not dividing q. Let k be a genus g fun
tion �eld with


onstant �eld F

q

, S a non-empty set of degree 1 pla
es of k, T a (possibly empty)

set of pla
es of k disjoint from S. If G

S

T

is in�nite, then

A(q) �

jSj

g � 1 +

1

2

P

p2T

degp

:

4.1. Unrami�ed towers. The best lower bound forA(2) has been given by Nieder-

reiter and Xing [19℄ :

Let k = F

2

(x), N

0

= x

4

and N

1

= (x

2

+ x+ 1)(x

6

+ x

3

+ 1) 2 F

2

[x℄. Let K

i

be

the sub�eld of the 
y
lotomi
 fun
tion �eld k

N

i

asso
iated to N

i

for i = 0; 1 (for

more details see [13℄). Consider now the sub�eld F

i

of K

i

�xed by hx+ ii. Put

F = F

0

F

1

. Then [F : k℄ = 84. Now 
onsider S be the set of pla
es of F lying over

1 together with one pla
e lying over x. Then jSj = 81. For this example, and

p = 2, G

S

;

is in�nite, and so

0:255 <

81

317

� A(2) �

p

2� 1 < :414:

4.2. Tamely rami�ed towers. The following example is from [1℄: Let k = F

3

(x;

p

D),

where D = (x

27

�x)(x

9

�x)(x+1)(x

3

�x)

�2

(x

3

�x

2

+x+1)

�1

2 F

3

[x℄; the poly-

nomial D has 11 prime fa
tors over F

3

. If we take p = 2, S to be the set of

k-pla
es above x; x � 1 and 1=x, T to 
onsist of the unique k-pla
e above x + 1,

Golod-Shafarevi
h implies that k

S

T

is in�nite, hen
e by Theorem 4.1,

0:48 = 12=25 � A(3) �

p

3� 1 < 0:74:

The following example is from [2℄. For the �eld k = F

5

(x;

p

D) where D =

(x � 1)(x � 2)(x � 3)(x� 4)(x

2

+ x + 1)(x

2

+ 3)(x

2

+ 2)(x

2

+ x + 2)(x

2

+ 2x+ 3)

with p = 2, S all pla
es above x and 1=x, and T the pla
e above x � 1, one has

k

S

T

=k is in�nite and then

0:72 < 8=11 � A(5) �

p

5� 1 < 1:24:
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Note that by using unrami�ed extensions, Temkine [34℄ has re
overed the same

bound for A(5).

5. Wild ramifi
ation

We �x a prime p. Now we suppose (for simpli
ity) that T 
onsists solely of pla
es

dividing p in the number �eld 
ase, and in the fun
tion �eld 
ase we suppose that

pjq. To ea
h prime p 2 T we asso
iate i

p

2 [0;1℄. We 
all T (I) = f(p; i

p

); p 2 Tg,

and de�ne k

S

T (I)

as being the maximal p-extension of k unrami�ed outside T , totally

de
omposed for all pla
es in S, su
h that D

(i

p

)

p

is trivial, for all p in T , where D

(i

p

)

p

is the rami�
ation group with upper numbering (see for example [30℄ for more

details). The 
ondition i

p

= 1 means that there is no restri
tion for rami�
ation

at p. Note that we 
an assume without loss of generality that i

p

> 1 as the following

proposition demonstrates.

Proposition 5.1. If i

p

� 1, p is unrami�ed in k

S

T (I)

=k.

Proof. Fix p 2 T . Let K be a number �eld su
h that k � K � k

S

T (I)

. By the

restri
tion property of rami�
ation groups, D

(i

p

)

p

(K=k) is trivial. Put n =  

K=k

(i

p

)

where  

K=k

is the Herbrand fun
tion asso
iated to p in K=k: D

(i

p

)

p

(K=k) = f1g )

D

p;(n)

(K=k) = f1g where D

p;(j)

(K=k) is the rami�
ation group with lower number-

ing. If n � 1, then sin
e D

p;(1)

(K=k) � D

p;(n)

(K=k), we �nd that D

p;(1)

(K=k) =

f1g. But D

p;(0)

(K=k)=D

p;(1)

(K=k) has order prime to p and D

p;(0)

(K=k) is a p-

group, hen
e D

p;(0)

(K=k) = f1g.

Now we want to show that n � 1. Suppose n � 1; m = bn
 � 1. We have

i

p

=  

�1

K=k

(n) =

g

1

+ � � �+ g

m

+ (n�m)g

m+1

g

0

where g

i

= jD

p;(i)

(K=k)j. Sin
e D

p;(0)

(K=k)=D

p;(1)

(K=k) is trivial, g

0

= g

1

. So

one obtains ([30℄, 
hapter IV x3):

1 +

m� 1

g

0

+

(n�m)g

m+1

g

0

� i

p

� 1;

giving n = m = 1. �

The main question of this se
tion is the following:

Problem 5.2. What is the relation rank of the group G

S

T (I)

?

Before looking more 
losely at this question we explain why it is interesting for

the problem of �nding asymptoti
ally good towers.

Theorem 5.3. Assume that for all p 2 T , i

p

� 1 is �nite. Suppose that k

S

T (I)

=k

is in�nite. Then

1) In the number �eld 
ase, if k has degree n and in�nity type t, one has:

�(t) � rd

k

�

0

�

Y

p2T

N

k=Q

p

i

p

+1

1

A

1=n

:

2) In the fun
tion �eld 
ase, suppose pjq, k is a genus g fun
tion �eld with


onstant �eld F

q

, S is a non-empty set of degree 1 pla
es of k disjoint from T ; then



ASYMPTOTICALLY GOOD TOWERS OF GLOBAL FIELDS 7

4.1, one has:

A(q) �

jSj

g � 1 +

1

2

P

p2T

(i

p

+ 1)degp

:

Proof. LetK be su
h that k � K � k

S

T (I)

. By restri
tion, for all p 2 T , D

(i

p

)

p

(K=k)

is trivial. Let p 2 T . By de�nition one has:

D

(i

p

)

p

(K=k) = D

p;( 

K=k

(i

p

))

(K=k):

where  

K=k

is Herbrand fun
tion. Put n =  

K=k

(i

p

) and m = bn
. Then for all

Pjp, P a prime of K, one knows the P-valuation v

P

(D

K=k

) of the di�erent of K=k

[30℄:

v

P

(D

K=k

) = g

0

+ g

1

+ � � �+ g

m

� (m+ 1);

where g

j

= jD

p;(j)

(K=k)j ; g

j

= 1 for all j � m + 1. If we use the de�nition of  ,

and the fa
t that ' =  

�1

is the re
ipro
al fun
tion, one gets:

i

p

= '

K=k

(n) =

g

1

+ � � �+ g

m

+ (n�m)

g

0

;

and then

v

P

(D

K=k

) = g

0

+ g

1

+ � � �+ g

m

� (m+ 1)

= g

0

(i

p

+ 1)� (m+ 1)� (n�m)

� e

P

(K=k)(i

p

+ 1)

be
ause g

0

= e

P

(K=k). The rest follows easily as in [2℄. �

5.1. A sub-extension of k

S

T (I)

. For a �nite extension K=k we 
onsider T

K

and

S

K

the set of pla
es of K above T and S. For all pla
es P 2 T

K

we let i

P

= i

p

where P \ O

k

= p 2 T , and we write simply K

S

T (I)

instead of K

S

K

T

K

(I

K

)

.

So now we 
an de�ne k

1

� k

S

T (I)

indu
tively as follows: start with k

0

= k; for

ea
h i � 0, let k

i+1

be the maximal abelian extension of k

i


ontained in (k

i

)

S

T (I)

;

for the whole tower, put k

1

= [k

i

. Then k

1

� k

S

T (I)

. Note that in the tamely

rami�ed situation, k

1

= k

S

T (I)

. Put G = Gal(K

1

=k). In [24℄ Perret proposed a

bound for r(G) � d(G) when G is �nite. Niederreiter and Xing [20℄ showed that

Perret's 
onje
ture would imply the in�nitude of a 
ertain tower over F

2

violating

the Drinfeld-Vladut bound.

We note that if k

1

=k is in�nite, it gives better estimates for �(t) and A(q) than

those of Theorem 5.3, namely:

� �(t) � rd

k

�

0

�

Y

p2T

�

N

k=Q

�

p

bi

p




�

+1

1

A

1=n

; in the number �eld 
ase and

� A(q) �

jSj

g � 1 +

1

2

P

p2T

(bi

p




�

+ 1)degp

in the fun
tion �eld 
ase,

where bi

p




�

= bi

p


 if i

p

is not an integer, bi

p




�

= i

p

� 1 otherwise.

This 
omes from the following observation: Let

n(i

p

) = sup

j

fD

(j)

p

(K=k) 6= fegg:

Then n(i

p

) � i

p

. But if K=k is an abelian extension we know that n(i

p

) is an

integer and so n(i

p

) � bi

p




�

: this is the Hasse-Arf Theorem (see [30℄ for example).

To 
on
lude we use the proof of Perret [24℄.
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5.2. Iwasawa Theory. Suppose that for all p 2 T , i

p

= 1. Then the di�eren
e

r � d is well-understood (see [15℄, [9℄). In parti
ular, if T 
ontains all pla
es of k

above p with i

p

=1, then r � d = �r

2

+ 1 (for p > 2).

One has the following natural question:

Problem 5.4. Does there exist a fun
tion f depending on S and on T (I) with

values in R su
h that

r(G

S

T (I)

)� d(G

S

T (I)

) � f(S; T (I))

At least when some i

p

is allowed to be 1, the answer is no, as shown by the

following theorem [12℄:

Theorem 5.5. Let p = 2. Let ` be a prime su
h that ` � �1 (mod 16); Put

k = Q(

p

�`). Let p

1

and p

2

be the two primes of k above 2. Take 1 < i

p

1

<1 and

i

p

2

=1. Then G

S

T (I)

is a �nitely generated pro-2-group with r(G

S

T (I)

) =1

Proof. We give only the two 
ru
ial points of the proof:

1) The 
ondition on ` for
es the de
omposition group of p

1

in k

S

T (I)

=k to be ex-

a
tly the absolute Galois group of the maximal p-extension K

p

1

of k

p

1

: this is an

appli
ation of a result of Wingberg [36℄.

2) Let G be the Galois group of the absolute p-extension of a lo
al �eld k, and let

G

i

be the subgroup of G with upper numbering. Then for i > 1 the number of

relations of G=G

i

is in�nite: this is a resut of Gordeev [7℄. �

6. Two questions

To �nish we want to mention two questions. The �rst is studied in [11℄:

Problem 6.1. Does every T -rami�ed p-tower k

S

T

=k 
ontain an intermediate num-

ber �eld K su
h that K has an in�nite unrami�ed p-tower K

S

;

?

Problem 6.2. Consider, for simpli
ity, the number �eld situation and p = 2.

Suppose that for all primes p of k not dividing 2, the maximal fpg-rami�ed 2-

extension k

fpg

over k is in�nite. Does this imply that the maximal unrami�ed

2-extension of k is in�nite?

The se
ond 
an give a very ni
e appli
ation for bounding �(t) and is, in essen
e,

a re�nement of the Golod-Shafarevi
h 
riterion. For instan
e, it has long been


onje
tured that the imaginary quadrati
 �eld k of dis
riminant �5460 = �4 �3 �5 �

7 �13 whose 
lass group has exponent 2 and rank 4 has an in�nite unrami�ed 2-
lass

�eld tower. It is easy to see that this �eld satis�es the hypothesis of Problem 6.2,

a positive answer to whi
h would then yield �(0) �

p

5460 < 74.
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