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Abstrat. The study of the maxmimal p-extension of a global �eld k unram-

i�ed everywhere and totally split at a �nite set S of plaes of k has at least

two important appliations: it gives information on the asymptoti behavior of

disriminants versus degree in the number �eld ase (as measured by the Mar-

tinet onstant �(t)), and on the relationship between genus and the number of

plaes of degree one (for large genus) in the funtion �eld ase (as measured by

the Ihara onstant A(q)). We survey reent work on the onstrution of towers

of global �elds whih are optimal for the study of these phenomena, inlud-

ing the best known examples in both settings; these ontain, among others,

an in�nite unrami�ed tower of totally omplex number �elds with small root

disriminant improving Martinet's reord. We show that allowing wild rami-

�ation to limited depth does lead to asymptotially good towers. However,

we demonstrate also that the investigation of the in�nitude of these towers

involves diÆulties absent in the tame ase.

1. Introdution and definitions

An in�nite tower of global �elds K

0

� K

1

� K

2

� � � is \asymptotially good" if

the relationship between ertain of its layers' invariants is in some sense optimal.

The preise ondition is: (1) for number �elds, that rd

K

i

= jdisK

i

j

1=[K

i

:Q℄

remain

bounded from above, and (2) for funtion �elds with �xed �nite onstant �eld F

q

,

that N

K

i

=g

K

i

remain bounded away from 0, where g

K

; N

K

are respetively, the

genus, and the number of plaes of degree 1 of K.

The relationship between these invariants ( dis

K

vs. [K : Q℄, and g

K

vs. N

K

)

are governed by important general bounds (Stark-Odlyzko for number �elds and

Hasse-Weil for funtion �elds). The interest of asymptotially good towers is that

they measure the sharpness of the leading terms of these bounds.

In the number �eld ase, urrently the only method for onstruting asymp-

totially good towers is that of p-lass �eld towers, for a �xed prime p. The same

method works well for funtion �elds; however, at least when q is a square, there are

other rih soures of asymptotially good towers as well: modular urve onstru-

tions, ertain types of expliit equations (whih potentially are always modular! f.

[4℄), and a new \rigid" onstrution of Frey, Kani, and V�olklein [6℄.

In this paper, we survey the p-lass �eld tower onstrutions. One �xes a prime

p and a �nite non-empty set S of plaes of a base �eld K and studies the maximal

p-extension of K whih is everywhere unrami�ed and totally split at S. For these

appliations, it is also possible to allow a �nite number of plaes to ramify, as long

as we an obtain a bound for the minimal number of relations of the Galois groups

whih appear. In x2 we reall all of this; we give the best known examples for

totoally omplex and totally real number �elds (x3) and for funtion �elds over

�elds with 2; 3 and 5 elements (x4).
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2 F. HAJIR AND C. MAIRE

In x5 we onsider extensions where wild rami�ation an our but only to a

limited depth; we show �rst that these lead to asymptotially good towers. We

state a Theorem (Theorem 5.5) whih shows that allowing wild rami�ation leads

to ompliations in the study of the minimal number of relations of the resulting

Galois groups.

Finally in last part, we state some open problems whih ome up naturally in

the searh for asymptotially good towers.

1.1. Martinet's onstant. For a number �eld k of degree n = r

1

+ 2r

2

over Q,

with signature (r

1

; r

2

), let t = t

k

:= r

1

=n be its \in�nity type," i.e. the proportion

of its embeddings into C whih fator through R. We will write dis

k

, rd

k

for its

disriminant and root disriminant, respetively. Thanks to the work of Stark [33℄,

Odlyzko [22℄ [23℄, Poitou [25℄ and Serre [31℄, we have a very good lower bound for

rd

k

, an asymptoti version of whih reads: for a number �eld k of in�nity type t

and large enough degree,

rd

k

� A

t

B

1�t

; (1)

with A = 60; B = 22; under GRH, one may take A = 215; B = 44.

For �xed t 2 Q \ [0; 1℄, and integers n suh that number �elds of degree n and

in�nity type t exist, we let �

n

(t) be the minimal root disriminant attained by

number �elds of degree n and in�nity type t and de�ne

�(t) = lim inf

n

�

n

(t):

For more details see [18℄ [10℄. From (1), we see that

�(t) � A

t

B

1�t

; t 2 Q \ [0; 1℄:

A nested sequene of distint number �elds K

0

� K

1

� � � � is asymptotially good

if rd

K

j

is bounded from above. An asymptotially good tower with �xed in�nity

type t and root disriminant bounded above by R gives an upper bound �(t) � R.

In x4, we will present the best urrent upper bounds for �(0) and �(1), namely (see

[11℄)

B � �(0) � 82:2; A � �(1) � 954:3:

1.2. Funtion �eld ase. We will �x a �nite �eld F

q

and ask how large the group

of rational points X(F

q

) of a smooth absolutely irreduible algebrai urve X of

genus g over F

q

an be as g tends to in�nity. Atually, to maintain notational

onsisteny with number �elds, we will onsider the orresponding funtion �elds

K = F

q

(X) and ount the plaes of degree 1. Let N

q

(g) be the maximum number of

degree 1 plaes of a genus g funtion �eld with ontant �eld F

q

. By the elebrated

theorem of Hasse-Weil,

N

q

(g) � q + 1 + 2g

p

q:

Various improvements of this bound have been obtained in the last two deades.

To measure the asymptotially optimal bound, Ihara and Serre have introdued

A(q) = lim sup

g!1

N

q

(g)

g

:

In the 80's, Ihara [14℄ and, Tsfasman, Vladut and Zink [35℄ independently showed

by using modular urves that A(q) �

p

q � 1 if q is a square. Shortly thereafter,

Drinfeld and Vladut [3℄ proved that for all q,

A(q) �

p

q � 1;
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and so A(q) =

p

q�1 for square q. Using lass �eld towers, Serre showed that there

is an absolute onstant  > 0 suh that A(q) >  log q for all q. Variations on Serre's

proof [32℄ an be found in Neiderreiter-Xing [21℄, and Li-Maharaj [17℄. Reently,

Elkies, Kresh, Poonen, Wetherell, and Zieve [5℄ have shown that lim inf

g

N

q

(g) �

(

p

q � 1)=3 for square q and lim inf

g

N

q

(g)=g � 

0

log q for an absolute onstant



0

> 0 (all q). When q is not prime, it an be shown that the growth of A(q) is

faster than logarithmi (e.g. [21℄ and [17℄). The major outstanding problem here

is, then, to improve Serre's lower bound for A(q) when q is prime.

We will be ontented here with desribing what is known for three small prime

values of q, namely q = 2; 3 and 5. The best known bounds are: A(2) � 81=317 (see

[19℄), A(3) � 12=25 (see [1℄) and A(5) � 8=17 A(5) (see [2℄, [34℄): we will present

these examples in x4.

2. Tamely ramified situation

We �x a prime p and two �nite sets S and T of plaes of k suh that:

(1) In the funtion �eld ase, S is non-empty and ontains only degree 1 plaes.

(2) In the number �eld ase, S ontains all in�nite plaes S

1

of k.

(3) S \ T = ;

(4) for all plaes p 2 T , p divides Np � 1, where Np is the absolute norm. In

the funtion �eld ase that means that p divides q

deg(p)

� 1 for p 2 T .

Now we de�ne k

S

T

to be the maximal p-extension (inside a �xed algebrai losure)

of k unrami�ed ouside T in whih S splits ompletely. By our assumptions, the

rami�ation in k

S

T

=k is tame; put G

S

T

= Gal(k

S

T

=k). One has to introdue two

quantities:

De�nition 2.1. Let G be a �nitely generated pro-p-group. Then

(1) d(G) is the minimal number of generators of G: d(G) = dim

F

p

H

1

(G; F

p

).

(2) r(G) is the minimal number of relations of G: r(G) = dim

F

p

H

2

(G; F

p

).

The deepest known fat about these groups was �rst established by Shafarevih

(see [15℄, or [2℄):

Theorem 2.2.

r(G

S

T

)� d(G

S

T

) � jSj � 1 + �

k;T

;

where �

k;T

= 1 when k ontains �

p

and T = ;, 0 otherwise.

Remark 2.3. One has the trivial inequalities: d(G

S

;

) + jT j � d(G

S

T

) � d(G

S

;

).

The famous Theorem of Golod-Shafarevih says that for a non-trival �nite p-

group G, r(G) > d(G)

2

=4). Thus,

Theorem 2.4. If

d(G

S

T

) � 2 + 2

q

jSj+ �

k;T

;

then G

S

T

is in�nite.

The last ingredient we need is a standard genus theory bound for the p- rank of

the S-lass group in a degree p Galois extension.

Theorem 2.5. Suppose k=k

0

is a Galois extension of degree p. Let S

0

= S \ k

0

be

the set of plaes of k

0

lying under the plaes in S. Suppose r plaes of k

0

ramify in

k. Then

d(G

S

;

) � r � jS

0

j � Æ

k

0

:

where Æ

k

0

= 1 when k

0

ontains �

p

, 0 otherwise.
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For this and more re�ned genus theory bounds, see e.g. [28℄, [29℄.

3. Number fields

A �rst observation is that the layers of an in�nite tamely rami�ed tower form

an asymptotially good family, (i.e. they have bounded root disriminant) [10℄:

Theorem 3.1. Let k be a number �eld of degree n over Q of in�nity type t suh

that G

S

T

is in�nite. Then

�(t) � rd

k

Y

p2T

�

N

k=Q

p

�

1=n

:

3.1. Martinet's example. The �rst idea was to onstrut a number �eld k with

small root disriminant admitting an in�nite unrami�ed 2-extension (S = S

1

, T =

;). The layers of suh a tower omprise a family with onstant root disriminant.

Sine 1978, the best suh example known has been that of Martinet [18℄ : he proved

that the �eld Q(os(2�=11);

p

2;

p

�23) with root disriminant 2

3=2

11

4=5

23

1=2

has

an in�nite unrami�ed 2-tower (T = ;, S = S

1

), and so

�(0) < 92:4:

3.2. An in�nite unrami�ed tower whih improves Martinet's reord. In

[10℄, we found that lass �eld towers over non-Galois base �elds seem to yield

asymptotially good towers. We now apply that idea to give an unrami�ed tower

with root disriminant smaller than the previous example.

Let k

0

= Q(�) where � is a root of f = x

5

� 2x

4

+ 3x

3

� 3x

2

� x + 1. The

disriminant of f is �31391, a prime; thus, this is also the disriminant of k

0

,

and O

k

0

= Z[�℄. Sine dis

k

0

is negative, k

0

has signature (3; 1). Sine dis

k

0

is a

quadrati disriminant, it follows (see Kondo [16℄) that the Galois group of f is S

5

;

indeed, the Galois losure of k

0

is an unrami�ed A

5

-extension of Q(

p

�31391). We

will not need this fat, however.

The element � = �36�

4

+ 125�

3

� 221�

2

+ 182� � 80 2 O

k

0

is negative at all

three real plaes of k

0

. Its minimal polynomial is g(y) = y

5

+ 223y

4

+ 18336y

3

+

10907521y

2

+ 930369979y + 18559139599. The O

k

0

-ideal it generates fators into

nine prime ideals of O

k

0

: � = �

7

�

0

7

�

11

�

0

11

�

13

�

19

�

0

19

�

23

�

29

where �

r

generates an

ideal of norm r. We let k = k

0

(

p

�), a totally omplex �eld of degree 10. A de�ning

polynomial for k is g(y

2

). We note that � is ongruent to a square modulo 4O

k

;

expliitly, � = �

2

� 4 with � = �

4

+ � +1 and  = 11�

4

� 31�

3

+56�

2

� 45� +20.

Thus, k=k

0

is rami�ed at the three real plaes and at the nine primes dividing �

and nowhere else. Thus, the root disriminant of k is rd

k

= 31391

1=5

(7

2

� 11

2

� 13 �

19

2

� 23 � 29)

1=10

= 84:375 � � � . By Theorem 2.5 (p = 2), the 2-rank of the ideal lass

group of k is at least 9+3�(3+1)�1 = 7. (This is on�rmed by a Pari alulation

whih gives Cl

k

= Z=3� (Z=2)

7

). By Theorem 2.4, k admits an in�nite everywhere

unrami�ed 2-tower sine 2 + 2

p

5 + 1 = 2 +

p

24 < 7. To our best knowledge, this

tower gives the least root disriminant for an unrami�ed tower whih is known to

be in�nite.

3.3. The best known bounds for �(0) and �(1). Tamely rami�ed towers and

asymmetri (non-Galois) onstrutions of the base (suh as the one presented above)

were two ideas introdued in [10℄ for improving Martinet's onstant. We briey

present the best known urrent estimates for �(0) and �(1) (see [11℄ for details).



ASYMPTOTICALLY GOOD TOWERS OF GLOBAL FIELDS 5

3.3.1. Totally omplex situtation. The totally imaginary �eld k = Q(�) where � is

a root of

x

12

+339x

10

� 19752x

8

� 2188735x

6

+284236829x

4

+4401349506x

2

+15622982921

has disriminant 7 � 13 � 19

2

� 23

4

� 29 � 31 � 35509

2

; it admits an in�nite 2-extension

rami�ed at a prime p

9

with absolute norm 9 and unrami�ed everywhere else. Thus

�(0) � rd

k

� 9

1=12

< 82:2.

3.3.2. Totally real situation. The totally real �eld k = Q(�) where � is a root of

x

12

� 56966x

10

+ 959048181x

8

� 5946482981439x

6

+ 14419821937918124x

4

�12705425979835529941x

2

+ 3527053069602078368989

has disriminant 7

1

0 � 13

7

� 29

4

� 41

4

� 97 � 113

2

; it admits an in�nite 2-extension

rami�ed at a prime p

13

with absolute norm 13 and unrami�ed elsewhere. Thus

�(1) � rd

k

� 13

1=12

< 954:3.

4. Funtion fields

As in the number �eld ase, a tamely rami�ed p-extension of funtion �elds is

asymptotially good, meaning N

K

=g

K

is bounded from below for the layers K of

the p-extension. (This was used in [2℄ to give improved lower bounds for A(3) and

A(5).) To be preise, [2℄:

Theorem 4.1. Fix a prime p not dividing q. Let k be a genus g funtion �eld with

onstant �eld F

q

, S a non-empty set of degree 1 plaes of k, T a (possibly empty)

set of plaes of k disjoint from S. If G

S

T

is in�nite, then

A(q) �

jSj

g � 1 +

1

2

P

p2T

degp

:

4.1. Unrami�ed towers. The best lower bound forA(2) has been given by Nieder-

reiter and Xing [19℄ :

Let k = F

2

(x), N

0

= x

4

and N

1

= (x

2

+ x+ 1)(x

6

+ x

3

+ 1) 2 F

2

[x℄. Let K

i

be

the sub�eld of the ylotomi funtion �eld k

N

i

assoiated to N

i

for i = 0; 1 (for

more details see [13℄). Consider now the sub�eld F

i

of K

i

�xed by hx+ ii. Put

F = F

0

F

1

. Then [F : k℄ = 84. Now onsider S be the set of plaes of F lying over

1 together with one plae lying over x. Then jSj = 81. For this example, and

p = 2, G

S

;

is in�nite, and so

0:255 <

81

317

� A(2) �

p

2� 1 < :414:

4.2. Tamely rami�ed towers. The following example is from [1℄: Let k = F

3

(x;

p

D),

where D = (x

27

�x)(x

9

�x)(x+1)(x

3

�x)

�2

(x

3

�x

2

+x+1)

�1

2 F

3

[x℄; the poly-

nomial D has 11 prime fators over F

3

. If we take p = 2, S to be the set of

k-plaes above x; x � 1 and 1=x, T to onsist of the unique k-plae above x + 1,

Golod-Shafarevih implies that k

S

T

is in�nite, hene by Theorem 4.1,

0:48 = 12=25 � A(3) �

p

3� 1 < 0:74:

The following example is from [2℄. For the �eld k = F

5

(x;

p

D) where D =

(x � 1)(x � 2)(x � 3)(x� 4)(x

2

+ x + 1)(x

2

+ 3)(x

2

+ 2)(x

2

+ x + 2)(x

2

+ 2x+ 3)

with p = 2, S all plaes above x and 1=x, and T the plae above x � 1, one has

k

S

T

=k is in�nite and then

0:72 < 8=11 � A(5) �

p

5� 1 < 1:24:
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Note that by using unrami�ed extensions, Temkine [34℄ has reovered the same

bound for A(5).

5. Wild ramifiation

We �x a prime p. Now we suppose (for simpliity) that T onsists solely of plaes

dividing p in the number �eld ase, and in the funtion �eld ase we suppose that

pjq. To eah prime p 2 T we assoiate i

p

2 [0;1℄. We all T (I) = f(p; i

p

); p 2 Tg,

and de�ne k

S

T (I)

as being the maximal p-extension of k unrami�ed outside T , totally

deomposed for all plaes in S, suh that D

(i

p

)

p

is trivial, for all p in T , where D

(i

p

)

p

is the rami�ation group with upper numbering (see for example [30℄ for more

details). The ondition i

p

= 1 means that there is no restrition for rami�ation

at p. Note that we an assume without loss of generality that i

p

> 1 as the following

proposition demonstrates.

Proposition 5.1. If i

p

� 1, p is unrami�ed in k

S

T (I)

=k.

Proof. Fix p 2 T . Let K be a number �eld suh that k � K � k

S

T (I)

. By the

restrition property of rami�ation groups, D

(i

p

)

p

(K=k) is trivial. Put n =  

K=k

(i

p

)

where  

K=k

is the Herbrand funtion assoiated to p in K=k: D

(i

p

)

p

(K=k) = f1g )

D

p;(n)

(K=k) = f1g where D

p;(j)

(K=k) is the rami�ation group with lower number-

ing. If n � 1, then sine D

p;(1)

(K=k) � D

p;(n)

(K=k), we �nd that D

p;(1)

(K=k) =

f1g. But D

p;(0)

(K=k)=D

p;(1)

(K=k) has order prime to p and D

p;(0)

(K=k) is a p-

group, hene D

p;(0)

(K=k) = f1g.

Now we want to show that n � 1. Suppose n � 1; m = bn � 1. We have

i

p

=  

�1

K=k

(n) =

g

1

+ � � �+ g

m

+ (n�m)g

m+1

g

0

where g

i

= jD

p;(i)

(K=k)j. Sine D

p;(0)

(K=k)=D

p;(1)

(K=k) is trivial, g

0

= g

1

. So

one obtains ([30℄, hapter IV x3):

1 +

m� 1

g

0

+

(n�m)g

m+1

g

0

� i

p

� 1;

giving n = m = 1. �

The main question of this setion is the following:

Problem 5.2. What is the relation rank of the group G

S

T (I)

?

Before looking more losely at this question we explain why it is interesting for

the problem of �nding asymptotially good towers.

Theorem 5.3. Assume that for all p 2 T , i

p

� 1 is �nite. Suppose that k

S

T (I)

=k

is in�nite. Then

1) In the number �eld ase, if k has degree n and in�nity type t, one has:

�(t) � rd

k

�

0

�

Y

p2T

N

k=Q

p

i

p

+1

1

A

1=n

:

2) In the funtion �eld ase, suppose pjq, k is a genus g funtion �eld with

onstant �eld F

q

, S is a non-empty set of degree 1 plaes of k disjoint from T ; then
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4.1, one has:

A(q) �

jSj

g � 1 +

1

2

P

p2T

(i

p

+ 1)degp

:

Proof. LetK be suh that k � K � k

S

T (I)

. By restrition, for all p 2 T , D

(i

p

)

p

(K=k)

is trivial. Let p 2 T . By de�nition one has:

D

(i

p

)

p

(K=k) = D

p;( 

K=k

(i

p

))

(K=k):

where  

K=k

is Herbrand funtion. Put n =  

K=k

(i

p

) and m = bn. Then for all

Pjp, P a prime of K, one knows the P-valuation v

P

(D

K=k

) of the di�erent of K=k

[30℄:

v

P

(D

K=k

) = g

0

+ g

1

+ � � �+ g

m

� (m+ 1);

where g

j

= jD

p;(j)

(K=k)j ; g

j

= 1 for all j � m + 1. If we use the de�nition of  ,

and the fat that ' =  

�1

is the reiproal funtion, one gets:

i

p

= '

K=k

(n) =

g

1

+ � � �+ g

m

+ (n�m)

g

0

;

and then

v

P

(D

K=k

) = g

0

+ g

1

+ � � �+ g

m

� (m+ 1)

= g

0

(i

p

+ 1)� (m+ 1)� (n�m)

� e

P

(K=k)(i

p

+ 1)

beause g

0

= e

P

(K=k). The rest follows easily as in [2℄. �

5.1. A sub-extension of k

S

T (I)

. For a �nite extension K=k we onsider T

K

and

S

K

the set of plaes of K above T and S. For all plaes P 2 T

K

we let i

P

= i

p

where P \ O

k

= p 2 T , and we write simply K

S

T (I)

instead of K

S

K

T

K

(I

K

)

.

So now we an de�ne k

1

� k

S

T (I)

indutively as follows: start with k

0

= k; for

eah i � 0, let k

i+1

be the maximal abelian extension of k

i

ontained in (k

i

)

S

T (I)

;

for the whole tower, put k

1

= [k

i

. Then k

1

� k

S

T (I)

. Note that in the tamely

rami�ed situation, k

1

= k

S

T (I)

. Put G = Gal(K

1

=k). In [24℄ Perret proposed a

bound for r(G) � d(G) when G is �nite. Niederreiter and Xing [20℄ showed that

Perret's onjeture would imply the in�nitude of a ertain tower over F

2

violating

the Drinfeld-Vladut bound.

We note that if k

1

=k is in�nite, it gives better estimates for �(t) and A(q) than

those of Theorem 5.3, namely:

� �(t) � rd

k

�

0

�

Y

p2T

�

N

k=Q

�

p

bi

p



�

+1

1

A

1=n

; in the number �eld ase and

� A(q) �

jSj

g � 1 +

1

2

P

p2T

(bi

p



�

+ 1)degp

in the funtion �eld ase,

where bi

p



�

= bi

p

 if i

p

is not an integer, bi

p



�

= i

p

� 1 otherwise.

This omes from the following observation: Let

n(i

p

) = sup

j

fD

(j)

p

(K=k) 6= fegg:

Then n(i

p

) � i

p

. But if K=k is an abelian extension we know that n(i

p

) is an

integer and so n(i

p

) � bi

p



�

: this is the Hasse-Arf Theorem (see [30℄ for example).

To onlude we use the proof of Perret [24℄.
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5.2. Iwasawa Theory. Suppose that for all p 2 T , i

p

= 1. Then the di�erene

r � d is well-understood (see [15℄, [9℄). In partiular, if T ontains all plaes of k

above p with i

p

=1, then r � d = �r

2

+ 1 (for p > 2).

One has the following natural question:

Problem 5.4. Does there exist a funtion f depending on S and on T (I) with

values in R suh that

r(G

S

T (I)

)� d(G

S

T (I)

) � f(S; T (I))

At least when some i

p

is allowed to be 1, the answer is no, as shown by the

following theorem [12℄:

Theorem 5.5. Let p = 2. Let ` be a prime suh that ` � �1 (mod 16); Put

k = Q(

p

�`). Let p

1

and p

2

be the two primes of k above 2. Take 1 < i

p

1

<1 and

i

p

2

=1. Then G

S

T (I)

is a �nitely generated pro-2-group with r(G

S

T (I)

) =1

Proof. We give only the two ruial points of the proof:

1) The ondition on ` fores the deomposition group of p

1

in k

S

T (I)

=k to be ex-

atly the absolute Galois group of the maximal p-extension K

p

1

of k

p

1

: this is an

appliation of a result of Wingberg [36℄.

2) Let G be the Galois group of the absolute p-extension of a loal �eld k, and let

G

i

be the subgroup of G with upper numbering. Then for i > 1 the number of

relations of G=G

i

is in�nite: this is a resut of Gordeev [7℄. �

6. Two questions

To �nish we want to mention two questions. The �rst is studied in [11℄:

Problem 6.1. Does every T -rami�ed p-tower k

S

T

=k ontain an intermediate num-

ber �eld K suh that K has an in�nite unrami�ed p-tower K

S

;

?

Problem 6.2. Consider, for simpliity, the number �eld situation and p = 2.

Suppose that for all primes p of k not dividing 2, the maximal fpg-rami�ed 2-

extension k

fpg

over k is in�nite. Does this imply that the maximal unrami�ed

2-extension of k is in�nite?

The seond an give a very nie appliation for bounding �(t) and is, in essene,

a re�nement of the Golod-Shafarevih riterion. For instane, it has long been

onjetured that the imaginary quadrati �eld k of disriminant �5460 = �4 �3 �5 �

7 �13 whose lass group has exponent 2 and rank 4 has an in�nite unrami�ed 2-lass

�eld tower. It is easy to see that this �eld satis�es the hypothesis of Problem 6.2,

a positive answer to whih would then yield �(0) �

p

5460 < 74.
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