Calcul matriciel

Exercice 1. Résoudre les systèmes suivants :

$$\begin{cases} x+y-z &= 1 \\ 2y+z &= 1 \\ x-y+3z &= 0 \end{cases} \begin{cases} x+y+2z &= 0 \\ x-y-2z &= 1 \\ x+3y+6z &= 0 \end{cases}$$

Exercice 2. Soient les matrices $A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 1 & -3 \\ 3 & 0 & 4 \\ 0 & -1 & -1 \end{pmatrix}$.

- (i) Lorsque c'est possible, effectuer les calculs $AB,\,BA,\,A^2$ et $B^2.$
- (ii) Calculer A^t , AA^t et A^tA .

Exercice 3. Soit la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Existe-t-il des matrices B telles que $BA = I_n$, n à déterminer ? Si oui, calculer AB.

Exercice 4. Donner deux matrices carrées A et B de $M_2(\mathbb{R})$ telles que $AB \neq BA$.

Exercice 5. Déterminer toutes les matrices A de $M_2(\mathbb{R})$ vérifiant $A^2 = A$. Pour ces matrices, déterminer A^n pour tout entier $n \geq 0$. Déterminer une telle matrice A lorsqu'elle est inversible.

Exercice 6. On considère la matrice $M = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. On souhaite calculer les puissances de M. Pour cela on note, pour $n \ge 1$, $M^n = \begin{pmatrix} a_n & x_n \\ b_n & c_n \end{pmatrix}$.

- (i) Déterminer les valeurs de a_n , b_n et c_n pour tout entier $n \ge 1$.
- (ii) Montrer que $x_{n+1} = 1 + 2x_n$ pour tout entier n.
- (iii) On note $y_n = x_n + 1$. Déterminer l'expression de y_{n+1} en fonction de y_n .
- (iv) En déduire l'expression de y_n puis de x_n en fonction de n, et enfin l'expression de M^n .

Exercice 7. Calculer la puissance n-ème des matrices suivantes $(n \ge 1)$:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}.$$

- (i) Montrer que $A^3 6A + 4I_4 = 0$.
- (ii) Montrer que A est inversible et calculer A^{-1} .

Exercice 9. Soit la matrice à coefficients réels $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Montrer l'existence de deux réels x et y tels que $A^2 + xA + yI_2 = 0$. Montrer que A est inversible si et seulement si $ad - bc \neq 0$. En déduire A^{-1} lorsque A est inversible.

Exercice 10.

Soient les matrices
$$A = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix}$$
 et $P = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}$.

- (i) Montrer que P est inversible et calculer P^{-1} .
- (ii) Calculer $P^{-1}AP$.
- (iii) En déduire A^n , $n \ge 1$. Quel sens peut-on donner à A^n pour $n \le 0$?

Exercice 11. Soit A une matrice de $M_n(\mathbb{R})$ vérifiant $A^2 - 5A + 6I_n = 0$.

- (i) Donner un exemple d'une telle matrice.
- (ii) Montrer que A est inversible et exprimer A^{-1} en fonction de A.
- (iii) Exprimer A^n , $n \ge 0$ en fonction de A.
- (iv) Exprimer A^{-n} , $n \ge 0$, en fonction de A.

Exercice 12.

- (i) Soit la matrice $A=\begin{pmatrix}1&0&0\\-1&1&0\\0&-1&1\end{pmatrix}$. Calculer $(A-I_3)^n,\ n\geq 1$; en déduire A^n .
- (ii) Soit le système récurrent $(n \ge 0)$

$$\begin{cases} x_{n+1} = x_n \\ y_{n+1} = y_n - x_n \\ z_{n+1} = z_n - y_n \end{cases}$$

Ecrire ce système sous forme matricielle puis exprimer (x_n, y_n, z_n) en fonction de (x_0, y_0, z_0) .

Exercice 13. On note par \mathcal{S}_n le sous-espace vectoriel des matrices symétriques de $M_n(\mathbb{R})$ et par \mathcal{A}_n celui des matrices anti-symétriques.

- (i) Déterminer les dimensions de $M_n(\mathbb{R})$, de \mathcal{S}_n et de \mathcal{A}_n .
- (ii) Montrer que $M_n(\mathbb{R}) = \mathcal{S}_n \oplus \mathcal{A}_n$.

Exercice 14.

On note par \mathcal{O}_2 l'ensemble des matrices A de $M_2(\mathbb{R})$ vérifiant $A^tA = I$. Les matrices de \mathcal{O}_2 sont appelées matrices orthogonales.

- (i) Montrer que \mathcal{O}_2 n'est pas vide.
- (ii) Montrer que toute matrice de \mathcal{O}_2 est inversible, et que l'ensemble \mathcal{O}_2 est stable par multiplication.
- (iii) Déterminer toutes les matrices orthogonales de \mathcal{O}_2 .
- (iv) Montrer qu'une matrice orthogonale est soit une matrice de rotation soit le produit d'une matrice de rotation par une matrice d'une symétrie orthogonale.