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25000 Besançon, France
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Abstract—Energy consumption has become a major concern
in the recent years and Green computing has arisen as one of the
challenges in order to reduce CO2 emissions in the computing
domain. Many efforts have been made to make hardware less
energy consuming, reduce cooling energy of data and computing
centers by relocating those facilities to cool regions and other. A
novel approach to make the computing domain greener is to add
renewable energy sources for the power supply. The challenge
of this work is to consider computing facilities which are solely
run by renewable energy sources such as solar panels and wind
turbines. In this work we tackle the problem of scheduling
independent tasks within a predicted power envelope that varies
during the time. First we evaluate different instances of the
problem from a theoretical point of view. Then we propose several
heuristics for the case of multi-core architectures and we assess
their performance through extensive simulations.

Index Terms—Energy

I. INTRODUCTION

Improving energy efficiency is one of today’s major concerns
as it is one possible solution to minimize global warming.
In computer science and information technology, lots of
research works tackle this problem as computers and devices
in computing or data centers are known to be one of the big
energy consumers, at least they will be in the future if we
continue in the same direction. There are however several ways
to reduce the energy footprint of a consumer, either reducing
its consumption or using energy sources that less impact the
environment. In the case of IT or computing resources lots
of effort is put on reducing the energy consumption of the
resources, from the processor to the cooling. Nevertheless, as
low as their consumption will be, they will still consume power.
An alternative solution to further reduce their impact is to use
green sources such as solar panels, wind turbines, or fuel cells
as these devices do not produce CO2. The challenge of this
work is to consider computing facilities which are solely run
by renewable energy sources.

Efficiently powering a computing or data center means to
deliver the correct energy level to each of the center components.
Renewable energy sources however provide a variable energy
provisioning depending on solar and wind conditions so that
they must be completed by batteries or other energy storage
systems to guarantee a continuous work. In this problem, the
most central part is taken by the computers. If they do not have
enough power to run tasks then it is useless to supply energy
to the rest of the center. On the other hand at some points of

the power supplier life-cycle the energy storage components
become full and there is no need to spare energy that should
rather be consumed than lost. For these reasons, we concentrate
in this work on processing tasks depending on the available
power.

This article tackles the problem that we can formally solve
in scheduling with green energy optimization. Our approach is
different from traditional energy aware scheduling approaches
in that it does not target energy minimization itself but it
rather targets not to use energy sources other than renewable
energy. The optimization problem is thus rather to limit the
energy waste, the produced energy that cannot be used, than
finding ways to decrease the consumed energy. We tackle on
the one hand computing center oriented problems where the
optimization objective is the makespan to finish sets of jobs as
soon as possible and, on the other hand, data center oriented
problems where the optimization objective is the flowtime to
reduce the mean waiting time. To concentrate on the scheduling
problem, this first work considers scheduling a set of tasks on
shared memory machine as, in that case, we do not need to
take machine power on/off into account for our optimizations.

The presented contributions are as follows:
• We provide formal results on the complexity of three out

of four scheduling problems. We show that most power
constraint scheduling problems are complex. The results
are proven for one machine problems and can be extended
to more general parallel problems.

• Second, a simulation based performance study of several
heuristics proposed to efficiently solve the problem. These
simulations show that depending on the weight of the
processing time compared to the power need of the tasks
the best algorithm

The paper is organized as follows: related work is presented
in Section II, then a system model is proposed in Section III.
We present formal results on the complexity of the related
optimization problems in IV and propose several heuristics to
solve the considered problems in Section V. Experiments to
assess the heuristic performance are presented in Section VI
and we conclude in Section VII.

II. RELATED WORK

Energy saving is a major concern in the computing domain
and there exists a large variety of research that tackles the
problem of reducing the energy consumption. Several surveys



2

give an interesting overview of the research done in the field
of green computing: i.e., limiting the energy consumption of
computing or data center. For instance [1]–[3] give a wide
survey on all the technologies and tools that can be used in
data centuries to lower the energy consumption.

One possible technique for energy reduction is the usage
of Dynamic Voltage and Frequency Scaling (DVFS), which
allows to run processors and servers at a lower speed at the
price of increased execution times for tasks. Wu et al. [4] use
this technique to reduce the energy consumption in Cloud data
centers. They use a two step approach to allocate tasks to
servers and then determine the voltage/frequency combination
to run the servers. Kim et al. [5] use DVFS to provision virtual
machines for real-time Cloud services. Garg et al. [6] include
Dynamic Voltage Scaling (DVS) in their scheduling algorithm
for HPC applications on Cloud-oriented data centers. Results
show that their solution allows to reduce up to 25% the energy
usage in comparison to profit based scheduling policies with
even higher profit. It seems however that the DVFS tuning tends
to be more and more embedded directly inside the processor
with less control actions leave to the user as explained in [7].

Another approach to reduce the energy consumption is the
consideration of a shutdown model, where processors have
an additional state to on and off, which is called sleep state.
In a one machine offline setting with jobs of unit processing
times, release dates, and deadlines, a dynamic programming
approach allows to minimize the number of idle time periods
in polynomial time [8]. In follow up work of Baptiste et al. [9],
[10] the result is extended to heterogeneous preemptive jobs.
Albers and Antoniadis [11] combine speed scaling with the
sleep state model. They prove NP-completeness of the energy
minimization problem for heterogeneous tasks with release
dates and deadlines.

Often works on energy efficiency imply a bi-criteria objective.
Indeed, minimizing the energy consumption in any setting
without another complementary objective simply leads to stop
all executions, shut down all devices and have zero energy
consumption. Beloglazov et al. [12] for example propose
energy efficient solutions for Cloud data centers via virtual
machine migration while respecting quality of service (QoS)
requirements. They ensure quality of service by respecting
service level agreements (SLA) which can be minimal ensured
throughput, maximal response time or latency and other.

In [13] the authors tackle the theoretical complexity of
energy-efficient scheduling algorithms. They schedule indepen-
dent tasks on parallel identical and uniform machines and give
optimal solutions for divisible loads minimizing the makespan.
They also show that the non-divisible case of tasks is NP-hard.
The optimization criteria is the makespan and they optimize in
one step the makespan and the consumed energy by considering
the energy consumed by the machine when they are idle. They
however have no constraint on power and can always use the
available machines.

In recent years an other trend has arisen: Data and Computing
centers integrate renewable energy sources as power supply.
An early work on green energy utilization in data centers by
Aksanli et al. [14] shows the importance of power prediction.
They propose an adaptive data center job scheduler that reduces

the number of aborted jobs while improving the green energy
utilization.

In [15], [16] the authors propose GreenSlot, a batch scheduler
for parallel tasks, that aims to reduce the brown power
consumption of a data center which is partially powered by solar
panels. In GreenSlot the jobs have deadlines and the scheduler
first reserves resources for the jobs with lower slack (distance
from latest possible start time to current time). Based on
weather forecasting and power prediction GreenSlot schedules
the tasks on time slots. However the authors do not try to
optimize their schedules just reduce the consumption and costs
while meeting as much deadlines as possible.

Similarly [17] presents an holistic approach where the
energy cost that includes incomes from running batch jobs
and outcomes to buy brown energy is optimized. The paper
also provides a proposition for net zero scheduling batch jobs.
It is however based on virtualization and is not bounded by
the number of resources.

Wang et al. [18] propose a green-aware virtual machine
migration method for data centers. They consider data centers
which are powered by hybrid energy, i.e., they have access
to renewable energy sources as well as grid energy. Their
approach uses a heuristic approach and stochastic search to
maximize the profit of the data center while minimizing the
operational cost and energy.

However none of the afore mentioned work deals with data
centers and computing facilities that are 100% provisioned
with renewable energy. In this work we condiser computing
facilities that are solely run by green energy sources. Therefore
the avaiable power is constraint at any moment by the actual
power production and our scheduling solutions have to cope
with the available power envelope. We thus tackle the classical
mono criteria optimization objectives makespan and flow time
under power constraints.

III. MODEL

The first step of the problem study is to define a model for
the considered system. In this section we define the models
of machines, power and tasks that we use in the addressed
optimization problem.

The considered computing platform is parallel which means
that several execution units are available to process the tasks.
Parallelism can be achieved thanks to either cores (shared
memory parallelism) or nodes (distributed memory parallelism).
In the model we do not differentiate the parallelism type and
the platform consists of a set M = {M1,M2, . . . ,Mm} of m
machines Mj that represent execution units (cores) either on
the same machine or not.

As the power provisioning of the platform solely comes from
green energy sources such as solar panels or wind turbines, its
production is not stable and varies over time. The evolution of
the available power is represented at each time t by a curve
Φavailable(t). To be able to optimize the usage of the power,
this power production must be approximated. We assume that
the available power Φavailable(t) is a constant value Φavailable

x

over an interval of time ∆x. Over the considered period, the
available power is thus modeled by X given intervals ∆x
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whose length is δx over a given time horizon H, such that∑X
x=1 δx = H. This power is shared by all the machines of

the platform.
Each machine Mj consumes a static power Φstat

j , i.e., the
minimum power that this machine needs when it is powered
on but does not process any tasks. Since this static power has
a constant value for the entire considered horizon of time, and
since it is useless to run a machine without processing tasks,
we only consider useful available power Φx = Φavailable

x −∑M
j=0 Φstat

j for the period of time ∆x in the following. If the
platform consists of only one machine, Φ(t) = Φx.

For the task model we relay on the usual definitions: We
consider a set T = {T1, T2, . . . , Tn} of n tasks Ti which
are characterized by their processing time pi. These tasks
are sequential independent tasks. Running a task on one
machine generates an extra power consumption [19]. This
power consumption varies over time depending whether the
task intensively computes or accesses input/output devices
and it has to be approximated to be used in an optimization
problem. We assume here that each task Ti has a constant
power demand over its lifetime which is equals to its largest
power need ϕi. By taking the larger power consumption of
the task, we guarantee that the resulting schedule will fit in
the power envelop. Other more accurate models could be used,
as to cut the different consumption phases of the tasks in time
periods for instance, but this complicates the solving of the
problem.

To schedule a given task Ti we need to guarantee that Ti can
be completed before the available power becomes lower than
its need. To be able to exhibit such time slots we define the set
Ej(ϕi) = {E1,i, E2,i, . . . , EKi,i} of Ki eligible time slots. Let
bk,i and fk,i be respectively the beginning of the slot Ek,i and
its finish time. Then, for Ek,i = [bk,i, fk,i[, the available power
must be greater than ϕi, with bk,i ≤ t < fk,i and Φk(t) ≥ ϕi.
Formally, it exists two integer values x and s such that the kth
time slot Ek,i is defined by Ek,i = ∆x ∪∆x+1 ∪ . . . ∪∆x+s

(x + s ≤ X) where at any time t ∈ Ek,i, Φ(t) ≥ ϕi and at
any time t ∈ ∆x−1 (x > 1) or t ∈ ∆x+s+1 (x+ s+ 1 ≤ X)
Φ(t) < ϕi. So bk,i =

∑x−1
x′=1 δx′ and fk,i =

∑X
x′=x+s δx′ (see

Figure 1). If, considering already scheduled tasks, it remains
enough time to perform Ti in the duration lk,i = fk,i−bk,i that
time slot is an option to run Ti. When a time slot is chosen to
schedule a task, the corresponding power is substracted from
available power in the intervals that compose this time slot.

Finally, we consider an allocation function A(i, j) = k that
returns in which time interval Ek,i the task Ti is scheduled on
machine Mj . Let Tk,j be a subset of task set T that contains
the tasks scheduled in the time slot Ek,i on Mj . For every
task Ti ∈ Tk,j , we set A(i, j) = k. Note that

∑
i|Ti∈Tk,j

pi ≤
fk,i − bk,i = lk,i.

Note that, in order to make the reading more understandable,
the index j is removed from previous notations for the one-
machine problems, i.e., Ek,j becomes Ek. Table I summarizes
the notations used in the remainder of the paper.

IV. OPTIMIZATION PROBLEMS

Using the preceding model we consider static optimization
problems where the number, the consumption, the duration of

t

Φ(t)

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

δ2

δ7

ϕi

l1

E1 = ∆2 ∪∆3 ∪∆4 ∪∆5

b1 f1
l2

E2 = ∆7 ∪∆8

b2 f2

Figure 1: Illustrative example for intervals (∆1, . . . ,∆8),
available power on time and time slots (E2, E2) in which
one task Ti could be scheduled when its power need is ϕi

onto a one machine platform.

Table I: Summary of the notations

variable definition

T set of tasks
Ti task i
n number of tasks
pi processing time of Ti
ϕi power needed by Ti

M set of machines
Mj jth machine of M
m number of machines
Φx useful power on Mj at interval ∆x

∆x interval with constant power
δx length of ∆x

X number of consecutive intervals ∆x

Ej(ϕi) time slot: set of eligible time intervals
Ek,i kth eligible interval of Ej(ϕi)
bk,i beginning of time slot Ek,i
fk,i finish time of time slot Ek,i
K number of time slots in Ej(ϕi)
lk,i length of time slot Ek,i

the tasks and the available power are known in advance. Note
that the model defined in Section III covers a larger set of
optimization problems than we tackle here. Static problems are
sometimes far from real practical cases and their solutions do
not always give interesting results for real life. Tackling such
static problems is however necessary to prove the complexity
of the optimization problem in the simpler cases and then
deduce the complexity of more complex ones.

To better define and characterize the tackled problems, we
first extend the Graham notation in this section. Then we assess
the complexity of basic problems to later proof the complexity
of more general ones.

A. Notations and objective

Graham [20] defined the α|β|γ notation that characterizes
a scheduling optimization problem. We shortly recall here
the main notations used in parallel scheduling optimization
problems. In this notation the α value stands for the charac-
teristics of the execution platform: 1 for one machine, P for
parallel identical machines, Q for parallel uniform machines
and R for parallel unrelated machines. The β value stands
for the tasks characteristics and/or constraints: pi = p is set
when all the tasks are of the same size, prec when there are
precedence constraints between the tasks, pmtn if the tasks can
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be preempted, etc. The γ value gives the criteria to be optimized
as, for instance the makespan Cmax, the maximum tardiness
Tmax or the flowtime,

∑
Ci, where Ci is the completion time

of task Ti.
In this paper we consider the problem of scheduling tasks

under limited available power. To express this constraint we
propose to add ϕi ≤ Φk for one machine problems and

∑
ϕi ≤

Φk for parallel machine problems to the Graham notation, with
ϕi is the power needed by a task. This enforces that the power
needed by one (ϕi) or several tasks (

∑
ϕi) must be lower than

the power provided by the energy sources. For example the
problem 1|ϕi ≤ Φk|Cmax is a one machine problem where
we target makespan optimization for independent tasks. If the
Φk variable is set to Φ then the available power is constant
over the considered period and if the ϕi variable is set to ϕ
then all the tasks need the same power to run.

Considering computing and data centers, two main criteria
can be minimized to improve the efficiency. The makespan
(Cmax) is a classical criterion that targets the minimization of
the running time for a set of tasks. This criterion is relevant
for computing centers where applications are composed of a
set of tasks. In this case there is no need to finish one task or
another earlier, the user just wants its task set to be finished
as soon as possible. In the case of several tasks launched by
different users then the flowtime (

∑
Ci) is more relevant as

minimizing this criterion leads to minimizing the mean finish
time. It enforces a fair share of the resources between users.
Minimizing this criterion is thus more useful in data centers
where incoming user requests have to be processed.

In the following we first tackle the one machine problems.
Showing that these problems are NP-Complete proves that the
more general parallel problems are NP-Complete as well.

B. One Machine Problems

We consider here one machine problems for both objectives
makespan and flowtime and for the cases with or without
preemption. These cases are simple when there is no power
constraint. We recall that all no delay schedules (i.e., schedules
without delay between the tasks) are optimal solutions for the
makespan objective and that the Shortest Processing Time (SPT)
algorithm gives optimal solutions for the flowtime objective.
We show here that, with power constraints, these problems are
polynomial in the case of identical tasks (i.e., tasks with same
pi) and that the problems where tasks have different processing
times are actually NP-Complete if preemption is not allowed.

In the one machine problems the static power Φstatic
j

consumed by the machine Mj ∈ M is constant over time.
Then the machine needs at least this amount of power to run
and it cannot run at any period of time t where the power
provided by the sources is lower than this value. If there is no
machine running there is no scheduling problem as no task can
be run. For that reason we assume that the static power needed
by the machine is at least available in each interval and there is
no need to take the static power consumption in consideration
in these problems. In the remainder of the paper we set that
the available power in each period of time is only the useful
power for running tasks and we note Φx = Φavailable

x

Note that, when the available power Φx = Φ is constant
over the considered time horizon, the problem is simple. In
this case task, that need more power than Φ to be performed
cannot be processed by the machine. For the remaining tasks
the optimization problem are the same as the one machine
optimization problem without power constraint. For that reason
in the remainder of the paper the only Φx case is considered.
Note that using DVFS may help to schedule over consuming
tasks. In that case reducing the voltage of the processor will
limit the task consumption and may lead to being able the
run the task even with limited available power. The resulting
problem in this case is the same with different values of pi for
the tasks.

We now consider different cases for the task processing time
and the objective function.

1) Problems without preemption: In computing centers the
nodes are usually dedicated to the users and no preemption is
applied to the tasks when they are running, both for efficiency
and synchronous reasons. We assess here the complexity of
the scheduling problem in this context.

a) Identical tasks p = pi and ϕi ≤ Φ: The most simple
problems for our two objectives, flowtime and makespan, are
the cases where every task has the same computing time
pi = p. In both cases, to optimize our objective, we just
have to put as many tasks as possible in each time slot, starting
with the tasks with the largest power need ϕi. Obviously this
solution is optimal for the makespan objective as every task
is interchangeable with another changing the order will not
give a better solution and we do not leave empty places where
a task can be put. For the flowtime, as every task has the
same processing time, none of them has a larger weight in the
final sum and there is no need to order the tasks in a specific
manner.

b) Non-identical tasks: In the case of non-identical
tasks problems, denoted respectively 1|ϕi ≤ Φ|Cmax for
the makespan optimization and 1|ϕi ≤ Φ|

∑
Ci for the

flowtime optimization, are NP-Complete. In the following,
these complexity results are proven in a row.

Theorem 1: Minimizing the makespan of the schedule of
a set of tasks (1|ϕi ≤ Φ|Cmax) to run in a set of intervals is
NP-Complete in the strong sense if the tasks have different
processing times pi.

Proof: First note that, in the case where all tasks need the
same power to run ϕi = ϕ, a time interval ∆x either provides
enough power to run a task or not. The real amount of power
provided during this interval is not important as it is just a
binary question of enough power or not. The NP-Completeness
of the makespan minimization problem will be demonstrated
by proving first the problem where each task needs a power ϕ
(1|ϕi = ϕ ≤ Φ|Cmax) to be executed and where the set E(ϕ)
defines time slots in which it is possible to schedule tasks.

Let us consider the following decision problem: given a time
Z, is there a schedule where the last task is completed before
Z ? We assume that the allocation respects the constraints of
the problem such that every task allocated to one time slot has
enough time to be completed before the end of this time slot
and the power available into this time slot is greater or equal
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to the sum of power needed by the tasks scheduled in the time
slot.

The problem is in NP: given a schedule it is easy to check
in polynomial time whether it is valid or not before the time
Z. The NP-Completeness is obtained by reduction from 3-
PARTITION [21] which is NP-Complete in the strong sense.

Let us consider an instance I1 of 3-PARTITION: given
an integer B and 3H positive integers a1, a2, . . . , a3H such
that for all i ∈ {1, . . . , 3H}, B/4 < ai < B/2 and with∑3H

i=1 ai = HB, does it exist a partition I1, . . . , IH of
{1, . . . , 3H} such that for all h ∈ {1, . . . ,H}, |Ih| = 3 and∑

i∈Ih ai = B ?
We build the following instance I2 of our problem (see

Section III) with E(ϕ) = {E1, E2, . . . , EH} the set of qualified
time slots Eh to run tasks (i.e., the available power is greater
than ϕ) and whose length are all equals to fh − bh = lh =
l = B. There are 3H tasks Ti ∈ T such that each Ti needs a
power of ϕ to be executed and its processing time is pi = ai
for all 1 ≤ i ≤ 3H = n. Clearly, the size of I2 is polynomial
in the size of I1. We now show that I1 has a solution if and
only if I2 does.

Suppose first that I1 has a solution. For 1 ≤ h ≤ H , task Ti
is assigned to time slot Eh = [bh, fh[ with i ∈ Ih within
the period and pi = ai. Then, we have

∑
i|A(i)=h pi = l =∑

i∈Ih ai = B and therefore the constraint on the processing
time is respected for the H slots. We have a solution to I2.

Suppose that I2 has a solution. Let Th be the set of tasks
allocated to the slot Eh (We recall that if Ti ∈ Th, A(i) = h)
such that for all tasks Ti ∈ Th with i ∈ Ih,

∑
i∈Ih pi = l = B.

Because of pi = ai, |Th| = |Ih| = 3. The length of the time
slot l in which the available power is ϕ has to be fully filled
for all H periods to be sure to complete the last task within
the slot EH = [bH , fH [ at time t = fH = Z. Otherwise, an
other slot has to be used to complete unprocessed tasks. Thus
the solution is a 3-PARTITION.

We have proven that minimizing the makespan Cmax of
scheduling a set of tasks with different processing time which
need the same amount of power ϕ to be performed on one
machine is NP-Complete in the strong sense.

Since this problem 1|ϕi = ϕ ≤ Φ|Cmax is a special case of
1|ϕi ≤ Φ|Cmax, it is sufficient to prove the NP-Completeness
of 1|ϕi ≤ Φ|Cmax.

This concludes the proof.

Theorem 2: Optimizing the flowtime of the schedule of a
set of tasks (1|ϕi ≤ Φ|

∑
Ci) to run in a set of intervals is

NP-Complete in the strong sense if the tasks have different
processing times pi.

Proof: Let us consider the following decision problem:
given a time Z is there a schedule where the sum of the task
completion times is less than Z ? We assume that the allocation
respects the constraints of the problem.

The problem is in NP: given a schedule it is possible to
confirm in polynomial time whether this schedule is valid or
not and the sum of the task completion times is less than
Z. The NP-Completeness is obtained by reduction from the
1|ϕi = ϕ ≤ Φ|Cmax problem that is proven NP-Complete in
the strong sense in Theorem 1.

Let us consider an instance I1 of 1|ϕi = ϕ ≤ Φ|Cmax

described within the paper: given E(ϕ) = {E1, E2, . . . , EH}
the set of H qualified time slots Eh to run tasks and whose
length are all equal to fh − bh = lh = l = B (1 ≤ h ≤ H)
and given 3H tasks Ti ∈ T such that each Ti needs the
same power ϕ to be executed and its processing time is pi
for all 1 ≤ i ≤ 3H = n such that for all i ∈ {1, . . . , 3H},
B/4 < pi < B/2 and with

∑3H
i=1 pi = HB. Does there exist a

schedule T1, . . . , TH such that, for all h ∈ {1, . . . ,H} and for
all Ti ∈ Th, Ti is scheduled in Eh (A(i) = h) and Cmax = fH ?
Obviously, |Th| = 3 with 1 ≤ h ≤ H considering pi.

We build the following instance I2 of the problem addressed
in the beginning of the proof: 1|ϕi = ϕ ≤ Φ|

∑
Ci with the

set E ′(ϕ) = E(ϕ) ∪ EH+1 of H + 1 qualified time slots (E
described for I1), the same set T of 3H = n tasks Ti with
1 ≤ i ≤ n = 3H . EH+1 is defined as a valid time slot
(ϕ ≤ Φ(t) with bH+1 ≤ t < fH+1) such that bH+1 = n× fH .
Considering this problem instance, does there exist a schedule
with Z = n× fH ?

The size of I2 is polynomial in the size of I1. Let us show
now that I1 has a solution if and only if I2 does.

Suppose first that I1 has a solution. For 1 ≤ h ≤ H , task Ti
is assigned to time slot Eh = [bh, fh[ if Ti ∈ Th. Then, we
have

∑
i|Ti∈Th pi = l = B and therefore the constraint on

the processing time is respected for the H slots and |Th| = 3.
Considering the schedule given by I1, it is possible to minimize
the flowtime within Eh (Fh =

∑
i|Ti∈Th(Ci − bh) with Ci the

completion time of Ti) by sorting the 3 tasks by increasing
processing time order. Then each time slot Eh has its own
flowtime Fh. As fh − bh = lh = l = B for all 1 ≤ h ≤ H ,
it is possible to exchange task allocations from one time slot
Eh1 to another time slot Eh2 (h1 6= h2 and 1 ≤ h1, h2 ≤ H)
without changing the value of the makespan. Consequently,
by sorting Fh in increasing order and by reallocating tasks
Ti ∈ Th to the right time slot regarding its rank given by the
sort, the obtained flowtime for the whole task set is the smallest
possible. We have a solution to I2.

Suppose now I2 has a solution. If the flowtime of the
schedule is less than Z = n × fn, TH+1 = ∅, otherwise
since bH+1 = n× fn, if one task Ti is in TH+1, the flowtime
is not able to be less than n × fn because the completion
time of Ti is at least Ci = bH+1 + pi = n × fn + pi which
is greater than Z. Thus, all tasks are scheduled within E .
Since

∑
i|Ti∈T pi = HB and since fh − bh = l = B for all

1 ≤ h ≤ H and |E| = H , the completion time of the last task
is fH = Cmax. We have a solution to I1.

By using the same valid arguments than within the proof
of Theorem 1, we can confirm that we have proven that
minimizing the flowtime of scheduling a set of tasks with
different processing times which need the same amount of
power ϕ to be performed on one machine is NP-Complete in
the strong sense.

Since this problem 1|ϕi = ϕ ≤ Φ|
∑
Ci is a special case of

1|ϕi ≤ Φ|
∑
Ci, it is sufficient to prove the NP-Completeness

of 1|ϕi ≤ Φ|
∑
Ci.

This concludes the proof.
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2) Problems with preemption: In the special case of data
centers the requests that are processed are not as constrained
as parallel tasks in a computing center and they can thus be
preempted. We consider here the impact of preemption on
the scheduling problem complexity for both makespan and
flowtime objectives.

We do not present the special case for identical tasks as we
show that the more general problem with different processing
time is polynomial.

The 1|ϕ ≤ Φ, pmtn|Cmax problem, the problem where all
tasks need the same power to run, accepts a polynomial solution.
Remember that without power constraint non delay schedules
are optimal. With power constraints it is however not possible
to always have non delay schedules as some of the intervals
∆x may not provide enough power Φx to schedule a task.

The general idea is to avoid leaving intervals empty when
there are still unscheduled tasks. For this purpose we schedule
tasks with the following policy: At the beginning of a new
interval or when a task is finished, we schedule the task (or
the remaining part of a task) which wastes the less power
(min(Φx − ϕi)) next. If another task than the current running
task is selected, the running task is preempted and rescheduled
later. We call this algorithm Less Wasting Remaining Task
(LWRT).

Theorem 3: Algorithm LWRT gives an optimal solution for
the 1|ϕi ≤ Φ, pmtn|Cmax problem.

Proof: The optimality of the LWRT algorithm is demon-
strated by contradiction.

Let C∗ be the optimal makespan. In the optimal schedule
S∗ we do not have a guarantee that at each interval, starting
from t = 0 we always run the LWRT task (the task Ti that
minimizes Φx − ϕi in the set of tasks that are scheduled from
si, the start time of Ti). Let assume that interval x is the first
interval such that it includes task Ti (S∗(Ti) = t) which is not
the LWRT task and such that T ′i , the LWRT task, runs later
(S∗(T ′i ) = t′, t′ > t). As Ti is not the LWRT task then we
have Φx−ϕi > Φx−ϕ′i and ϕi < ϕ′i ≤ Φk1 . Since the power
consumed by T ′i is higher than the power consumed by Ti and
since T ′i fits in interval ∆x because it is the LWRT tasks for
this interval then we can swap Ti and T ′i (or at least part of
them). Moreover, since Ti needs less power than T ′i it could
be scheduled before t′ in an interval that was not exploited by
T ′i which more power. After this step the resulting schedule
it as least the same but it could also have been improved by
moving Ti. This result is a contradiction with the assumption
that S∗ is optimal and given any schedule we can do better
if we respect the LWRT order. This implies that the LWRT
algorithm gives an optimal schedule which concludes the proof.

Figures 2 and 3 illustrate the case where the LWRT task is
not scheduled at each interval change or task end. On Figure 2
task T2 is not preempted at the end of interval ∆2. As a result
task T4 is scheduled later because of its large power need and
interval ∆5 is not used. On Figure 3 task T2 is preempted at
the end of interval ∆2 and Task T4 is executed instead. As
Task T2 needs less power to run it can be executed in interval
∆5 which improves the makespan.

T1 T2 T3 T4 T4T5 T6 t

Φ(t)

Figure 2: Illustrating example for the LWRT algorithm, T2 is
not the LWRT task for interval ∆3, T4 must be run here.

T1 T2 T2T3T4 T4 T4T5 T6 t

Φ(t)

Figure 3: Illustrating example for the LWRT algorithm, part of
T4 has been swapped with T2 which can be executed sooner
than T5, the makespan is optimal.

We now consider the 1|ϕi ≤ Φ, pmtn|
∑
Ci problem. The

flowtime objective is more tricky to solve than the makespan
as we must take the order of the tasks into account. We recall
that, without power constraint, the SPT (Shortest Processing
Time) algorithm gives the optimal schedule. This algorithm
also solves the 1|ϕ = Φ, pmtn|

∑
Ci problem as we can use

preemption to stop a task at the end of an interval, if the
available power is too low in the next interval, then resume
it when the power is again above the ϕ power need. In the
general case however, this algorithm does not work as we
can have to schedule longer tasks before short ones do to
the power constraints as shown in Figure ??. The tradeoff is
hence to balance between the need to schedule short tasks at
the beginning as they will more impact the flowtime and the
risk of scheduling tasks with higher power needs in distant
time slots. We do not have any proof for the moment but we
suspect this problem to be NP-Complete. The complexity of
this problem is hence open.

C. Parallel Problems

We consider here the problem of scheduling a set of tasks
on a set of machines. Considering problems with power
constraints several sub-problems can be identified from the
general parallel problem aside from the classical P, Q, R cases.
Shared memory problems are indeed different from distributed
memory problems. In the shared memory problems only one
machine is used and the tasks are processed by the different
cores of the machine (one task per core). As just one machine
must be powered on, we do not need to take static power
into consideration as when there is not enough power to run
the machine there is no problem. The remaining power is
dedicated to the task’s execution. The considered problem is
then a parallel machine problem where we only take the task
power consumption into account. Note also that, in this case,
the machines are cores and we can limit the study to identical
machines (P in the Graham notation) as the cores of a same
node are usually identical. In the distributed memory problems
several machines are used and, when have less tasks than the
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number of machines we have to take a shutdown model into
account.
to be removed for the paper too risky

Note that we do not consider the power consumed by cores
independently contrary to that cores could be activated or not
on next generation processors. This problem could be related
to the Agrawal model [13] where machines are not stopped and
have a working consumption µ(Ci) and an idle consumption
γ(Ci). However on the one hand the model where a core
always consumes the same power when active is not realistic
and on the other hand in our case all the cores have the same
µ(Ci) and γ(Ci). In this case the available power Φk is shared
between the cores and the power constraint becomes that the
sum of the power ϕi of the running tasks must be less than
Φk.

From the previous complexity results we can deduce that
P |

∑
ϕi ≤ Φ|Cmax and P |

∑
ϕi ≤ Φ|

∑
Ci problems are

NP-Complete as parallel problems are generalizations of one
machine problems. Problems with preemption must however
be investigated.

For the P |
∑
ϕi ≤ Φ, pmtn|Cmax problem we have to

schedule several tasks at the same time such that the sum of
their power needs

∑
ϕi is lower than the available power Φk

in each interval.
If the power needed by the tasks is the same, the P |

∑
ϕi ≤

Φ, ϕi = ϕ, pmtn|Cmax problem, then the problem is simple:
in a given interval execute as much as possible tasks at the
same time provided that the power Φk and number of cores P
constraints are respected. Then, at the end of a task, schedule
another one and, at the end of the interval, schedule less tasks
if there is less power and schedule more if there is an idle
core and more power.

If the power needed by the tasks is different, the P |
∑
ϕi ≤

Φ, pmtn|Cmax problem, then the problem is NP-Complete.

Theorem 4: Minimizing the makespan of the schedule of a
set of tasks that do not consume the same power to run in set
intervals (P |

∑
ϕi ≤ Φ, pmtn|Cmax) is NP-Complete in the

strong sense if the tasks can be preempted.

Proof: The NP-Completeness of this problem will be
demonstrated by proving that the special case where the
processing time of each task is 1 unit of time (ut), is NP-
hard in the strong sense. The remainder of the proof is build
on a similar pattern than used within the proof of the theorem 1.

Let us consider the following decision problem: given a
horizon of K intervals of time ∆k (1 ≤ k ≤ K) where
their length δk is equals to 1 unit of time and where the
available power is Φ(t) = Φk = Φ (1 ≤ k ≤ K) and given
a processor with 3 cores that share the available power, is
there a schedule that allocates tasks over time such that the
power needed by the cores never exceeds ϕ for every time
intervals ∆k (1 ≤ k ≤ K)? In other words, if Tk ⊂ T is
the set of tasks that are scheduled within the time interval
∆k, ∀k ≤ K, is

∑
i|Ti∈Tk ϕi ≤ Φk = Φ? The problem is

in NP: given a schedule of K time intervals, it is easy to
check in polynomial time whether this schedule is valid or
not. The NP-Completeness is obtained by reduction from 3-
PARTITION [21] which is NP-Complete in the strong sense.

Let us consider an instance I1 of 3-PARTITION: given
an integer B and 3K positive integers a1, a2, . . . , a3K such
that for all i ∈ {1, . . . , 3K}, B/4 < ai < B/2 and
with

∑K
i=1 ai = KB, does exist a partition I1, . . . , IK of

{1, . . . , 3K} such that for all k ∈ {1, . . . ,K}, |Ik| = 3 and∑
i∈Ik ai = B?
We build the following instance I2 of our problem with

K time intervals, each interval ∆k having a length of time
δk = 1 and with an available power Φk = Φ = B for 1 ≤ k ≤
K. There are 3K tasks Ti in T with pi = 1ut and ϕi = ai
for all 1 ≤ i ≤ 3K = m. Clearly, the size of I2 is polynomial
in the size of I1. We now show that I1 has a solution if and
only if I2 does.

Suppose first that I1 has a solution. For 1 ≤ k ≤ K,
task Ti is assigned to Tk within the period k with i ∈ Ik and
ϕi = ai. Then, we have

∑
i|Ti∈Tk ϕi = φk =

∑
i∈Ik ai = B

and therefore the constraint on the demand is respected for the
K time intervals. We have a solution to I2.

Suppose that I2 has a solution. Let Tk be the set of machines
allocated to the period k such that for all tasks Ti ∈ Tk with
i ∈ Ik,

∑
i∈Ik ϕi = Φk = Φ = B. Because of ϕi, |T‖| =

|Ik| = 3. Since the available power Φ has to be consumed
for the K time intervals to process the scheduled tasks, the
solution is a 3-PARTITION.

We have proven that the problem where Φ(t) = Φk = Φ for
every time interval ∆k (1 ≤ k ≤ K) and pi = 1 for every Task
Ti ∈ T (1 ≤ i ≤ n) is NP-Complete in the strong sense. Since
this problem is a special case of the more general problem
where available power Φk during each time intervals ∆k is
different from each other and where processing time pi of
each task Ti is also different from each other, it is sufficient
to prove the NP-Completeness of this general problem. This
concludes the proof.

Note that the proof highlight that the problem is NP-
Complete even if the tasks are of the same size, pi = p
(P |

∑
ϕi ≤ Φ, pi = p, pmtn|Cmax problem).

For the flowtime objective, the P |
∑
ϕi ≤ Φ, pmtn|

∑
Ci

problem, we can differentiate the particular case where tasks
have the same power need ϕi = ϕ which is simple from
the more general case where tasks have different power
needs. In the ϕi = ϕ case the SPT algorithm, completed
to take the available power Φk and the number of cores
P constraints into account, gives an optimal solution even
if the tasks are of different size. Then the case where the
tasks have different power needs is NP-Complete as the
problem P |

∑
ϕi ≤ Φ, pi = p, pmtn|

∑
Ci is equivalent to

P |
∑
ϕi ≤ Φ, pmtn|Cmax since the tasks do not need to be

ordered as they are of the same size. This implies that the more
general case P |

∑
ϕi ≤ Φ, pmtn|

∑
Ci is NP-Complete.

In the following parts we propose and assess solutions for
some of the NP-Complete problems.

V. HEURISTICS

In this part we propose scheduling algorithms to optimize
tasks execution under power constraints. As for the previous
section we concentrate here on multi-core parallelism as
distributed parallelism implies to take a shutdown model into
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account. As the cores of a same node are usually identical it is
more logical to concentrate on identical machine (P ) problems.

We propose here heuristic algorithms to solve the general
problems P |ϕ ≤ Φ|Cmax and P |ϕ ≤ Φ|

∑
Ci. Most of them

are adapted from classical scheduling algorithms to introduce
the power constraints and time slots. Remember that time
slots are sets of consecutive intervals (see III). A time slot is
considered available for scheduling a task if, in all the intervals
that compose this time slot, the available power is higher than
the task power need and there is at least one available core.
The task to time slot matching is done by the Place Task()
function that is used by all the algorithms. Place Task()
function is illustrated in Algorithm 1.

Algorithm 1: Place Task(pi, ϕi, x)

Data:
Φx: useful power at ∆x

δx: length of ∆x

sx: start time of ∆x

ex: end time of ∆x

ncx: number of available cores in ∆x

Result:
exstarti: execution start time of Ti

1 if (ϕi 6 Φx) ∧ (ncx > 0) then
2 if pi 6 δx then
3 Remove ∆x from the interval list
4 Add new intervals in the interval list:
5 ∆x′ = {[sx, sx + pi],Φx − ϕi, ncx-1}
6 ∆x′′ = {[sx + pi, ex],Φx, ncx}
7 return sx
8 else
9 found← true

10 repeat
11 Take next ∆x

12 if (Φx < ϕi) ∧ (ncx > 0) then
13 found← false

14 until
∑
δx ≥ pi

15 if found then
16 for Intervals ∆x in the time slot except the last one

do
17 ∆x = {[sx, endx],Φx − ϕi, ncx-1}
18 Remove the last interval ∆y from interval list
19 Add new intervals in the interval list:
20 ∆y′ = {[sy, sy + pi −

∑y−1
z=x δz],Φx − ϕi ncx-1}

21 ∆y′′ = {[sy + pi −
∑y−1

z=x δz, ey],Φx, ncx}
22 return sx

23 return False

The Place Task() takes a task, its computing time pi and
its power need ϕi, and a starting interval x. When the function
is called it first checks that the proposed interval still have
enough available power and cores (lines 1). Then, if the task
fits in the interval then the interval is removed from the list
and two new intervales are added (lines 2-7), one for the part
where the task is scheduled and one for the other part, to keep
a correct count of the available power and of the free cores.
If the task does not fit in the interval the algorithm checks
that there is enough available resources (cores and power) in
the following intervals until the end of the task (lines 9-15).
If such a time slot is foud then the corresponding power and
one free core are substrated (lines 16-19). The last interval is

cut in two as previsouly (lines 20 to 24). Note that cutting
the intervals allow that a task can always be scheduled at the
begining of an interval. The function return true is the task is
placed, false otherwise.

A. List Algorithms

For both cases where we target the makespan and flowtime
minimization it is logical that our first solution tries to greedily
schedule tasks in the earliest available interval, seeking to
minimize the task completion time Ci, as all the tasks are
available at before computing the schedule. This is the list
algorithm approach and its advantage is its implementation
simplicity as we can see on the 2. Then by ordering the task
list the algorithm may foster one or another task type. Often a
random task order is used to compare other algorithms with a
non smart solution. This algorithm is named Random in the
performance study.

The performance of the list algorithm however often depends
on the order in which the tasks are processed. In our case their
are two data associated with a task, namely its processing time
pi and the power it needs to run ϕi. Using decreasing pi as
the task ordering criteria (Largest Processing Time, or LPT,
algorithms) fosters long tasks which are more difficult to place
and usually gives good results for the makespan minimization
on parallel identical machines when the number of tasks exceed
50, as shown in [22]. For this reason we assess the performance
of this algorithm, named LPT in the performance study. On
the other hand, when the flowtime minimization is targeted an
increasing pi as the task ordering criteria (Shortest Processing
Time, or SPT, algorithm) must be preferred. We assess the
performance of this algorithm, named SPT in the makespan
performance study.

The task power need ϕi is also a significant criteria for the
task choice as the tasks are constrained by the available power.
As for large tasks, tasks with large pi, tasks with large power
need are difficult to place in the time slots and scheduling them
first may avoid using later slots. For this reason we assess the
performance of this algorithm, named LPN for Largest Power
Need, in the performance study.

As already said, both the processing time pi and the power
need ϕi are important values for scheduling the tasks and taking
them independently only fosters one and ignore the second.
To take both into account we propose to use the product of
the two values to order the tasks in the task list. The LPTPN
algorithm, for Largest Processing Time Power need, sorts the
tasks by decreasing values of pi × ϕi.

Note that these two last algorithms are rather makespan
oriented and they do not produce appropriate solutions for the
flowtime minimization.

To demonstrate the mechanism of the list algorithm, we
summarize it in the following steps:

B. Dual Approximation Algorithms

It is worthwhile noting that the list based solutions fail to
take into account how much extra power there is in a time
slot compared to the task consumption. In fact it can only
determine if the time slot is long (for the time) or large (for the
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Algorithm 2: List algorithm
Data: Task list: T
Result: A schedule
Order T in the chosen order
for Ti ∈ T do

repeat
∆x ← next(Intervals)

until Place Task(pi, ϕi, x)

power) enough for executing a given task or not. Consequently,
the use of time slots with high power levels to execute tasks
that do not need a lot of power, might cause power waste if
the remaining power in that time slot is not enough to execute
another task on an other core, or if there are no more core to
exploit the remaining power. The next logical step was hence
to take the power availability and power consumption into
account when placing tasks. Statistically, It is very likely that
the task may have more than one available time slot that they
can be scheduled in. We aim so to reduce the power waste by
placing each task in the time slot that has the closest available
power level to its power demand, rather than placing it in the
earliest one possible, as the list based solution does.

A key problem here is how to avoid scheduling a task
towards the end of the runtime, just because a time slot over
there produces less power waste than many earlier ones. In other
words, how to find the best fit for each task, without decreasing
the quality of our solution (increasing Cmax). Applying the
dual approximation technique presented by Hochbaum and
Shmoys in [23] propose an interesting method to solves this
problem. The Dual Approximation approach use a time horizon
to limit the searching area. It is possible to schedule the tasks
everywhere before the time horizon which allows to place
tasks in the time slot where the power waste is the lowest as
illustrated on figure 4. This solution has the advantage to take
into consideration both power and performance constraints at
the same time. At the beginning of the algorithm two time
limits are set: the lower one, which must be lower or equal
to the shortest possible schedule, and the higher one which is
usually chosen such that we are sure that every algorithm will
fit in the given time horizon. Here the lower value is set to
(
∑N

i=0 pi)/NB, where NB is the number of cores, as it is a
lower bound. The higher value is set to H, the time horizon.
Then the algorithm attempt to reduce the time horizon on a
binary search manner trying to fit all tasks in the new shorter
time horizon. If they all fit, it re-reduces the searching area,
if not, it increases it. The dual approximation algorithm is
illustrated by Algorithm 3.

The dual approximation algorithm also works with a task list
which order impacts the algorithm performance. We thus use
all the variants of task ordering used with the list algorithm:
largest processing time, shortest, largest power need, aso. The
algorithm are named by prefixing the task ordering method
by the method name DAPW for Dual Approximation Power
Waste. A random ordering hence becomes DAPW-R and the
largest processing time becomes DAPW-LPT.

Note that this method is assessed for both objectives to
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Figure 4: Comparison of the power waste resulting from
scheduling the same task using greedy algorithm and BSPW

be minimized. In its design it however better supports the
makespan objective as it targets the reduction of the time
horizon and does not directly takes the time ordering into
account.

VI. EXPERIMENTS

In this section, we present the experiments conducted in
order to assess the performance of the algorithms mentioned in
the previous section. The presented experiments were realized
on a simulator rather than on a real platform as running lots
of real life experiments is costly and hence does not allow to
explore a wide range of parameters.

A. Simulator

simulator -¿ Python + Turtle + R We have developed a
simulator1 in python to assess the algorithm performance. Our
simulator reads simple CSV files as input, these files contain the
configuration values desired for tasks and intervals. Then, using
Python, it randomly generates the necessary tasks lists and
time slots lists before running the algorithms to compute the
schedules. Finally, results are presented in different diagrams
using R, in order to provide a clear comparison between
different performances of the algorithms. The resulting schedule
of each single execution can optionally be produced using
Python’s Turtle graphical tool to better understand where an
algorithm operates correctly and where it does not. An example
of schedule presentation with turtle is given on Figure 5.

RRR

B. Settings

The simulator takes a list of tasks as input. We did not
used real data as input for the simulator but we tried to to
use in our simulations data sets that are as close to real data

1This simulator is available on GitHub at http://github.com
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Algorithm 3: Dual Approximation Power Waste algorithm

Data:
Task list: T
hl: high limit, init to (

∑N
i=0 pi)/NB

ll: low limit, init to H
schedule: a schedule

Result: A schedule
Order T in the chosen order
while hl > ll do

midpoint← (hl-ll]
2

placed← true
repeat

Take the next task Ti in T
repeat

∆x ← next(Intervals from ll to midpoint,
ordered by power waste)
placed← Place Task(pi, ϕi, x)
if placed then

schedule← schedule ∪ {Ti, result}
until placed ∨ endofintervallist
if placed then finihed← true else
finished← false

until finihed ∨ endoftasklist
if placed then

hl← midpoint
else

ll← midpoint

return schedule

Figure 5: Turtle example

collected in other experiments as possible. For instance, pi
values of the generated task lists were chosen randomly using
hyper-gamma law suggested by Lublin and Feitelson in [24] for
some experiments. We also use randoms values that follow an
exponential law for pi in parts of the experiments to simplify
them. When using the exponential law based task generation
we define an upper bound pimax and we set the mean value
used by the exponential law to half of the pimax value. In the
experiments pimax

ranges from 10 to 100, by steps of 10.
As we were lacking values for the power consumption of the

tasks is given in power units and we choose to use a random
generation of ϕi with a uniform law between 0.1 and ϕimax . In
the experiments ϕimax ranges between 4 and 40 power units,
by steps of 4.

results
statistical

config_tasks.csv

config_ts.csv

Heatmap

Standard deviaion
Distance

Resulting schedule

plots

Python R

Configuration

Simulator

Statistical

Figure 6: Comparison of the power waste resulting from
scheduling the same task using greedy algorithm and DAPW-
LPPN

For the experiments we choose intervals of equal length as it
seems more realistic that the available power will be discretized
on time with a constant period. The length of the intervals is
10 time units. To explore solar panels like power generation
we generate sets of interval with a bell shape, as shown on
figure 7. For the interval generation we define 5 levels and we
randomly generate the available power for each interval inside
the level. To generate bell shape we give a higher probability
to increase the level when we are in an increasing phase and
a higher probability to decrease the level when we are in a
decreasing phase. The used random law in the levels is uniform,
the maximum power that can be provided by the sources is 80
and each level has a height of 16.
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Figure 7: Interval generation on a bell shape to ...

For the experiments where the exponential law based task
generation is used, we generate 250 intervals per set and we
generate 600 intervals per set for the experiments that use the
hyper-gamma law based task generation. Note that there is not
guarantee, when we use a set of intervals, that a schedule can
be found. For that reason we use large numbers of intervals.
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Also interval from tasks: leave that for the RR

For the experiments we generate 100 different sets of
intervals but with the same parameters and , for each couple
of pimax and ϕimax values, we generate 100 different sets of
tasks. 10 000 experiments where thus performed, 100 for each
{pimax

, ϕimax
} couple, each with a different task set. The same

interval set is used for each {pimax
, ϕimax

} couple.
The number of cores is set to 8 for all the experiments which

means that up to 8 tasks can be scheduled on the same interval.
To assess the impact of the available power on the algorithm
performance we use two values for the available power, 40
and 80. As the ϕimax

value ranges from 4 to 40 this means
that the tasks may require up to 320 power unit to run without
constraint in the case where ϕimax

= 40.
To compare the results we need normalized values. Raw

makespan or flowtime values cannot be compared as they
depend on the considered set of tasks and intervals. A set
of larger tasks will always give a longer makespan than a
set of shorter ones. Therefore we use the following values
to compare the schedules. We define the makespan perfor-
mance PERMAK as (makespan− useless)/

∑
pi, where

makespan is the makespan obtained by the schedule and useless
is the sum of the length of the intervals, between 0 and the end
of the schedule, where no task can be scheduled because of too
low available power. in a same way we define PERFLOW
as the flowtime performance as (

∑
(Ci − uselessi))/

∑
pi,

where Ci is the completion time of task Ti and uselessi is the
sum of the length of the intervals, between 0 and Ci, where
no task can be scheduled because of too low available power.

C. Results

In this section we present the results of the experiments done.
The figures are generated using R statistical environment.

Note that all the upper right corners of the figures are
missing. This is because the computations were conducted
on 250 intervals and, for the values of pi and ϕi, not all the
algorithms find a solution so that the mean cannot be computed.
A new set of simulation has been started but was not finished
at the deadline of paper submission. They will be included in
the camera ready version.

We first assess algorithms regarding the makespan perfor-
mance PERMAK. Figure 8 presents the best algorithm for
each value of pi and ϕi. The best algorithm is defined as
the algorithm that has the best mean makespan on the 100
simulation runs for a couple of values {pi, ϕi}. As we can see
on the figure the best algorithm depends on the values of the
processing time pi and of the need power ϕi. Unsurprisingly
when the power need of the tasks is low, then the power is
not strongly constrained and the LPT algorithm that fosters
long jobs give the best results. We are, in this case, close to
the classical P ||Cmax problem which is efficiently solved by
LPT. On the other hand, when the ϕi of the tasks is higher
then the algorithms that takes power need into consideration
get better results. Different algorithms however get the best
results depending on the power need. When the processing
time is small then the LPN algorithm is the best but when it
increases then the LPTPN which takes both processing time
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Figure 8: Heat map of the best average makespan performance
PERMAK for values of pi ranging from 10 to 100 and values
of ϕi ranging from 4 to 40

and power need into account is better. For the case of a medium
power need and small processing times, the DAPW family of
algorithms find good schedules.
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Figure 9: Distance of the mean makespan performance
PERMAK of the LPV, DAWP-LPT, LPT, LPTPN algorithms
to the best makespan performance

In an attempt to search for an algorithm that gives a solution
that might not be the best solution, but not far from the best in
most cases, the distances between the makespan performances
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and the best performance for the four algorithm that gives
more often the best performance, DAPW-LPN, DAPW-LPT,
LPT and LPTPN, are presented in Figure 9. From Figures 9b
and 9d we can see that the DAPW-LPT algorithm generates
schedules with makespan never more far than 6% from the best
one. This makes them good candidate for a global solution.
Between both the LPTPN algorithms gives more ofen the best
makespan. Unsurprisingly, the LPT algorithm, which gives
the best makespan in the cases where the power need is low,
generates its worst schedules in the cases where the power
need is high and the processing time of the tasks small. It is
however never worst than 11 %. On the opposite we note from
Figure 9a that the LPN algorithm gives its best solutions when
the power is constrained and the tasks of small size.
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Figure 10: standard deviation of the makespan performance
PERMAKfor pi = 100 and ϕi i = 20

Figure 13 gives the standard deviation of the makespan
performance PERMAK for a pair of values for pi and ϕi.
As can be seen on on the figure the varaiation is low, ranging
between 0.3 and 0.38. Other measure realized shows that the
variation may increase up to 0.8 but is always low.
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Figure 11: Heat map of the best average flowtime performance
PERFFLOW for values of pi ranging from 10 to 100 and
values of ϕi ranging from 4 to 40

Second, we assess algorithm performance regarding flow-
time performance PERFLOW . Figure 11 proves that a list

algorithm with SPT order would always produce the least
flowtime.
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Figure 12: Distance of the mean flowtime performance
PERFLOW of the Random LPN, DAWP-LPN and DAWP-
SPT algorithms to the best makespan performance

Similarly to the makespan performance assessment, we
analyze the distance between the flowtime performance
PERFLOW of each algorithm from the best performance.
The distances between the flowtime performances of DAPW-
SPT, DAPW-R, Random, LPN and the best performance are
presented on Figure 12. Figure 12 illustrates that ordering the
task list according to the power need of tasks does not produce
a good flowtime. Furthermore, even in DAPW which is not
designed to minimize Ci, using the shortest processing time
first order gives good results when the tasks are small enough.
However, a list algorithm with random tasks order, has better
probability to produce a good flowtime than DAPW algorithms
or list algorithms with power need based task list order.Finally,
we assess algorithms performance regarding their compute time,
Figure 14 shows a clear gap between the compute time of list
and DAPW algorithms, and it is observed that the gap expands
for bigger tasks, which indicates that increasing pi has more
negative effect on DAPW algorithms than on list algorithms
regarding the compute time. Which is justified by the higher
complexity of DAPW. In addition, our findings would seem to
show that the complexity of both DAPW and list algorithms
increases with the increase in the number of intervals, thus
longer compute times are generated, which presents a challenge
when conducting a big number of simulations.

Figure 13 gives the standard deviation for the flowtime
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Figure 13: standard deviation of the flowtime performance
PERFLOW for pi = 100 and ϕi i = 20

for all the algorithms used in the experiments. The SPT
algorithm gives the lower deviation, lower than 10%. Globally
the list based algorithms give lower variations than the Dual
Approximation onces. Note that, as for the PERFLOW
performance measure, the RANDOM algorithm less than 12%
is ranked second after SPT which means that the proposed
algorithms are inefficient in this case.
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Figure 14: Compute time of the algorithms for ϕi = 20

Figures 14 and 15 give the mean compute time for the
100 runs done with one given value of the processing time pi
(20) and power need ϕi (20). Note that, on both figures, the
LPTPN algorithms is barely visible on the plot as it gets the
same running times as SPT and the curves overlap. Globally,
if we except the case of the DAWP-R algorithm, we can see
that the power need value only slightly impacts the compute
time, the computing tiem actually slightly decrease when the
ϕi value increases, while the processing time value causes
longer computing times when increasing. From these results
it is also clear that the DAPW family of algorithms have a
higher running time than the list based family. This is not
surprising as they iterates on the horizon value and, at each
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Figure 15: Compute time of the algorithms for pi = 20

iteration, apply the same type of algorithm than the list based
algtorithms. From the plots we can see that the DAPW-R,
Dual Approximation with random list, generates the longest
execution times, 10 times more than the faster algorithm, i.e.
LPT.

It is worthwhile noting that discretizing the time in intervals
increases the complexity of the algorithms. The worst case
complexity of the Place Task() function depends on X , the
number of intervals. As the aglorithms iterate on the intervals
to schedule a task then their complexity depends on X2.
Considering that the complexity of a list based algorithm
usually depends the list ordering which is in Nlog(N), where
N is the number of tasks, the complexity of the list based
algorithms with power constraint is X2Nlog(N). It turns out
that the complexity of placing the tasks in the intervals heavily
weighs on the computation times. As an exemple, running the
whole set of experiements to compute the heatmaps takes 2
days when we run it with 250 intevals while it takes more than
one week with 500 intervals.

As a synthesis of this performance assessment, LPTPN
generates the best performance for the makespan objective on
many values and it generates schedules never worst than 5% of
the best ones while keeping reasonable computing time. This
make it a could candidate in the general case. On the other
hand a multi-policy algorithm that differently order the tasks
in the list depending on the pi and varphii values could also
be implemented to improve the performance.

VII. CONCLUSION
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Minimum Energy Scheduling. Springer Heidelberg, 2007, pp. 136–150.

[10] P. Baptiste, M. Chrobak, and C. Dürr, “Polynomial-time algorithms for
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